3
Introduction to Biological Physics: Collection of physics equations for final exam kBT 1/40 eV 4.1 pN·nm = 4.1·10 –21 J; kB 1.38·10 –23 J/K; NA = 6.022·10 23 /mol; g = 9.81 m/s 2 10 m/s 2 . Coulomb force: ! F = 1 4πεε 0 q 1 q 2 R 2 ˆ r , potential: U = 1 4πεε 0 q 1 q 2 R ; e = 1.6·10 –19 C; εo = 8.85·10 –12 As/Vm. Bjerrum length: l B = e 2 4πε 0 ε k B T 7 Å in water at T = 300 K. Born energy of an ion: U = q 2 8πε 0 ε r . dipole field: ! E = 3 ! μ ˆ r ( ) ˆ r ! μ 4πε 0 ε r 3 ; interaction energy (IE) for static dipoles: U = ! μ 1 ! μ 2 2πε 0 ε r 3 IE between charge and rotating dipole: U = 1 4πε 0 ε ( ) 2 q 2 μ 2 6 k B T 1 r 4 ; polarizability (Bohr atom):α = 4πε 0 a 0 3 IE btw. charge and polarizable molecule: U = α q 2 4πε 0 ε ( ) 2 1 r 4 ; Keesom energy: U = 1 4πε 0 ε ( ) 2 μ 1 2 μ 2 2 3k B T 1 r 6 ; Debye energy: U = 1 4πε 0 ε ( ) 2 μ 2 α r 6 ; London energy: U = 3 24πε 0 ε ( ) 2 α 1 α 2 n 4 1 r 6 I 1 I 2 I 1 + I 2 ; Lennard-Jones: Ur () = 4ε rr 0 ( ) 12 rr 0 ( ) 6 ; Gauss distribution: P( x ) = 1 2π σ ( ) e xx 0 ( ) 2 2σ 2 statistical mean: f ( x ) = f x i ( ) i P( x i ) = f ( x )P( x )d x ; variance: var( x ) = x x ( ) 2 = x 2 x 2 ideal gas: E kin = 32 k B T ; speed distribution: P(v)dv = 4π v 2 2π k B Tm ( ) 3 e mv 2 2 k B T dv ; v = 8 k B T π m generally: E = 12 k B T per degree of freedom; statistical weight/Boltzmann distribution: w i e E i k B T partition function: Q = e E i k B T i = g E e Ek B T E thermodynamic energy/free energy: E = k B T 2 T ln Q ; F = k B T ln Q ; entropy: F T = S end-to-end distances – freely jointed chain: R e = ! R N 2 = N l ; freely rotating chain: l eff = l 1 + cos ϑ 1 cos ϑ persistence length: l p = lim N →∞ ! r 1 l ! r n n ; Kuhn length: a = 2l p ; diffusion of spherical particle: D = k B T 6πηR end-to-end distance distribution: P N ( R)dR = 4π R 2 2π N l ( ) 3 e R 2 2 Nl 2 dR ; radius of gyration: R G 2 = 1 6 R end-to-end 2 statistical entropy: S = k B ln W ; probability of knot formation: P N (0)dV = 1 2π N l ( ) 3 free energy of deformed polymer coil: F( x ) = k B T x 2 2 Nl 2 ; resulting reactive force: f ( x ) = k B T x Nl 2 entropy associated with statistical weight: S = k B ln W ; binomial distribution: P( N ) = 1 2 N N ! N 2 ( )! × N 2 ( )! Stirling's formula: ln N ! N ln N N + 0.5ln 2π N ( ) ; displacement in n-dim. random walk: Δx 2 = 2nDt – 1 –

Introduction to Biological Physics: Collection of physics ... · Introduction to Biological Physics: Collection of physics equations for final exam k BT ≈ 1/40 eV ≈ 4.1 pN·nm

  • Upload
    others

  • View
    21

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to Biological Physics: Collection of physics ... · Introduction to Biological Physics: Collection of physics equations for final exam k BT ≈ 1/40 eV ≈ 4.1 pN·nm

Introduction to Biological Physics: Collection of physics equations for final exam

kBT ≈ 1/40 eV ≈ 4.1 pN·nm = 4.1·10–21 J; kB ≈ 1.38·10–23 J/K; NA = 6.022·1023/mol; g = 9.81 m/s2 ≈ 10 m/s2.

