5
G. Hildebrandt a and H. Wagenfeld b a Katzwanger Steig 2, D-14089 Berlin, Germany b RMIT, City campus, GPO Box 2476V, Melbourne Vic 3001, Australia Introduction A short time ago Professor Gerhard Borrmann has celebrated his ninetieth birthday. On this occasion about thirty authors have dedicated publications to him in this issue of Crystal Research and Technology. Borrmann was born on the 30. April 1908 in Diedenhofen (Lorraine, now Thionville). There he was educated for three years at the primary school; he then changed to Arn- stadt (Thuringia) and finally to the secondary school in Giessen where he completed his school education. After six months of practical experience in a steel work he enrolled at the Technische Hochschule in M unchen (Technical University of Munich), and later on he studied at the Technische Hochschule in Danzig (Gdansk). There he was awarded the title Diplom-Ingenieur (Master of Engineering) in 1930. The supervisor for a doctoral thesis was the famous theoretical physicist Walter Kossel who about that time (1935) had published the first Kossel line diagrams which had been stimulated by electrons. But soon later Borrmann succeeded to get even nicer diagrams by the stimulation with X-rays. This work was published as his thesis in 1936. Until now all exposures had been performed in reflection. Borrmann, however, now being research assistant of Kossel, expanded the experiments to thin lamellae in trans- mission, and there he observed an unexpected intensity distribution which possibly had been caused by absorption. But he could not prove this assumption in Danzig: he had to leave the university early in 1939 for political reasons. Fortunately Max von Laue was at that time the Deputy-Director of the Kaiser-Wil- helm Institute for Physics in Berlin-Dahlem, and he was able to invite him to work at this institute. It was there where Borrmann discovered the effect of anomalously reduced absorption of X-ray wave fields in (nearly) perfect calcite crystals, soon later called the Borrmann effect (Borrmann 1941). After the war Borrmann got the chance to continue his research in Hechingen (W urttemberg). He tried to explain new observations, resulting from using thicker crys- tals and narrower incident beams, in terms of X-ray optics. It became more and more clear that X-ray wave fields, originally used by Ewald only as a mathematical concept, have in fact a physical reality: they follow particular directions within the crystal, they undergo their particular absorption. In 1951 Max von Laue became director of the Fritz-Haber Institute of the Max- Planck Society in Berlin-Dahlem. He was keen to have Borrmann at this institute and offered him an attractive research position. There Borrmann established an own depart- ment in 1953 and later became a Scientific Member of the institute and Professor at the Technical University. Cryst. Res. Technol. 33 1998 4 511 –– 515

Introduction

Embed Size (px)

Citation preview

G. Hildebrandta and H. Wagenfeldb

a Katzwanger Steig 2, D-14089 Berlin, Germanyb RMIT, City campus, GPO Box 2476V, Melbourne Vic 3001, Australia

Introduction

A short time ago Professor Gerhard Borrmann has celebrated his ninetieth birthday. Onthis occasion about thirty authors have dedicated publications to him in this issue ofªCrystal Research and Technologyº.

Borrmann was born on the 30. April 1908 in Diedenhofen (Lorraine, now Thionville).There he was educated for three years at the primary school; he then changed to Arn-stadt (Thuringia) and finally to the secondary school in Giessen where he completed hisschool education. After six months of practical experience in a steel work he enrolled atthe Technische Hochschule in M�unchen (Technical University of Munich), and later onhe studied at the Technische Hochschule in Danzig (Gdansk). There he was awarded thetitle Diplom-Ingenieur (Master of Engineering) in 1930. The supervisor for a doctoralthesis was the famous theoretical physicist Walter Kossel who about that time (1935) hadpublished the first Kossel line diagrams which had been stimulated by electrons. But soonlater Borrmann succeeded to get even nicer diagrams by the stimulation with X-rays.

