79
KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 1 • Introduction • FEE partitioning • Design for Test • Optical Readout • Global Tracking Unit Fast Data Processing in ALICE TRD FEE & GTU Venelin Angelov Kirchhoff Institute of Physics Chair of Computer Science Prof. Dr. Volker Lindenstruth University Heidelberg, Germany Phone: +49 6221 54 9812 Fax: +49 6221 54 9809 Email:

Introduction FEE partitioning Design for Test Optical Readout Global Tracking Unit

  • Upload
    diep

  • View
    25

  • Download
    0

Embed Size (px)

DESCRIPTION

Fast Data Processing in ALICE TRD FEE & GTU. Introduction FEE partitioning Design for Test Optical Readout Global Tracking Unit. Venelin Angelov Kirchhoff Institute of Physics Chair of Computer Science Prof. Dr. Volker Lindenstruth University Heidelberg, Germany - PowerPoint PPT Presentation

Citation preview

Page 1: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 1

• Introduction• FEE partitioning• Design for Test• Optical Readout• Global Tracking Unit

Fast Data Processing in

ALICE TRD FEE & GTU

Venelin AngelovKirchhoff Institute of PhysicsChair of Computer ScienceProf. Dr. Volker LindenstruthUniversity Heidelberg, GermanyPhone: +49 6221 54 9812Fax: +49 6221 54 9809Email:[email protected]: www.ti.uni-hd.de

Page 2: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 2

TR-detector

z

r

B=0.4

T

verte

x

18 Supermodules in azimuth

5 m

odule ri

ngs

TRD Structurestack

6 pl

anes

8 MCM 144 channels

module

max

. 16

padr

ows

MCM

18 channels

1.2 million channels 1.4 million ADCs peak data rate: 16 TB/s ~65000 MCMs processing time: 6 µs

PASA

TRAP

1080 optical links @2.5GbpsO

RI

ORI

G T U

Page 3: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 3

Line Fit & Global Tracking

module profile

tracklet processor

straight line fit via a linear regression method

searching for dedicated patterns (for energy cut and electron - pion separation)

raw data buffer

global tracking

projection of ‘tracklets’ to a virtual plane

searching for tracklets belonging together

perform (accurate) energy cut and generate trigger

tracklets

virtualplane

projectedtracklets

track

Page 4: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 4

FEE development

How to design the FEE with so many channels?- fast and with low latency- low power - precise power control (1mW/channel → 1.2kW)- low cost

- minimize using connectors- use some simple chip package (MCM + ball grid array)- standard components? which process? IP cores?

- flexible, as much as possible- make everything configurable- use CPU core(s) for final processing

- reliable, no possibility to repair anything later- redundancy, error and failure protection- self diagnostic features

Page 5: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 5

FEE development(2)

Chip Design flow1. Detector simulations to understand the signals we get and what kind

of processing we need2. Select PASA shaping time, ADC sampling rate and resolution3. Behavior model of the digital processing including the bit-precision

in every arithmetic operation4. Estimate the processing time and select the clock speed of the design

(multiple of LHC and ADC sampling clock)5. Code the digital design, simulate it, synthesize it, estimate the timing

and area, optimize again…6. Submit the chip, this is the point of no return!7. Continue with the simulations, find some bugs and think about fixes8. Prepare the test setup

And so on, TRAP1, 2, TRAPADC, miniQPM, TRAP3, TRAP3a (final)

Page 6: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 6

Partitioning, Data Flow & Reduction

PASA ADCTracklet

Preprocessor

TPPGTU

TrackletProcessor

TP

NetworkInterface

NI

L1 triggerto CTP

to HLT& DAQ

detector6 layers

1.2 millionanalog channels

chargesensitive

preamplifiershaper

10 Bit ADC10 MSPS

21 channels

digital filterpreprocess data

event buffer

builds readout treefor

trigger & raw data

fit tracklets fortrigger functionality

process raw datamonitoring

merge trackletsinto tracks for

triggerprocess raw data

for HLT

TRD

MCM - Multi Chip Module

event bufferstore raw data until L1A

during first 2 µs (drift time)33 MB

16 TB/s257 GB/s

1

after 3.5 µstime:data / event:

peak rate:mean rate:reduction:

after 4.1 µsmax. 80 KB600 GB/s

-~ 400

after 6 µssome bytes

--

to trigger decision

Page 7: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 7

Detector Readout

2

4

4.6

6time [µs]

Pretrigger

Drift

Processing

Transmissiontime

GTU finished

0 1,200,000 channels, 1,400,000 ADCs10 bit 10 MSPS, 20 samples/event

preprocessing

65,000 MCMs, 18+3 channels/MCM,4 CPUs at 120 MHz

4,100 Readout Boards, 16+1(+1) MCMs8 bit 120MHz DDR readout tree

1,080 Optical Readout Interface links2 links/chamber at 2.5 Gb/s

90 Track Matching Units (GTU)1 TMU/module, FPGA based

Central Trigger Processor

BM

HCM

ORI

12 optical links

3+own:1

4:1

4:1

TMU5:1

DDL

x18

CTP

TGU

. . .

. . .

