21
N°101 JANV / FÉV 2021 sélection de rendez-vous des bibliothèques digital digital et cliquable et cliquable

Introduction to aberrations...IHH u W HH2' Ж Alternatively Prof. Jose Sasian OPTI 518 10 Irradiance transport equation Prof. Jose Sasian OPTI 518 11 Inverse square law 22 2 2 21cos

  • Upload
    others

  • View
    20

  • Download
    0

Embed Size (px)

Citation preview

  • Prof. Jose SasianOPTI 518

    1

    Introduction to aberrations

    OPTI 518

    Lecture 16

    Irradiance function

  • Prof. Jose SasianOPTI 518

    2

    Irradiance function

  • Prof. Jose SasianOPTI 518

    3

    Conservation of flux at pupils

  • Prof. Jose SasianOPTI 518

    4

    Jacobian determinant

  • Prof. Jose SasianOPTI 518

    5

    Irradiance equations

  • Prof. Jose SasianOPTI 518

    6

    Irradiance change

    '020 020 3114I I WЖ

    '111 111 220 2224 6I H I H W W HЖ Ж

    '200 200 1314I H H I H H W H HЖ

  • Prof. Jose SasianOPTI 518

    7

    Pinhole camara 2 40 2

    ' '' ' cos ''

    ds dad Ls

    4 '

    2 20 00 02 22 2

    0 0

    ' '' 2 2 ' sin cos ' sin '' ''

    a UL LrI r dr L d n Us nr s

    4cos 'RI

    4 2 2, cos ' 1 2 ' 4 ' ' 2 ' ...RI H u u u H u H H

    F/100, F/2, F/1

  • Prof. Jose SasianOPTI 518

    8

    Irradiance at exit pupil

    1'000 I

    ' 2020 31142I u WЖ

    '111 220 2224 64I H uu W W HЖ Ж

    ' 2200 13142I H H u W H HЖ

    4 2 2, cos 1 2 4 2 ...I H RI H u uu H u H H

  • Prof. Jose SasianOPTI 518

    9

    Irradiance at exit pupil

    1'000 I

    ' 2020 13142 'I u WЖ

    '111 220 2224 64 ' 'I H u u W W HЖ Ж

    ' 2200 31142 'I H H u W H HЖ

    Alternatively

  • Prof. Jose SasianOPTI 518

    10

    Irradiance transport equation

  • Prof. Jose SasianOPTI 518

    11

    Inverse square law

    2 2

    2

    2

    2 1 cos

    a a a b b b

    ab a

    b

    I r I r

    rI Ir

  • Prof. Jose SasianOPTI 518

    12

    Element of Throughput

    2 2

    2 22

    coscos cosO P P O O P

    n dS dSdT n dS d n dS d

    l

  • Prof. Jose SasianOPTI 518

    13

    Radiance times throughput gives the optical power (flux)

    2

    ,L HT

    n

  • Prof. Jose SasianOPTI 518

    14

    Invariance upon refraction

    sin 'sin 'n I n I

    'cos 'cos 'M Mn I dI n I dI

    ''T TndI n dI

  • Prof. Jose SasianOPTI 518

    15

    Invariance upon refraction

    O M Td dI dI ' ' 'O M Td dI dI

    2 2 'cos ' cos 'O On I d n I d

    cos cosP SdS I dS

    ' 'cos ' cos 'P SdS I dS 'S SdS dS

    'cos cos 'cos cos 'P P

    dS dSI I

  • Prof. Jose SasianOPTI 518

    16

    Invariance upon refraction

    2 22

    2

    coscosO P P O

    n dS dSdT n dS d

    l

    2 2 ' '2 ' '

    2

    2' 2

    ' cos '' ' cos '

    '' cos cos '

    coscos

    O PP O

    P O P O

    n dS dSdT n dS d

    ln I

    dS d n dS d dTI

    Thus the element of throughput is invariant upon light refraction.

  • Prof. Jose SasianOPTI 518

    17

    Invariance upon transfer

    2 2 ' '

    2 ' ' 2 ' '2

    ' cos '' cos ' ' cos '

    'O P

    P O P O

    n dS dSn dS d n d dS

    l

    Since the element of throughput after refraction is also equalto the element of throughput for the next surface,

    We have that the element of throughput is invariant upon transfer.

