35
TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation UWB Receiver using OFDM Andreas Pedross, Klaus Witrisal Signal Processing and Speech Communication Laboratory May 05, 2011 Andreas Pedross, Klaus Witrisal May 05, 2011 page 1/23

Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

Embed Size (px)

Citation preview

Page 1: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Introduction to a Multichannel NoncoherentAutocorrelation UWB Receiver using OFDM

Andreas Pedross, Klaus Witrisal

Signal Processing and Speech Communication Laboratory

May 05, 2011

Andreas Pedross, Klaus Witrisal May 05, 2011 page 1/23

Page 2: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Outline

Introduction

Architecture

Receiver Signal Processing

Conclusions

Andreas Pedross, Klaus Witrisal May 05, 2011 page 2/23

Page 3: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Introduction – What’s the goal?

Receiver Design Constraints

We want:

1.

2.

Andreas Pedross, Klaus Witrisal May 05, 2011 page 3/23

Page 4: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Introduction – What’s the goal?

Receiver Design Constraints

We want:

1. High Data-Rate: 437.5 Mbps

2.

Andreas Pedross, Klaus Witrisal May 05, 2011 page 3/23

Page 5: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Introduction – What’s the goal?

Receiver Design Constraints

We want:

1. High Data-Rate: 437.5 Mbps

2. Low-Power!

Andreas Pedross, Klaus Witrisal May 05, 2011 page 3/23

Page 6: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Introduction – What’s the goal?

Receiver Design Constraints

We want:

1. High Data-Rate: 437.5 Mbps

2. Low-Power!

How to achieve?

Andreas Pedross, Klaus Witrisal May 05, 2011 page 3/23

Page 7: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Introduction – What’s the goal?

Receiver Design Constraints

We want:

1. High Data-Rate: 437.5 Mbps

2. Low-Power!

How to achieve?

◮ Ultra-Wide Band: BW 1.75 GHz @ 4 GHz center

Andreas Pedross, Klaus Witrisal May 05, 2011 page 3/23

Page 8: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Introduction – What’s the goal?

Receiver Design Constraints

We want:

1. High Data-Rate: 437.5 Mbps

2. Low-Power!

How to achieve?

◮ Ultra-Wide Band: BW 1.75 GHz @ 4 GHz center

◮ Multidimensional Noncoherent Signaling Scheme!

Andreas Pedross, Klaus Witrisal May 05, 2011 page 3/23

Page 9: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Outline

Introduction

Architecture

Receiver Signal Processing

Conclusions

Andreas Pedross, Klaus Witrisal May 05, 2011 page 4/23

Page 10: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Architecture – General Signal (1)

Signaling Scheme

s(t) = ℜ

e+jωct

+ K−1

2∑

k=−K−1

2

skΘk(t)

with:

◮ ωc ... carrier frequency

◮ K ... dimension of signal space

◮ Θk(t) ... k-th orthogonal basis function

◮ sk ... k-th symbol element

Andreas Pedross, Klaus Witrisal May 05, 2011 page 5/23

Page 11: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Architecture – General Signal (2)

Received Signal

r(t) = hch(t) ∗ s(t) + n(t)

= ℜ

e+jωct

+ K−1

2∑

k=−K−1

2

skΘ̃k(t)

+ n(t)

with:

◮ hch(t) ... communication channel

◮ Θ̃k(t) ... k-th convolved basis function

◮ n(t) ... noise

Andreas Pedross, Klaus Witrisal May 05, 2011 page 6/23

Page 12: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Architecture – General Signal (3)

Which Noncoherent Receiver Design?

◮ Energy Detector?

z[n] =

∫ nTs

λ=(n−1)Ts

r2(λ)dλ

No separation between basis functions possible!

◮ Autocorrelation?

zk[n] =

∫ nTs

λ=(n−1)Ts

Θ̃k(λ)Θ̃∗k(λ − τm)dλ

Seems feasible...