SMU

G T

U

A+D

Mer

ger

MCM

Page 8: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 8

TRAP development – a long long way

MCM for 8 channels with the first prototypes of the Digital chip and Preamplifier, commercial ADCs Beg 2001

First tested TRAP chip, in „spider“ mode Summer of 2002

FaRo1AMS0.35μm

TRAP1UMC0.18μm

PASAAMS0.35μm

Page 9: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 9

Multi Chip Module

Digital Frontendand Tracklet Preprocessor

CPU cores, memories & periphery

Network Interface

PASA

MasterState

Machine

External Pretrigger

SerialInterface

ReadoutNetwork

GlobalI/O-Bus

Internal ADCs (Kaiserslautern)

Serial Interface

slave

4 cm

Page 10: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 10

-1.0

-0.5

0.0

0.5

1.0

Diff

eren

tial o

utpu

t vol

tage

, V

0.0 500.0n 1.0µ 1.5µ 2.0µ-1.02

-1.00

-0.98

Time, s

PASA - Preamplifier and Shaper

PASA - Preamplifier and Shaping Amplifier

FWHM (shaping time): 120 ns ENC: 850 electrons at 25 pF Gain: 12.5 mV/fC Integral Nonlinearity: 0.3% Power: 12 mW / channel Process: 0.35µm AMS Area: 21.3 mm²

ChargeSensitive

Preamplifier

P/Zcancellation

Shaper 1InputPadsx18

Shaper 2

diff outputto the ADC

Programmable test generator

EN_i

Vref

i1

dig_cntrl1

CLK

DIN

STR

DAC[7..0]

EN[17..0]EN[17..0]

CLK

DIN

STR

DAC

18x

Vref

VdnVup

V. Catanescu, H.K.Soltveit

Page 11: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 11

Hit Selection

Hit Detection

FittingUnit

Fit Register File

FittingUnit

FittingUnit

FittingUnit

IMEMDMEM

GRF

FIFOFIFOFIFOFIFO

NI

CPU

IMEM

CPU

IMEM

CPU

IMEM

CFG

SCSN

GSM

StandbyArmedAcquireProcess

Send

TRAP

EventBuffer

Filter

21 ADCs

Nonlinearity Correction

Pedestal Correction

Gain Correction

Tail Cancellation

Crosstalk Suppression

Digital Filters

CPU

DMEM

PRFGRF

CONST

FRF

IMEM

DecoderPC

ALU

Flags

Bus(NI)Pipe 1 Pipe 2

CPU

TRAP block diagram10 bit 10 MHz,12.5 mW, low

latency

64 samples

4x RISC CPU @ 120 MHz8 bit 120 MHz DDR

24 Mb/s serial networkMemory:

4 x 4k for instr.1k x 32 Quad ported for dataHamming prot.

4 x 8 bit 120 MHzDDR inputs

Page 12: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 12

ADC – principle of operation

Principle of the cyclic AD-ConversionExample of quantization process

essential Operations:- comparision- +/- V ref- x2- (Sample & Hold)

x2

x2

1 0 1

threshold

000

111

binary decisions

ADC- Stage:

Vin

Bi

COMP

S&H

+/-Vref

Vref

x2

DAC

Designed in Uni-Kaiserslautern,R.Tielert, D.Muthers

Page 13: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 13

ADC parameters

Resolution 10bitSampling Rate 10.4MS/sProcess 0.18um CMOS + MIMCAPSSize (per ADC) 0.11mm2

Power 12.5mW @ 10.4MS/sInput (pro.) +/-1V - +/-1.4VSupply 1.8V, 3.3VDNL - 0.4 / +0.6 LSBINL - 0.8 / +0.7 LSBENOB @1MHz Signal 9.5 bitSNR @1MHz Signal 59.2 dBSFDR @1MHz Signal 73.0dBTHD @1MHz Signal - 69.5dB

0

200

400

600

800

1000

50 100 150 200 250 300 350 400

AD

C o

utp

ut

110 kHz sinwave, 10 MSPS, RMS=0.39, ENOB=9.57

-1

0

1

50 100 150 200 250 300 350 400

RE

S

samples

110 kHz sinwave, 10 MSPS, RMS=0.39, ENOB=9.57

CPU running

Page 14: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 14

Filter and Tracklet Preprocessor

DFIL

Event Buffer

Condition Check

DFIL Event Buffer

DFIL

Event Buffer

Condition Check

DFIL

Event Buffer

Condition Check

DFIL Event Buffer

DFIL

Event Buffer

Condition Check

Qhit

hit

Qhit

Qhit

18+1 channels

COGPosition

CalcLUT

Para -meterCalc

Hit

Sel

ectU

nit (

max

. 4 h

its)

PositionCalcLUT

Para -meterCalc

PositionCalcLUT

Para -meterCalc

PositionCalcLUT

Para -meterCalc F

IT R

egis

ter

Fil

e an

d tr

ackl

et s

elec

tion

CPU0

CPU1

CPU2

CPU3

L R

C

A ACOG

A

Q

COG

COG

COG

ADC

ADC

ADC

ADC

ADC

ADC

Non-Lin

Offs Tail-canc

Gain Cross-talk

Digital FILter64 timebins deep

FIT register file is for the CPUs a readonly register file

Page 15: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 15

Filter & Preprocessor21

dig

ital c

hann

els

from

AD

Cs

(10

MH

z)

21

x

preprocessor10

10

hist

ory

fifo

nonl

inea

rity

corr

.

pede

stal

cor

r.

gain

adj

ustm

ent

tail

canc

ella

tion

cros

stal

k ca

ncel

l.

even

t buf

fer

12

12 chan

nel s

elec

tion

ma

x. 4

po

sitio

n

posi

tion

calc

ulat

ion

posi

tion

corr

ectio

n 8

8

calc

ulat

e su

ms

for

regr

essi

on

sele

ct c

andi

date

s

ma

x. 4

ca

nd

.