    The conclusion is that the element of throughput is an invariant in a lens system.

  • Prof. Jose SasianOPTI 518

    18

    Radiance theorem

    2

    ,L Hd dT

    n

    dL

    d T

    The element of optical flux

    transmitted is given by the product the source radiance

    in units of watts/m2-steradian,

    in units of watt/m2-steradian,

    It follows that the quantity 2/L nis invariant; this is known as the radiance theorem.

    divided by the square of the index of refraction

    and the element of throughput

  • Prof. Jose SasianOPTI 518

    19

    Image and pupil aberrations relationships

    2 2 2 2 ' '2 2

    cos ' cos ''

    O P O Pn dS dS n dS dSl l

    0

    cosll

    '0'

    cos 'll

    2 4 2 4 ' '2 20 0

    cos ' cos ''

    O P O Pn dS dS n dS dSl l

    2 21cos 1 22 u uu H u H H

    2 21cos ' 1 ' 2 ' ' '2 u u u H u H H

  • Prof. Jose SasianOPTI 518

    20

    Image and pupil aberrations relationships

    2 2

    2 22 22 20

    2 2 '2 '20

    1 1 1 2 ' 2 ' ' '

    ' 1 2 2'

    H

    pupil object

    pupil image

    H u u u H u H H

    y yn l u uu H u H Hl n y y

    2 2 22 2 22 20

    2 2 '2 '2 2 '2 '2 20

    ' 1' '

    pupil object object

    pupil image image

    y y yn l un Жn l y y n u y Ж

    2 2

    2 2

    1 1 1 2 ' 2 ' ' '

    1 2 2

    H H u u u H u H H

    u uu H u H H

    '2'

    2, 1pupilP

    PP pupil

    ydS J HdS y

    '2'

    2, 1imageO

    O HO object

    ydS J H HdS y

  • Prof. Jose SasianOPTI 518

    21

    Image and pupil aberrations relationships

    2 22 2H H u uu H u H H

    1 ,HW HЖ 1 ,H W HЖ

    131 222 220 3111 4 6 4 4W H H W H W H WЖ

    131 222 220 3111 4 6 4 4H H W W H W H W H HЖ

  • Prof. Jose SasianOPTI 518

    22

    Image and pupil aberrations relationships

    131 311 222 222

    220 220 311 131

    2 2

    32

    1 12 2

    W W H H W W H

    W W H W W

    Ж u uu H u H H

    2131 311 2ЖW W u

    222 222 2ЖW W uu

    220 220 4ЖW W uu

    2311 131 2ЖW W u

    !

  • Prof. Jose SasianOPTI 518

    23

    The sine condition

    sin ''sinUu

    u U

    '000 020 311

    2 2

    4' 1

    41 1 2 '2

    I I I WЖ

    Ж u uЖ

  • Prof. Jose SasianOPTI 518

    24

    Herschel’s condition

    2 2 'sin ' 'sin2 2U Un l n l

    ' 2000 020 3114 3' 1 1 '

    2I I I W u

    Ж

  • Prof. Jose SasianOPTI 518

    25

  • Prof. Jose SasianOPTI 518

    26

    Beam apodization in microscopes

    2311 131 12W W Ж u 131 0W

    2311 12W Ж u

  • Prof. Jose SasianOPTI 518

    27

    Beam apodization

    '020 3114I WЖ

    ' 2 2020 3114 4 4 '2 2ЖI W u u

    Ж Ж

    Exit pupil irradiance

  • Prof. Jose SasianOPTI 518

    28

    ‘Exact’

    Exitpupil

    4' cosds ds

    ds

    'ds

  • Prof. Jose SasianOPTI 518

    29

    Relative illumination across the field of view

    • RI is the ratio of the irradiance at a given field point to the on-axis irradiance.