Coulomb force:

!F = 1

4πεε0q1q2R2

r̂ , potential: U = 14πεε0

q1q2R

; e = 1.6·10–19 C; εo = 8.85·10–12 As/Vm.

Bjerrum length: lB =e2

4πε0εkBT≈ 7 Å in water at T = 300 K. Born energy of an ion: U =

q2

8πε0εr.

dipole field:

!E =

3 !µ ⋅ r̂( ) ⋅ r̂ − !µ4πε0εr

3 ; interaction energy (IE) for static dipoles: U = −

!µ1!µ2

2πε0εr3

IE between charge and rotating dipole: U = −1

4πε0ε( )2q2µ2

6kBT1r4

; polarizability (Bohr atom):α = 4πε0a03

IE btw. charge and polarizable molecule: U = −αq2

4πε0ε( )21r4

; Keesom energy: U = −1

4πε0ε( )2µ12µ2

2

3kBT1r6

;

Debye energy: U = −1

4πε0ε( )2µ2αr6

; London energy: U = −3

2 4πε0ε( )2α1α2

n41r6

I1I2I1 + I2

;

Lennard-Jones: U r( ) = 4ε r r0( )−12 − r r0( )−6⎡⎣

⎤⎦ ; Gauss distribution: P(x) = 1 2πσ( ) ⋅e− x−x0( )2 2σ 2

statistical mean: f (x) = f xi( )i∑ P(xi ) = f (x)P(x)dx∫ ; variance: var(x) = x − x( )2 = x2 − x 2

ideal gas: Ekin = 3 2 kBT ; speed distribution: P(v)dv = 4πv2

2π kBT m( )3e−mv2

2kBT dv ; v = 8kBT πm

generally: E = 1 2 kBT per degree of freedom; statistical weight/Boltzmann distribution: wi ∝ e−Ei kBT

partition function: Q = e−Ei kBTi∑ = gEe

−E kBT

E∑

thermodynamic energy/free energy: E = kBT2 ∂∂TlnQ ; F = −kBT lnQ ; entropy:

∂F∂T

= −S

end-to-end distances – freely jointed chain: Re =

!RN2 = Nl ; freely rotating chain: leff = l ⋅

1+ cosϑ1− cosϑ

persistence length: lp = limN→∞

!r1l!rn

n∑ ; Kuhn length: a = 2lp ; diffusion of spherical particle: D =

kBT6πηR

end-to-end distance distribution: PN (R)dR =4πR2

2πNl( )3e−

R2

2Nl2 dR ; radius of gyration: RG2 = 1

6Rend-to-end2

statistical entropy: S = kB lnW ; probability of knot formation: PN (0)dV = 1 2πNl( )3

free energy of deformed polymer coil: F(x) = kBT ⋅ x2

2Nl2; resulting reactive force: f (x) = kBT ⋅ x

Nl2

entropy associated with statistical weight: S = kB lnW ; binomial distribution: P(N ) = 12N

N !N 2( )!× N 2( )!

Stirling's formula: lnN !≈ N lnN − N + 0.5 ln 2πN( ) ; displacement in n-dim. random walk: Δx2 = 2nDt

– 1 –

Page 2: Introduction to Biological Physics: Collection of physics ... · Introduction to Biological Physics: Collection of physics equations for final exam k BT ≈ 1/40 eV ≈ 4.1 pN·nm

Stokes formula: ζ = 6πηR ; Einstein relation: D ⋅ζ = kBT ; Stokes-Einstein relation: D = kBT 6πηR( )

continuity equation:

∂c(!r ,t)∂t

= −∇!j (!r ,t) ; Fick’s laws: (1)