232

232

to p

roce

sso

r

filter & event buffer

C

L

Ry y+1y-1

amp

posCOGorigin

deflection

time

bins

Page 16: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 16

MIMD Processor

CPU Harvard style architecture two stage pipeline 32 Bit data path register to register operations fast ALU

32x32 multiplication 64/32 radix-4 divider

maskable interrupts synchronization mechanisms

MIMD processor 4 CPUs shared memory / register file global I/O bus arbiter separate instruction memory coupled data & control paths

decoder

pip

elin

ere

gis

ter

PC

ALU

select operands

CON FIT

write backinterrupt

I/O busarbiter

PRF

clks rst

powercontrol

externalinterrupts

CPU0

local I/O busses

global I/O bus

IMEM DMEM GRF

Preprocessor, 4 sets of fit data

Page 17: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 17

SCSN - Slow Control Serial Network

Master(DCS)

Slave

Slave

Slave

Slave

Slave

ring

0

ring

1

Slave

serial

Slave

bridged

Master(DCS)

Slave

Slave

Slave

Slave

Slave

ring

0

ring

1

SCSN Up to 126 slaves per ring CRC protected 24 MBit/s transfer rate 16 addr., 32

data-bits/frame

Page 18: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 18

NI Datapath

1616I/O 0

port0

1616

1616

1616

I/O 1

I/O 2

I/O 3

I/O G 16 16 16 16

10

16port1

10

16port2

10

16port3

10

16

16

10

Network Interface

FiFo64x16

clk

FiFo64x16

clk

FiFo64x16

clk

FiFo64x16

clk

local I/O 0

local I/O 1

local I/O 2

local I/O 3

global I/O

CPU 1

CPU 2

CPU 3

CPU 4

config

glo

bal

bu

s ar

bit

er

Processor

DMEM

IMEM

GRF

Network Interface

local & global I/O interfaces

input port with data resync. and DDR decoding

input FIFOs (zero latency)

port mux to define readout order

output port with DDR encoding and programmable delay unit

port4Delay units

Page 19: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 19

Readout Boards and Readout Tree

MCM as Readout Network• data source only• data source and data merge• data merge only

2.5 Gbps850 nm

Half-chamber

Page 20: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 20

0 200 400 600 800 10000

1

2

3

4

5

reg CPU 0 reg CPU 1 reg CPU 2 reg CPU 3

Total errors in CPU registerschip: isofruitI=60pA

To

tal b

it e

rro

rs

Time, sec

Radiation tests - TRAP

Hamming protection switched off

11 registers x 32 bit / CPU

Typical size of the real time CPU program <256 Words. Memory is fully protected from 1 bit error and will be refreshed periodically.

The data in event buffers remain <100s. We have parity bit for error detection.

0 200 400 600 800 10000

100

200

300

400

Total errors in instruction memory (each 4k x 32)chip: isofruitI=60pA

im0 im1 im2 im3

To

tal b

it e

rro

rs

Time, sec

Page 21: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 22

Test flow of the MCM testing

• Apply voltages, control the currents• JTAG connectivity test • Basic test using SCSN (serial configuration bus)• Test of all internal components using the CPUs• Test of the fast readout• Test of the ADCs by applying 200 kHz Sin-wave• Test of the PASA by applying voltage steps through serial capacitors• Store all data for each MCM in separate directory, store in XML file the essential results• Export the result for MCM marking and sorting

Programmablesupply voltages,current control

MCM(DUT)

Progr.StepGener.

Progr.Sin-waveGener.

FPGA2

MCM0

MCM3

MCM1

MCM2

FPGA1

PCI(PC)

LVDS8 bit120MHzDDR

SCSN

+1.8Vd

+3.3Vd

+1.8Va

+3.3Va

Page 22: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 23

TRAP internal tests

IM0DM

4 x 4k x 24 1k x 32

DB

256 x 32

StateM (~25)

NI (~12)

IRQ(64)

Counters(8)

Const(20)

~130

LUT-nonl(64)

Gain corr(42)

LUT-pos(128)

Fil/Pre(~44) ~280

Arbiter/

SCSN slv

r1 r0

CPU0

Global bus

r1 r0

Port 3

In total 434 configuration registers

NPGTC

Eventbuff

ADC

21x

Page 23: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 24

TRAP wafer test and results

576 TRAP chips/wafer

Fully automatic partial test of the TRAP.