Andreas Pedross, Klaus Witrisal May 05, 2011 page 7/23

Page 13: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Architecture – System View

Linear

Combiner

Front End

Filterτ0

τ1

τ2

τ3

τ4

LP

ADC

ADC

ADC

ADC

ADC

ADC

LP

LP I&D

LP I&D

LP I&D

LP I&D

LP I&D

LP I&D

ADCI&D

ADCI&D

Andreas Pedross, Klaus Witrisal May 05, 2011 page 8/23

Page 14: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Architecture – System Parameters

Receiver

◮ 8x AcR Channels (4x I&Q)

◮ Delay Lines: 1x 62.5 ps, 1x 250 ps, and 3x 500 ps

Signaling

◮ OFDM

◮ 4 GHz Carrier

◮ 7 Sub-Carriers, 250 MHz spacing

◮ 16 ns Symbol Period with Zero Guard Interval

◮ Truncated Root Raised Cosine Pulses

◮ OOK/PPM

Andreas Pedross, Klaus Witrisal May 05, 2011 page 9/23

Page 15: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Outline

Introduction

Architecture

Receiver Signal Processing

Conclusions

Andreas Pedross, Klaus Witrisal May 05, 2011 page 10/23

Page 16: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Receiver Signal Processing – OFDM

Signaling Scheme

s(t) = ℜ

e+jωct

+ K−1

2∑

k=−K−1

2

skϕ(t)e+jkωsct

with:

◮ ωc ... center frequency

◮ ωsc ... sub-carrier spacing

◮ K ... number of sub-carriers

◮ ϕ(t) ... pulse shape

◮ sk ... k-th symbol element

Andreas Pedross, Klaus Witrisal May 05, 2011 page 11/23

Page 17: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Receiver Signal Processing – Signaling

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x 10−8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

ϕ(t

)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 109

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frequency [Hz]

magnitude o

f baseband s

ub−

carr

ier

puls

es

(left) Baseband Pulse in Time Domain, (right) BasebandSub-Carriers in Frequency Domain

Andreas Pedross, Klaus Witrisal May 05, 2011 page 12/23

Page 18: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Receiver Signal Processing – Autocorrelation (1)

Delay & Multiplication

xm(t) = r(t) · r(t − τm)

=1

2

k

l

skslℜ{

Θ̃k(t)Θ̃∗l (t − τm)e+jωcτm

}

+

+1

2

k

l

skslℜ{

Θ̃k(t)Θ̃l(t − τm)e+2jωcte−jωcτm

}

+

+∑

k

skℜ{

Θ̃k(t)e+jωct

}

· n(t − τm)+

+∑

l

slℜ{

Θ̃l(t − τm)e+jωcte−jωcτm

}

· n(t)+

+ n(t) · n(t − τm)

Andreas Pedross, Klaus Witrisal May 05, 2011 page 13/23

Page 19: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Receiver Signal Processing – Autocorrelation (1)

Delay & Multiplication

xm(t) = r(t) · r(t − τm)

=1

2

k

l

skslℜ{

Θ̃k(t)Θ̃∗l (t − τm)e+jωcτm

}

+

+1

2

k

l

skslℜ{

Θ̃k(t)Θ̃l(t − τm)e+2jωcte−jωcτm

}

+

+∑

k

skℜ{

Θ̃k(t)e+jωct

}

· n(t − τm)+

+∑

l

slℜ{

Θ̃l(t − τm)e+jωcte−jωcτm

}

· n(t)+

+ n(t) · n(t − τm)

Andreas Pedross, Klaus Witrisal May 05, 2011 page 13/23

Page 20: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Receiver Signal Processing – Autocorrelation (1)

Delay & Multiplication

xm(t) = r(t) · r(t − τm)

=1

2

k

l

skslℜ{

Θ̃k(t)Θ̃∗l (t − τm)e+jωcτm

}

+

+1

2

k

l

skslℜ{

Θ̃k(t)Θ̃l(t − τm)e+2jωcte−jωcτm

}

+

+∑

k

skℜ{

Θ̃k(t)e+jωct

}

· n(t − τm)+

+∑

l

slℜ{

Θ̃l(t − τm)e+jωcte−jωcτm

}

· n(t)+

+ n(t) · n(t − τm)

