35
Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

Embed Size (px)

Citation preview

Page 1: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

Introduction toCMOS VLSI

Design

Lecture 1: Circuits & Layout

Manoel E. de Lima – CIn – UFPE

David Harris

Harvey Mudd College

Spring 2004

Page 2: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 2

Outline

CMOS Gate Design Pass Transistors CMOS Latches & Flip-Flops Standard Cell Layouts Stick Diagrams

Page 3: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 3

CMOS Gate Design Activity:

– Sketch a 4-input CMOS NAND gate

Page 4: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 4

CMOS Gate Design Activity:

– Sketch a 4-input CMOS NOR gate

A

B

C

DY

Page 5: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 5

Complementary CMOS Complementary CMOS logic gates

– nMOS pull-down network– pMOS pull-up network

pMOSpull-upnetwork

outputinputs

nMOSpull-downnetwork

Pull-up OFF Pull-up ON

Pull-down OFF Z (float) 1

Pull-down ON 0 X (crowbar)

Page 6: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 6

Series and Parallel nMOS: 1 = ON pMOS: 0 = ON Series: both must be ON Parallel: either can be ON

(a)

a

b

a

b

g1

g2

0

0

a

b

0

1

a

b

1

0

a

b

1

1

OFF OFF OFF ON

(b)

a

b

a

b

g1

g2

0

0

a

b

0

1

a

b

1

0

a

b

1

1

ON OFF OFF OFF

(c)

a

b

a

b

g1 g2 0 0

OFF ON ON ON

(d) ON ON ON OFF

a

b

0

a

b

1

a

b

11 0 1

a

b

0 0

a

b

0

a

b

1

a

b

11 0 1

a

b

g1 g2

Page 7: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 7

Conduction Complement Complementary CMOS gates always produce 0 or 1 Ex: NAND gate

– Series nMOS: Y=0 when both inputs are 1– Thus Y=1 when either input is 0– Requires parallel pMOS

Rule of Conduction Complements– Pull-up network is complement of pull-down– Parallel -> series, series -> parallel

A

B

Y

Page 8: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 8

Compound Gates Compound gates can do any inverting function Ex: A.B+C.D

00 01 11 10

00 1 1 0 1

01 1 1 0 1

11 0 0 0 0

10 1 1 0 1

ABCD

nMOS

pMOS

nMOS+pMOS

Page 9: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design

Y = (A+B+C).D

Vcc

1: Circuits & Layout Slide 9

Example: O3AI

Page 10: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 10

Signal Strength Strength of signal

– How close it approximates ideal voltage source VDD and GND rails are strongest 1 and 0

nMOS pass strong 0– But degraded or weak 1

pMOS pass strong 1– But degraded or weak 0

Thus nMOS are best for pull-down network

Page 11: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 11

Pass Transistors Transistors can be used as switches

g

s d

g

s d

Page 12: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 12

Pass Transistors Transistors can be used as switches

g

s d

g = 0

s d

g = 1

s d

0 strong 0

Input Output

1 degraded 1

g

s d

g = 0

s d

g = 1

s d

0 degraded 0

Input Output

strong 1

g = 1

g = 1

g = 0

g = 0

Page 13: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 13

Transmission Gates Pass transistors produce degraded outputs Transmission gates pass both 0 and 1 well

Page 14: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 14

Transmission Gates Pass transistors produce degraded outputs Transmission gates pass both 0 and 1 well