    4cosRI

  • Prof. Jose SasianOPTI 518

    30

    Relative illumination across the field of view

    Stop at entrance pupil

  • Prof. Jose SasianOPTI 518

    31

    Pinhole camera and lens

    Stop at entrance pupil 4cosRI

  • Prof. Jose SasianOPTI 518

    32

    Pupil coma vs Image distortion

  • Prof. Jose SasianOPTI 518

    33

  • Prof. Jose SasianOPTI 518

    34

  • Prof. Jose SasianOPTI 518

    35

    Aplanatic telecentric lens

    Produces uniform illumination from Lambertian source

    2020 3114[ 2 ' ]I H H u W H HЖ

    111 220 2224 6[ 4 ' ' ]I H u u W W HЖ Ж

    2200 1314[ 2 ' ]I u WЖ

  • Prof. Jose SasianOPTI 518

    36

    Wave and irradiance functions

    , ,, ,

    000 200 111 020

    22040 131 222

    2

    220 311 400

    ( , ) ( ) ( ) ( )

    ,

    j m nk l m

    j mlWH W H H H

    W W H H W H W

    W W H W H

    W H H W H H H W H H

    , ,, ,

    000 200 111 020

    2 2

    040 131 222

    2220 311 400

    ( , ) ( ) ( ) ( )

    ,

    j m nk l m

    j ml

    WH W H H H

    W W W H W H H

    W H H W H H H W H

    W H H W H W

    , ,

    000 200 111 020

    22040 131 222

    2

    220 311 400

    ( , )

    ,

    j m n

    j mnI H I H H H

    I I H H I H I

    I I H I H

    I H H I H H H I H H

    , ,, ,

    000 200 111 020

    2 2

    040 131 222

    2220 311 400

    ( , ) ( ) ( ) ( )

    ,

    j m nl k m

    j ml

    I H I H H H

    I I I H I H H

    I H H I H H H I H

    I H H I H I

  • Prof. Jose SasianOPTI 518

    37

    Basic irradiance changesor

    Irradiance aberrations

  • Prof. Jose SasianOPTI 518

    38

    2020 2 'I u

    111 4 ' 'I H u u H

    2200 2 'I H H u H H

    2 24040 04016[3 ' ' ']I u W u uЖ

    3 2131 040 13116 12[12 ' ' ' ' ']I H u u W u W u u HЖ Ж

    2 22 2 2222 131 2228 8[12 ' ' ' ' ']I H u u W u W u u HЖ Ж

    2 2 2220 131 2204 8[6 ' ' ' ' ']I H H u u W u W u u H HЖ Ж

    3 2 2311 222 220 3118 8 4[12 ' ' ' ' ' ']I H H H u u W u W u W u u H H HЖ Ж Ж

    2 24 2400 3114[3 ' ' ]I H H u W u H HЖ

    Irradiance coefficients at image plane:second and fourth order

  • Prof. Jose SasianOPTI 518

    39

    2020 3114[ 2 ' ]I H H u W H HЖ

    111 220 2224 6[ 4 ' ' ]I H u u W W HЖ Ж

    2200 1314[ 2 ' ]I u WЖ

    Irradiance coefficients at exit pupil plane:second and fourth order

    2 24 2040 511 311 311 31126 3 3[3 ' ' ]I H H u W W u W W H HЖ Ж Ж

    3 2 2131 422 420 222 220 31110 8 5 2 6[12 ' ' ' ' ' 'I H H H u u W W W u W u W u uЖ Ж Ж Ж Ж

    220 311 222 3112 24 10 ]W W W W H H HЖ Ж

    2 2 2 2 2222 333 331 131 222 220 31112 4 2 12 8 2[12 ' ' ' ' ' ' ' 'I H u u W W W u W u u W u u W uЖ Ж Ж Ж Ж Ж

    2222 222 222 220 311 1312 2 28 16 4 ]W W W W W W HЖ Ж Ж

    2 2 2 2220 331 131 222 220 3116 5 2 4 5[6 ' ' ' ' ' ' ' 'I H H u u W W u W u u W u u W uЖ Ж Ж Ж Ж

    311 131 222 2202 210 8 ]W W W W H HЖ Ж

    3 2 2311 242 240 222 220 13110 8 5 2 6[12 ' ' ' ' ' 'I H u u W W W u W u W u uЖ Ж Ж Ж Ж

    220 131 222 1312 24 10 ]W W W W HЖ Ж

    2 24 2400 151 131 131 13126 3 3[3 ' ' ]I u W W u W WЖ Ж Ж

  • Prof. Jose SasianOPTI 518

    40

    Summary

    • It is important to understand the radiometry in an optical system

    • Irradiance function• The element of throughput• Image-pupil relationships• Sine condition• Herschel’s condition