Andreas Pedross, Klaus Witrisal May 05, 2011 page 13/23

Page 21: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Receiver Signal Processing – Autocorrelation (2)

Lowpass-Filtering

x̃m(t) = hlp(t) ∗ xm(t)

≈1

2

k

s2kℜ

{

hlp(t) ∗[

Θ̃k(t)Θ̃∗k(t − τm)

]

e+jωcτm

}

+

+1

2

k

l,l 6=k

skslℜ{

hlp(t) ∗[

Θ̃k(t)Θ̃∗l (t − τm)

]

e+jωcτm

}

+

+∑

k

skhlp(t) ∗[

ℜ{

Θ̃k(t)e+jωct

}

· n(t − τm)]

+

+∑

l

slhlp(t) ∗[

ℜ{

Θ̃l(t − τm)e+jωcte−jωcτm

}

· n(t)]

+

+ hlp(t) ∗ [n(t) · n(t − τm)]

Andreas Pedross, Klaus Witrisal May 05, 2011 page 14/23

Page 22: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Receiver Signal Processing – Autocorrelation (2)

Lowpass-Filtering

x̃m(t) = hlp(t) ∗ xm(t)

≈1

2

k

s2kℜ

{

hlp(t) ∗[

Θ̃k(t)Θ̃∗k(t − τm)

]

e+jωcτm

}

+

+1

2

k

l,l 6=k

skslℜ{

hlp(t) ∗[

Θ̃k(t)Θ̃∗l (t − τm)

]

e+jωcτm

}

+

+∑

k

skhlp(t) ∗[

ℜ{

Θ̃k(t)e+jωct

}

· n(t − τm)]

+

+∑

l

slhlp(t) ∗[

ℜ{

Θ̃l(t − τm)e+jωcte−jωcτm

}

· n(t)]

+

+ hlp(t) ∗ [n(t) · n(t − τm)]

Andreas Pedross, Klaus Witrisal May 05, 2011 page 14/23

Page 23: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Receiver Signal Processing – Autocorrelation (2)

Lowpass-Filtering

x̃m(t) = hlp(t) ∗ xm(t)

≈1

2

k

s2kℜ

{

hlp(t) ∗[

Θ̃k(t)Θ̃∗k(t − τm)

]

e+jωcτm

}

+

+1

2

k

l,l 6=k

skslℜ{

hlp(t) ∗[

Θ̃k(t)Θ̃∗l (t − τm)

]

e+jωcτm

}

+

+∑

k

skhlp(t) ∗[

ℜ{

Θ̃k(t)e+jωct

}

· n(t − τm)]

+

+∑

l

slhlp(t) ∗[

ℜ{

Θ̃l(t − τm)e+jωcte−jωcτm

}

· n(t)]

+

+ hlp(t) ∗ [n(t) · n(t − τm)]

Andreas Pedross, Klaus Witrisal May 05, 2011 page 14/23

Page 24: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Receiver Signal Processing – Mixers

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 109

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frequency [Hz]

magnitude o

f co−

and c

ross−

term

s

Mixing Product

Andreas Pedross, Klaus Witrisal May 05, 2011 page 15/23

Page 25: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Receiver Signal Processing – Mixers

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 109

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frequency [Hz]

magnitude o

f co−

and c

ross−

term

s

Mixing Product

Andreas Pedross, Klaus Witrisal May 05, 2011 page 15/23

Page 26: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Receiver Signal Processing – Autocorrelation (3)

Integrate ... and Dump

ym[n] = ym(nTs)

= hint(t) ∗ x̃m(t)|t=nTs

≈1

2

k

s2kℜ

{

hlp(t) ∗ Φ̃mkk(nTs)e

+jωcτm

}

+

+1

2

k

l,l 6=k

skslℜ{

hlp(t) ∗ Φ̃mkl(nTs)e

+jωcτm

}

+

+ νs×n(nTs)+

+ νn×s(nTs)+

+ νn×n(nTs)