g = 0, gb = 1

a b

g = 1, gb = 0

a b

0 strong 0

Input Output

1 strong 1

g

gb

a b

a b

g

gb

a b

g

gb

a b

g

gb

g = 1, gb = 0

g = 1, gb = 0

Page 15: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 15

Tristates Tristate buffer produces Z when not enabled

EN A Y

0 0

0 1

1 0

1 1

A Y

EN

A Y

EN

EN

Page 16: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 16

Tristates Tristate buffer produces Z when not enabled

EN A Y

0 0 Z

0 1 Z

1 0 0

1 1 1

A Y

EN

A Y

EN

EN

Page 17: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 17

Nonrestoring Tristate Transmission gate acts as tristate buffer

– Only two transistors\• Noise on A is passed on to Y

A Y

EN

EN

Page 18: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 18

Tristate Inverter Tristate inverter produces restored output

– Violates conduction complement rule– Because we want a Z output

A

YEN

EN

Page 19: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 19

Tristate Inverter Tristate inverter produces restored output

– Violates conduction complement rule– Because we want a Z output

A

YEN

A

Y

EN = 0Y = 'Z'

Y

EN = 1Y = A

A

EN

Page 20: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 20

Multiplexers 2:1 multiplexer chooses between two inputs

S D1 D0 Y

0 X 0

0 X 1

1 0 X

1 1 X

0

1

S

D0

D1Y

Page 21: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 21

Multiplexers 2:1 multiplexer chooses between two inputs

S D1 D0 Y

0 X 0 0

0 X 1 1

1 0 X 0

1 1 X 1

0

1

S

D0

D1Y

Page 22: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 22

Gate-Level Mux Design How many transistors are needed?

1 0 (too many transistors)Y SD SD

Page 23: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 23

Gate-Level Mux Design

How many transistors are needed?

1 0 (too many transistors)Y SD SD

20

Page 24: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 24

Inverting Mux Inverting multiplexer

– Pair of tristate inverters– Essentially the same thing

Noninverting multiplexer adds an inverter

Page 25: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 25

Transmission Gate Mux Two transmission gates

– Only 4 transistorsS

S

D0

D1

YS

Page 26: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 26

4:1 Multiplexer 4:1 mux chooses one of 4 inputs using two selects

Page 27: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 27

4:1 Multiplexer 4:1 mux chooses one of 4 inputs using two selects

– Two levels of 2:1 muxes– Or four tristates

S0

D0

D1

0

1

0

1

0

1Y

S1

D2

D3

D0

D1

D2

D3

Y

S1S0 S1S0 S1S0 S1S0

Page 28: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 28

D Latch When CLK = 1, latch is transparent

– D flows through to Q like a buffer When CLK = 0, the latch is opaque

– Q holds its old value independent of D Transparent latch or level-sensitive latch

CLK

D Q

Latc

h D

CLK

Q

Page 29: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 29

D Latch Design Multiplexer chooses D or old Q

Page 30: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 30

D Latch Operation

Page 31: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 31

D Flip-flop When CLK rises, D is copied to Q At all other times, Q holds its value Positive edge-triggered flip-flop, master-slave flip-

flop

Flo

p

CLK

D Q

D

CLK

Q

Page 32: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 32

D Flip-flop Design Built from master and slave D latches

QM

CLK

CLKCLK

CLK

Q

CLK

CLK

CLK

CLK

D

Latc

h

Latc

h

D QQM

CLK

CLK

Master Slave

Page 33: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 33

D Flip-flop Operation

Master onSlave off

Master ofSlave on

Page 34: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 34

Race Condition Back-to-back flops can malfunction from clock skew

– Second flip-flop fires late– Sees first flip-flop change and captures its result– Called hold-time failure or race condition

CLK1

D Q1

Flo

p

Flo

p

CLK2

Q2

CLK1

CLK2

Q1

Q2

Page 35: Introduction to CMOS VLSI Design Lecture 1: Circuits & Layout Manoel E. de Lima – CIn – UFPE David Harris Harvey Mudd College Spring 2004

CMOS VLSI Design1: Circuits & Layout Slide 35

Nonoverlapping Clocks Nonoverlapping clocks can prevent races

– As long as nonoverlap exceeds clock skew We will use them in this class for safe design

– Industry manages skew more carefully instead 1

11

1

2

22

2

2

1

QMQD