Serial configuration interface

Parallel readoutProgrammable

sin-wave generator

A

Programmable power supply

TRAP

Prep

100%

06/02

06/06 06/09 07/01

07/03-107/03-2

2525 49 49 3 2525

75%Up to now produced and tested 201 wafers with ~115,000 TRAPs, of them ~86,000 usable

25 n

ew w

afer

s

Page 24: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 25

MCM Tester and results

T.Blank, FZK IPE (Karlsruhe)

• test of 3x3 or 4x4 MCMs• digital camera with pattern recognition software for precise positioning using an X-Y table• vertical lift for contacting• about 1 min/MCM for positioning and test

• store the result into a DB• mark later the tested MCMs with serial Nr. and test result code

Page 25: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 26

0

2

4

6

8

10

12

-6 -4 -2 0 2 4 6

%, 100%

= 8

1408

0

2

4

6

8

10

12

90 95 100 105 110

%, 100%

= 8

1408

0 5

10

15

20

25 1

.2 1

.22

1.2

4 1

.26

1.2

8 1

.3 1

.32

1.3

4 1

.36

1.3

8 1

.4

%, 100% = 27136

TRAP ADC – conversion gain variation

TR

AP

AD

C V

ref,

V

Channel-Channel

variation on the same TRAP +/-2 % Chip-Chip

variation

+/- 5 %

Statistics based on ~27000 TRAPs

Amplitude, %

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

90 95 100 105 110

Essential for tracking!

Page 26: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 27

TRAP ADC – programmable conv. gain

Ampl(DAC=0)/Ampl(DAC=10000b), % Ampl(DAC=11111b)/Ampl(DAC=10000b), %

The conversion gain can be changed by the ADCDAC parameter (5 bit) for all ADCs in the chip. This can be used to adjust the conversion gain according to the gas-gain variation on the chamber. The variations within one chip can be compensated by the digital gain correction in a range of +/- 12%.

0

1

2

3

4

5

6

7

8

115.5 116 116.5 117 117.5 118 118.5

%,

100%

= 8

1408

0

1

2

3

4

5

6

7

8

9

10

86 86.5 87 87.5 88

%,

100%

= 8

1408

Page 27: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 28

TRAP ADC – summary

• The ADC reference voltage varies about +/- 5%. • The ADC conversion gain varies about +/- 5% and corresponds to the variation of the Vref. • The ADC conversion gain variation from channel to channel in the same TRAP is about +/- 2%.•The relative conversion gain controlled by the ADCDAC parameter has small variation (about +/- 0.5%).

• At ADCDAC=0 the measured amplitude is 1.170 times the amplitude at ADCDAC=10000b. • At ADCDAC=11111b the measured amplitude is 0.870 times the amplitude at ADCDAC=10000b.

Page 28: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 29

Optical Readout Interface (ORI)

How to push the data out of the FEE?- no handshaking possible- magnetic field- don’t disturb the sensitive PASAData rate 240 MB/s- because of 8b/10b encoding this means at least 2.4 Gbps- full custom chip started, but not finished at the right time (OASE)- simple board based on commercially available chips- use local high stability quartz oscillator instead of LHC clock- use custom laser driver circuit to avoid using commercial SFP modules with unspecified stability in magnetic field

Page 29: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 30

Optical Readout Interface (ORI)

LV

DS

-TT

L

CPLDSERDES2.5GBits/s

Laser Diode850 nm

DDR SDRResynchronization, status, counters

125MHz

Laser Driver

Conf. Mem.120MHz

8 bitDDR

+24 ns

VCSEL

+24 ns +300 ns

HC

M (

TR

AP

)

latency

16

I2C

All 1200 produced and tested, 1199 of them fully functional

Magnetic field & radiation tolerant!

Page 30: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 31

ORI – production test (laser diode)

Several parameters controlled:

- Supply currents at various operation mode conditions- Voltages on the board in enabled/disabled state- Source, bias and modulation currents through the laser diode- Temperature of the laser driver chip- optical output power- photodiode current measured by the laser driver chip

0

5

10

15

20

25

1 2 3 4 5 6

% o

f O

RIs

, 1

00

%=

96

9

Ibias, mA at optical power 200uW

Ibias, mA at 200uW

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250

% o

f O

RIs

, 1

00

%=

96

9

Imonitor, uA at optical power 200uW

Imonitor, uA at 200uW

0

5

10

15

20

25

0.35 0.36 0.37 0.38 0.39 0.4 0.41

% o

f O

RIs

, 1

00

%=

96

9

Ireset, A

Ireset, A

Page 31: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 32

ORI radiation test in OsloNo permanently damaged components. Equivalent time in years in blue, * - the device fails.Recovery after power cycle or switching off for up to 12 hours (VR and Laser Driver).The configuration of the CPLD and EEPROM was not damaged.

CPLDLatticeLC4256V

15-50*

LVDS TransceiverNational Semiconductor

DS90LV048A 30

EEPROM24LC01 30*

Laser DriverLinear Technology

LTC5100 100*

VCSEL DiodeULM Photonics

ULM850-02-LC-TOSA 20

SerializerTexas InstrumentsTLK2501

250*

Voltage RegulatorsNational Semicondutor

LP3962-3.3 and -2.5 60-110*F.Rettig

Page 32: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 33

Charge Cluster to Tracklet

•Local tracking units on detector perform linear fits and reject uninteresting data

Charge Cluster to Tracklet

•Local tracking units on detector perform linear fits and reject uninteresting data

TRD Trigger Timing

origin

deflection

tim

e

bin

s

“Tracklet”(32-Bit word):• y

position (origin)•

slope (deflection)• z

position (pad-row number)•

charge

♦ Trigger decision after 6 µs♦ Charge drift and data pre-processing uses

most of the time

♦ Trigger decision after 6 µs♦ Charge drift and data pre-processing uses

most of the time

Global Tracking

•Inside GTU (Global Tracking Unit)