Andreas Pedross, Klaus Witrisal May 05, 2011 page 16/23

Page 27: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Receiver Signal Processing – Autocorrelation (4)

with the Autocorrelation Function

Φ̃mkl(t) = hint(t) ∗

[

Θ̃k(λ)Θ̃∗l (λ − τm)

]

=

∫ t

λ=t−Tint

Θ̃k(λ)Θ̃∗l (λ − τm)dλ

and Ideal Integration Filter

hint(t) = σ(t) − σ(t − Tint)

σ(t)... Heaviside function

Andreas Pedross, Klaus Witrisal May 05, 2011 page 17/23

Page 28: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Receiver Signal Processing – Integrate & Dump

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 109

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frequency [Hz]

magnitude o

f co−

and c

ross−

term

s

Signal after Integration

Andreas Pedross, Klaus Witrisal May 05, 2011 page 18/23

Page 29: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Receiver Signal Processing – Integrate & Dump

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 109

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frequency [Hz]

magnitude o

f co−

and c

ross−

term

s

Signal after Integration

Andreas Pedross, Klaus Witrisal May 05, 2011 page 18/23

Page 30: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Receiver Signal Processing – MIMO

Typical Memoryless MIMO System

y[n] = Hs[n] + G (s[n] ⊗ s[n]) + ν[n]

G vanishes for orthogonal basis functions!

Basis Function Separation

Separation possible for H with rank K: use Linear Combiner W!

z[n] = Wy[n]

= WHs[n] + Wν[n]

Design Methods for W: ZF, MMSE, ...

Andreas Pedross, Klaus Witrisal May 05, 2011 page 19/23

Page 31: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Receiver Signal Processing – Performance

4 6 8 10 12 14 16 18 20 22 2410

−4

10−3

10−2

10−1

100

avera

ge b

it−

err

or−

rate

BE

R

average Eb/N

0 [dB]

MC UWB w/ MMSE

MC UWB w/ ZF

wideband UWB w/ ED

UWB subcarrier w/ ED

Andreas Pedross, Klaus Witrisal May 05, 2011 page 20/23

Page 32: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Outline

Introduction

Architecture

Receiver Signal Processing

Conclusions

Andreas Pedross, Klaus Witrisal May 05, 2011 page 21/23

Page 33: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Conclusions – Finally!?

◮ A Noncoherent Multichannel Autocorrelation Receiver wasintroduced

◮ We took a close look on the Receiver Signal Processing

◮ Receiver Architecture shows a promissing performance

Andreas Pedross, Klaus Witrisal May 05, 2011 page 22/23

Page 34: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

Conclusions – Finally!?

◮ A Noncoherent Multichannel Autocorrelation Receiver wasintroduced

◮ We took a close look on the Receiver Signal Processing

◮ Receiver Architecture shows a promissing performanceEspecially for Noncoherent OFDM!!Even for not perfectly orthogonal basis functions!!

Andreas Pedross, Klaus Witrisal May 05, 2011 page 22/23

Page 35: Introduction to a Multichannel Noncoherent Autocorrelation ... · TU Graz - Signal Processing and Speech Communication Laboratory Introduction to a Multichannel Noncoherent Autocorrelation

TU Graz - Signal Processing and Speech Communication Laboratory

References

K. Witrisal,

“Noncoherent Autocorrelation Detection of Orthogonal Multicarrier UWB signals“,IEEE International Conference on Ultra-Wideband 2008, Sept. 2008, vo. 2, pp. 161–164.

P. Meissner, and K. Witrisal,

“Analysis of a Noncoherent UWB Receiver for Multichannel Signals”,IEEE Vehicular Technology Conference, VTC2010-Spring, May 2010.

K. Witrisal, G. Leus, G. Janssen, M. Pausini, F. Troesch, T. Zasowski, and J. Romme,

“Noncoherent Ultra-Wideband Systems“,IEEE Signal Processing Magazine, vol. 26, no. 4, p. 48–66, July 2009.

Andreas Pedross, Klaus Witrisal May 05, 2011 page 23/23