!j (!r ,t) = –D∇c(!r ,t) ; (2)

∂c(!r ,t)∂t

= DΔc(!r ,t)

membrane permeation: js = −PsΔc = −D ΔcL

; ion mobility: vel =zeEζ

(ζ : friction coefficient)

Einstein: D =kBTζ

; Nernst-Planck formula: j = D qkBT

Ec − dcdx

⎛⎝⎜

⎞⎠⎟

; Nernst equation: U =U0 −kBTzeln c c0( )

information content of sequence: I = 1ln2

N lnM =1ln2

lnΩ =1ln2

lnN !− ln N j !( )j=1

M∑( )Shannon’s formula: I N = −

1ln2

pj ln pjj∑

statistical definition of entropy: S = kB lnΩ ; Ideal Gas: S = kB ln 2mE( )3N 2 ⋅V N⎡⎣ ⎤⎦ + const (Sakur-Tetrode)

Free Energy: F = E − TS ; Free Enthalpy: G = F + pV ; T =dSdE

⎛⎝⎜

⎞⎠⎟−1

; p = T dSdV

; fa = −dFadL

level occupancy in Two-Level System ( 1! 2 ; state 1 is low-energy level): N1,eqN2,eq

= K = k2→1k1→2

= eΔF kBT

probability ratio in TLS: p1 p2 = exp ΔE / kBT( )( ) ; probability to find system in state 1: p1 =1

1+ e−ΔE kBT

probability ratio for two generalized states with Free Energies F1 and F2: p1 p2 = exp F2 − F1( ) / kBT( )( )

Van’t Hoff equation: peq = c ⋅ kBT ; flux through semipermeable membrane: jv = −Lp Δp − Δc ⋅ kBT( )

Poisson eqn.: ΔΨ = −ρe!r( ) ε0ε( ) ; Poisson-Boltzmann eqn.: ΔΨ = −

c0eε0ε

exp −eΨ kBT( ) − exp eΨ kBT( )⎡⎣ ⎤⎦

ionic strength of an electrolyte: I = c0(i )zi

2

i∑ ; Debye length: λD = ε0εkBT

e2 ⋅2c0

⎛⎝⎜

⎞⎠⎟

1 2

= 8πlB ⋅ I( )–1 2

potential decays as Ψ(x) = σλD

εε0e− x/λD with distance x; specific capacity of diffuse layer:

dσdΨ0

=ε0ελD

λD ~ 3Å c0 for 1:1 electrolyte (c0 in mol/L); Grahame eqn.: σ = 8c0ε0εkBT[ ]1 2 ⋅ sinh eΨ0

kBT⎛⎝⎜

⎞⎠⎟

S = −∂G∂T p

; V =∂G∂p T

; µα = −T ∂S∂Nα E ,Nβ≠α

; µ(p) = µ(p0 ) + V (p)p0

p

∫ dp = G(p0 ) + kBT ln p p0 (Ideal Gas)

– 2 –

Page 3: Introduction to Biological Physics: Collection of physics ... · Introduction to Biological Physics: Collection of physics equations for final exam k BT ≈ 1/40 eV ≈ 4.1 pN·nm

dG =∂G∂T p,Nα

dT +∂G∂p T ,Nα

dp + ∂G∂Nα p,Nβ≠α

dNαα∑ ; Arrhenius equation:

∂ lnK∂ 1 T( ) = −

ΔHreact0

R

Gtotreact = niGi

0

i∑ − T ⋅ R ni ln ni ni

i∑⎛

⎝⎜⎞⎠⎟i

ligand binding: Kd =L[ ] ⋅ R[ ]LR[ ] ; pb =

L[ ] Kd

1+ L[ ] Kd

=c c0( )e−ΔE kBT

1+ c c0( )e−ΔE kBT

multiple ligand binding sites, n:Kdn =

L[ ]n ⋅ R[ ]LR[ ] ; pb =

L[ ] Kd( )n1+ L[ ] Kd( )n

– 3 –