•Objective: find high momentum tracks

•Search for tracklets belonging together

•Combine tracklets from all six layers

•Reconstruct pt, compare to

threshold and generate trigger

•Constraint:only approx. 1.5 µs processing time

Global Tracking

•Inside GTU (Global Tracking Unit)

•Objective: find high momentum tracks

•Search for tracklets belonging together

•Combine tracklets from all six layers

•Reconstruct pt, compare to

threshold and generate trigger

•Constraint:only approx. 1.5 µs processing time

Page 33: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 34

Track Re-assembly

• Search for tracklets belonging together(3-dimensional matching task)Projection of tracklets to virtual planeSliding window algorithmA track is found, if ≥ 4 tracklets from different layers inside same multi-dimensional window

Track Re-assembly

• Search for tracklets belonging together(3-dimensional matching task)Projection of tracklets to virtual planeSliding window algorithmA track is found, if ≥ 4 tracklets from different layers inside same multi-dimensional window

Online Track Reconstruction

Reconstruction of the Transverse Momentum

•Calculate linear fit of (unprojected)y positions of tracklets. Estimate transverse momentum fromline parameter a uses look-up tables, additions and multiplications

Reconstruction of the Transverse Momentum

•Calculate linear fit of (unprojected)y positions of tracklets. Estimate transverse momentum fromline parameter a uses look-up tables, additions and multiplications

Module Profile

VirtualPlane

ProjectedTracklets

Track

a

y

b

x

Page 34: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 35

GTU in the Framework

OnlineTracking

Trigger

Busy

Pre-Trigger based on TOF, L1 contribution based on GTU Cosmic Trigger

CTP GTU

Pre-TriggerT0 TOF

V0 ACORDE

Other Detectors

Other ALICE Systems TRD Systems

Outside Magnet

Inside Magnet

Pre-Trigger, L0, L1

Modified Tracklet Data

L0 contrib, Busy

TTC (L0, L1, L2, …)

L1 contrib, Busy

TGU

Szintillators

SMUsSMUsTMUsTMUsTMUs

Page 35: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 36

Global Tracking Unit in the TRD Readout Chain

ORI

ORI

Module

Stack

TriggerDesign

EventBufferingDesign

Trackletsonly

Tracklets&

Raw Data

RX

TMU

5x

SMU

TriggerHandling &

Control

GTU Supermodule Segment

Front-End Electronicswithin L3 magnet

Half Chamber

DCSBoardTTCrx

DDLSIU

DATESoftware

DIU

D -RORC

DAQ System

CentralTrigger

Processor

TGU18

x

TrackConcentr.

GTU Racks

12

fib

res

Racks belowMuon System

L1 contribution+ busy

TTC triggersignals

♦ Track Matching Unit (TMU)

♦ Supermodule Unit (SMU)

♦ Trigger Generation Unit (TGU)

Storage

Page 36: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 37

Event Buffering Design

16

/12

8

Event Shaper

SRAMController

write read

16

/12

8

ReadAddress

Logic&

Control

DataFormatting

TMU/SMUInterface

Readout Unit

4-MbitSRAM

SMU Control(L0-/L1-Trigger)

Scheduling

MemoryManagement

Even

t (n

, 0

)

Even

t (n

+1

, 0

)

Even

t (n

, 1

1)

Even

t (n

+1

, 1

1)

Event InfoFIFO Buffer

Superm

odule

Unit

Links

from

one S

tack

... 1

2x ...

SMU Control(L2-Message)

Data Block, Link 0 Data Block, Link 11

... 12x ...

em

pty

ad

dre

ssdata

status

DataStreamMerging

Page 37: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 38

Trigger – Simulation Framework

AliRoot-based framework of simulation classes:AliEn integration, Offline-RawReader, TRAP/GTU simulation

CASTOR/AliEn

orFiles

OfflineRawStrea

mReader

TRD ResponseModel

Half-Chamber Models

TRAP models

18 SM, 5 Stacks, 6 Layers, 2 Half-Chambers

GTU Trigger Model

TMUsTMUsTMU

Models

SMUsSMU

Models

Trac

klets

Input of „empty“ and interesting events

TGUModel

Configuration parameters

Trigger Efficiency/Purity

Assessment

Simulation Framework

ADC data L1 contrib

Page 38: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 39

Trigger Schemes

♦Di-Lepton Trigger• Tracking developed by Jan de Cuveland• Transverse momentum cuts

• simple coincidence of “high-pt seen flags” from different supermodules• Optimized for minimum latency → L1 contribution

♦Jet-Trigger• PhD thesis: Concept and Implementation of a Jet trigger in the GTU• fast selection of events (L1 contribution) based on

• thresholds for numbers of high-pt tracks within certain space regions/angular ranges• charge sums (if available) within certain space regions/angular ranges

• more complex calculations (invariant mass, …) and correlationsbeing under consideration currently → idea of L2 contribution by GTU

♦PhD theses on GTU trigger at KIP: S. Kirsch (A-A), F. Rettig (p-p)

Page 39: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 40

Track Matching Unit (TMU)

• Trigger design currently optimized for high pt cut only• Simple di-lepton trigger foreseen in trigger unit (based on `binary‘ local decisions)

Page 40: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 41

Track Matching Unit (TMU) Board

850 nmSFP-Transceiver

850 nmSFP-Transceiver

Com

pact

PC

I B

us

Com

pact

PC

I B

us

DDR2 SRAMDDR2 SRAM

(6U Height, Single Width)

3 Parallel Links (240 MHz DDR, 8

Bit LVDS)

From Left TMU

To Right TMU

To SMU Board

12 Fiber Optical Serial Links(2.5 GBit/s)

From 1 Detector

Stack

Virtex-4 FX100 FPGA:95k LCs, 768 I/Os,

20 Internal Multi-Gigabit Serializer/Deserializer

Units,2 PowerPC Cores

DDR2 SDRAMDDR2 SDRAM

DDR2 SRAM:High Bandwidth (28.8

GBit/s) Data Buffer

64 MB64 MB

4 MB4 MB

Config PROM

Config PROM

FPGA

Xilinx XC4VFX100 FF1152

Xilinx XC4VFX100 FF1152

Cust

om

LV

DS I/O

72

Pair

s

Cust

om

LV

DS I/O

72

Pair

s

JTAGJTAG

Page 41: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 42

TRD Beam Test at CERN (2007-11)

November 2007 Beam Test Setupat CERN Proton Synchrotron

1 GTU Segment

1 TRD Super-module

(not toscale)

Fir

st

Tra

ckle

ts f

rom

TR

DMean: -0.0916 cm

RMS: 0.119 cm

Deflection Error / cm

Count

Single Tracklet Deflection Precision

♦ Accelerator: CERN Proton Synchrotron (PS)

♦ Particles: Electrons, Pions(Transverse Momenta: 0.5 – 6 GeV/c)

♦ Good statistics for detector calibration (More than 1 Mio. events per momentum value)

♦ 8 days of continuous operation♦ First run with tracklets, consistent with raw

data

Page 42: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 43

Commissioning at CERN /ALICE 2008 Cosmics Runs

♦ Read-out chain running continuously♦ Writing cosmics data to DAQ via GTU♦ 60,000 events with pseudo-random test

pattern: No errors♦ Measured TRD readout timing: Fully able

to saturate DAQ link

GTU Installation at CERN(End of 2007, Work in Progress)

GTU Installation at CERN(End of 2007, Work in Progress)

TRD Readout Timing•Measured readout time for maximum black event(30 time bins):

•L0 → Event at GTU: 245 us (4 kHz)L0 → DDL Tx done: ~ 13 ms (~ 75 Hz)Divide times by a factor of 5–500 for zero-suppressed dataDDL performance: 120 Mbyte/s

•DDL utilization: 99 %

TRD Readout Timing•Measured readout time for maximum black event(30 time bins):

•L0 → Event at GTU: 245 us (4 kHz)L0 → DDL Tx done: ~ 13 ms (~ 75 Hz)Divide times by a factor of 5–500 for zero-suppressed dataDDL performance: 120 Mbyte/s

•DDL utilization: 99 %

Page 43: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 44

Summary GTU

• The TRD Global Tracking Unit (GTU) is the central element of the ALICE TRD trigger system and readout chain

• It provides both complex online data analysis within tight low-latency requirements and high bandwidth raw data handling

• The GTU system has been fully installed

• Commissioning and extensive read-out and interoperability tests have been performed successfully

A GTU Segment in Operation

•Next steps•Further Tests of the online tracking and trigger functionality

• Preparations for first LHC operation in 2008

Page 44: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 45

Questions?

Page 45: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 46

SPARES

Page 46: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 47

A Large Ion Collider Experiment

♦ p-p or Pb-Pb Collision

♦ Creation of Quark Gluon Plasma, a state of matter existing during the first few microseconds after the big bang

♦ TRD is used as a trigger detector due to its fastreadout time (2 µs):

• Transversal Momentum

• Electron/Pion Separation

Inner Tracking System (ITS) Time Projection Chamber (TPC)Transition Radiation Detector (TRD)

Page 47: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 48

Transition Radiation Detector

TRD - Transition Radiation Detector used as trigger and tracking detector > 24000 particles / interaction in acceptance

of detector up to 8000 charged particles within the TRD trigger task is to find specific particle pairs

within 6 s.

ITS - Inner Tracking System event trigger vertex detection

TPC - Time Projection Chamber high resolution tracking detector but too slow for 8000 collisions / second

Page 48: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 49

Tail Cancellation Filter

sub12 12

multaddregister multadd 15 15 15 15

12

13

13

multaddregister mult13 13 13 1312

12

13

12

unfiltered input

filtered output

LongExponetial

Coefficients

ShortExponetial

Coefficients

tSL

tLLTail tTRF 1)(

Page 49: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 50

The TRAP chip bonded on the MCM

Page 50: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 51

CPU 3 CPU 2

CPU 0 CPU 1

QuadPort

Memory

IMEM 0 IMEM 1

DataBuffer

IMEM 3 IMEM 2

FiFo

GRF

8 ch.evt.buf

13 c

h.e

vt.b

uf

21 independentDigital filterchannels

21 A

DC

Ch

ann

els

network IF

TRAP Layout

5x7mm

Page 51: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 52

Delay unit

Experimental setup (50cm Experimental setup (50cm tp cable)tp cable)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

out(0) out(4) simulation

dela

y, n

s

Programmed delay (0..7)

~ 3440 ps ~1720 ps ~860 psNI_out(9:0) + strobe

del[2:0] per bit

Page 52: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 53

Tail Cancellation Optimization

Average Signal beforeTail Cancellation

Average Signalafter Tail Cancellation

Mean Signalduring Drift Time

Signal Decayafter Drift Time

tSL

tLLTail tTRF 1)(

2,,

,,,,

SLL

SLL

SLL Mean

DecayM

Minimization of Error Measure

Page 53: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 54

Tracking Arithmetics

Hit Selection

PedestalSubstraction

Fit Register File

)(

)()( 11

tQ

tQtQ

i

ii

Look-UpTable

+

+ X(t)+ X(t)·Y(t) + X2(t)+ Y(t) + Y2 (t)+ Q (t) + 1

Timer

Page 54: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 55

DCS board, slow control in ALICE

ARM+FPGA

EmbeddedLinux

Ethernet 10

TTC opticalReceiver

ADCs, Temp.

TRAP configSCSN interf.

Page 55: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 56

The MIMD Architecture

FIT

CPU 0 CPU 1

D-MEM

CPU 2 CPU 3

GRF

Local Bus Local Bus

Local Bus Local Bus

Bus

Const.

Interrupt

Evt. Buffer

Config.

Net

wor

kIn

terf

ace

4

4

4x10

10

Four RISC CPU's Coupled by Registers (GRF)

and Quad ported data Memory Register coupling to the

Preprocessor Global bus for Periphery Local busses for

Communication, Event Buffer read and direct ADC read

I-MEM: 4 single ported SRAMs Serial Interface for Configuration IRQ Controller for each CPU Counter/Timer/PsRG for each

CPU and one on the global bus Low power design, CPU clocks

gated individually

Cnt/Timer

IMEM

IMEM

IMEM

IMEM

Page 56: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 57

TRAP internal configuration

TRAPIM0

DM

4 x 4k x 24 1k x 32

DB

256 x 32

StateM (~25)NI (~12)IRQ(64)Counters(8)Const(20)~120

LUT-nonl(64)Gain corr(42)LUT-pos(128)Fil/Pre(~44) ~280

Arbiter/SCSN slv

r1 r0

CPU0

Global bus

r1 r0

Page 57: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 58

The TRAP1 chip bonded on the MCM

1

2

3

4

5

6

1. ADC2. Filter/Preprocessor3. DMEM4. CPUs5. Network Interface6. IMEM

On-chip FuseID

Page 58: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 59

Wafer test – bad contacts

26

40

26

39

5mm

7mm

42

40

20

29

5mm7m

m

Balance!

adc adc

Number of needles

Page 59: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 60

Integration equations, simple but…

♦ PASA + TRAP = MCM♦ 17 or 18 MCMs connected properly = ROB (readout board)

♦ 6 or 8 ROBs + 1 ORI + 1 DCS connected properly = module (chamber) electronics

♦ 5 modules in one layer = one layer of the supermodule♦ x 6 layers = supermodule!♦ 18 supermodules = TRD!

Page 60: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 61

Integration prototype, Hd 2004

MCM = PASA+TRAP

DCS boardTrigger & clock distribution, ARM CPU+FPGA, embedded Linux, Ethernet, serial link to the TRAPs …

Detector prototype prepared for the beam test at CERN

Page 61: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 62

Supermodule I in Heidelberg, 2006

Page 62: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 63

Installation of the first Supermodule

Page 63: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 64

TMU - Momentum Reconstruction

• Estimate transverse momentum from line parameter a,

• Fixed point arithmetics, look-up tables, additions and multiplications only

• Fast cut condition for trigger: full calculation of p t too slow

aconst

pt

apconst t min

Page 64: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 65

TMU - Track Re-assembly

• Search for tracklets belonging together(3-dimensional matching task)

• Projection of tracklets to virtual Plane

• Sliding window Algorithm

• A track is found, if ≥ 4 tracklets from different layers inside same multidimensional window

• Algorithm highly optimized for hardware primitives available

• only quantities really needed are computed!

Projected Tracklets Track

Page 65: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 66

GTU: Hardware Production / Installation

♦ All components produced and installed

♦ 4 Types of PCBs• TMU/SMU Hardware• 130 PCBs (90 TMUs +

18 SMUs + 1 TGU + Spares)

• Main GTU (LVDS) Backplane

• 18 PCBs (+ Spares)• Trigger Concentrator

Backplane• 1 PCB (+ Spare)• CTP Interface Module• 1 PCB (+ Spare)

♦ 9 Wiener cPCI crates♦ Mechanical components,

custom front panels, ...

♦ All components produced and installed

♦ 4 Types of PCBs• TMU/SMU Hardware• 130 PCBs (90 TMUs +

18 SMUs + 1 TGU + Spares)

• Main GTU (LVDS) Backplane

• 18 PCBs (+ Spares)• Trigger Concentrator

Backplane• 1 PCB (+ Spare)• CTP Interface Module• 1 PCB (+ Spare)

♦ 9 Wiener cPCI crates♦ Mechanical components,

custom front panels, ...

Uplink to Data

Acquisition

FPGA/PROM Programming and Control via Ethernet

• 5 TMU boards and 1 SMU board per super-module

• In total: 108 FPGA nodes

60 Fiber Optical Links

One of the 18 GTU Segments

TTC Input

Page 66: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 67

Cosmic Trigger – Current Selection Criteria

C

C

C

C

C

C

•TRAP cosmic mode: hit detection,fit selection and dedicated tracklet building

•TMU: upper limit on charge/hits for selection of individual tracklets → sort out perturbances like hot pads, high amplitude border noise and

600 kHz oscillations

•SMU: threshold on charge/hit sums for each chamber, currently nearly open (approx. one true tracklet)

•SMU: threshold on number of “active” layers per stack, currently 4

Currently used:

Page 67: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 68

Trigger OutFrom TMU 0From TMU 1From TMU 2From TMU 3From TMU 4

SMU Concentrator Board

(6U Height, Double Width)

5 Parallel Links (120

MHz DDR, 8 Bit LVDS)

ALICE Detector Data Link (DDL)

ALICE Timing, Trigger &

Control Input (TTC)

Ethernet: System

Configuration and Control

Com

pact

PC

I B

us

Com

pact

PC

I B

us

Cust

om

LV

DS I/O

72

Pair

s

Cust

om

LV

DS I/O

72

Pair

s

JTAGJTAGDDR2 SRAMDDR2 SRAM

DDR2 SDRAMDDR2 SDRAM

64 MB64 MB

4 MB4 MB

Config PROM

Config PROM

FPGA

Xilinx XC4VFX100 FF1152

Xilinx XC4VFX100 FF1152

850 nmSFP-Transceiver

850 nmSFP-Transceiver

RJ 45RJ 45

Detector Control System (DCS)

Board

Detector Control System (DCS)

Board

DDL - Source Interface Unit (SIU)

DDL - Source Interface Unit (SIU)

TTCTTC

Page 68: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 69

Cosmic Trigger – Nice Examples for Tuning

Page 69: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 70

Cosmic Trigger – First Results

Page 70: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 71

Cosmic Trigger – First Resultsev 18

ev 18

ev 20

Page 71: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 72

Cosmic Trigger – Additional Trigger Criteria

As soon as TOF delivers proper L0 trigger or pre-trigger input:

•Stronger settings for all thresholds/limits,e.g. requirement of 5 active layers/stack

•Coincidence between supermodules

trg

Page 72: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 73

Cosmic Trigger – TOF Pre-triggerTOF coincidencefor pre-trigger box input

Pict

ure

by M

inJu

ng, T

RD A

nnua

l Mee

ting

2008

Page 73: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 74

Cosmic Trigger – MCM Level

Modified tracklets for cosmics trigger: no tracklet parameters, instead…ScaledCharge Sum

over all time bins and channels

8 Bit

RelevantMCM

ConfigurationParameters

8 Bit

Number of Hits

8 Bit

RelevantMCM

ConfigurationParameters

8 Bit

TrackletWord

360.000

255

Charge Sum

Charge Sum

N

N

Details: Presentation byVenelin Angelov, 30.06.2008

Page 74: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 75

Cosmic Trigger – Chamber Level (TMU)

Summation of tracklet numbers, charge and hit numbersover all tracklets from both half-chamber links of each chamber.

HC HC

HC HC

HC HC

HC HC

HC HC

HC HC

Threshold conditions for trigger:

• Charge summed up over all tracklets per chamber

• Hits summed up over all tracklets per chamber

• Number of Tracklets per chamber (normal tracklets)

trg

trg

trg

trg

trg

trg

thresholds

Page 75: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 76

Cosmic Trigger – Stack Level (SMU)Trigger condition: number of “active” chambers per stack

Optionally: minimum/maximum limit for number of stacks hit

C C

C C

C C

C C

C C

C C

thresholds

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

trg trg trg trg trg

Page 76: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 77

Cosmic Trigger – Supermodule Level (TGU)

Trigger conditions:

♦single supermodule

♦one-to-many correlations between supermodules

Optionally:

♦“same-side veto” in one-to-many correlation

trg

trg

trg

trg

Events like shown above may be very rare → experience, rates?

Such events rejected by TOF-/ACORDE-coincidence settings?

Page 77: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 78

Cosmic Trigger – Next Steps♦Precise measurements of all contributions to latency in pre-trigger, tracklet calculation and GTU tracking/trigger needed

♦Increase the number of time bins with pre-trigger in operation

♦Shift CTP L1 contribution time window to 6.2us?

♦Need for additional cosmic trigger schemes?

♦Update Münster Setup• benchmarking of cosmic trigger performance with Münster setup,

L1 trigger decision recorded in SMU header→ offline comparison: easy to determine purity and efficiency

• use L1 contribution as trigger too?→ adaption of setup to L1 contribution and generate L1a/r

Page 78: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 79

Cosmic Trigger – Bad Examples for Tuning

Page 79: Introduction  FEE partitioning  Design for Test  Optical Readout  Global Tracking Unit

KIP Uni-Heidelberg, V.Angelov ALICE Workshop Sibiu 2008 80

ORI - production test (data path)

Independently tested the following interfaces and components:

• I2C interface from the TRAP chips on the readout board and the configuration memory of the laser driver chip• J2C interface from the TRAP chips on the readout board and the configuration and status registers in the CPLD• JTAG to the CPLD• 120 MHz DDR parallel data between the half-chamber merger TRAP and the CPLD on ORI• Data word and parity error counters in the CPLD• Optical data transmission using a receiver module mounted on a PCI card

The optimal configuration for two optical power settings 200 and 300µW stored together with all other test data to a database.