This work was published as his thesis in 1936.Until now all exposures had been performed in reflection. Borrmann, however, now

being research assistant of Kossel, expanded the experiments to thin lamellae in trans-mission, and there he observed an unexpected intensity distribution which possibly hadbeen caused by absorption. But he could not prove this assumption in Danzig: he had toleave the university early in 1939 for political reasons.

Fortunately Max von Laue was at that time the Deputy-Director of the Kaiser-Wil-helm Institute for Physics in Berlin-Dahlem, and he was able to invite him to work atthis institute. It was there where Borrmann discovered the effect of anomalously reducedabsorption of X-ray wave fields in (nearly) perfect calcite crystals, soon later called theBorrmann effect (Borrmann 1941).

After the war Borrmann got the chance to continue his research in Hechingen(W�urttemberg). He tried to explain new observations, resulting from using thicker crys-tals and narrower incident beams, in terms of X-ray optics. It became more and moreclear that X-ray wave fields, originally used by Ewald only as a mathematical concept,have in fact a physical reality: they follow particular directions within the crystal, theyundergo their particular absorption.

In 1951 Max von Laue became director of the Fritz-Haber Institute of the Max-Planck Society in Berlin-Dahlem. He was keen to have Borrmann at this institute andoffered him an attractive research position. There Borrmann established an own depart-ment in 1953 and later became a Scientific Member of the institute and Professor at theTechnical University.

Cryst. Res. Technol. 33 1998 4 511±±515

From his many research fields we only mention some: Experimental proof of theªBorrmann fanº; propagation of wave fields in weekly distorted crystals; observation ofdislocations in thick crystals (ªBorrmann topographyº); enhancement of the Borrmanneffect in certain three beam cases (called ªSuper Borrmann effectº by A. R. Lang);increased reduction of absorption at low temperatures; measurements and comparison totheory of normal and anomalous X-ray absorption in Ge and Si.

Borrmann established activ national and international collaborations with other re-search groups and worked in close contact with M. v. Laue and P. P. Ewald. In 1970 hewas awarded the title Professor emeritus, and in 1996 he was bestowed with the firstCarl Hermann Medal of the German Crystallographic Society.±±

When asking about Borrmann's essential merits one has to look back at the earlydays of X-ray diffraction theories. Then Ewald had replaced Laue's kinematical theoryby a dynamical theory (Ewald 1917) and with this established the base for X-ray op-tics in perfect single crystals. But what about the chances for a confirmation of histheory? Ewald himself gave only little hope to the experimentalists: the crystals wouldnever be perfect enough. And even Arnold Sommerfeld, his supervisor, had said toEwald's mother that this theory ªseemed a nice piece of speculation though hard tofollow, and very unlikely ever to be of practical importanceº (Ewald 1961).

Furthermore Ewald pronounced a warning: by no means should incident beams belimited by narrow slits, otherwise his results would become invalid. He repeated thisadvise to use a ªbathing methodº years later in an article in ªHandbuch der Physikº,possibly preventing experimentalists from doing measurements in the Laue (transmis-sion) case (cp. Borrmann's contribution at the end of this introduction). On theother hand Ewald could have been known as the discoverer of the Borrmann effectalready in 1917: When he applied to become a lecturer at Munich University he hadformulated the following as one of the theses that he proposed to defend before thefaculty:

ªProvided the absorption of X-rays, like that of visible light, can be accounted for bya dissipation of energy in the vibrating dipoles, than under special circumstances thediffracted X-rays will suffer no reduction whatsoever in an absorbing crystalº.

Unfortunately none of the faculty members took Ewald up on this statement, and itfully escaped his memory until he rediscovered it many years later (Ewald 1965).

Theory then lay dormant for a longer time, first confirmations came only gradually,mainly in the Bragg (reflection) case. In 1928 H. A. Bethe developed a dynamical theo-ry of electron diffraction along the lines of the Ewald theory. This enabled Caroline MacGillavry to relate fringe systems in Kossel-M�ollenstedt diagrams to Ewald's Pendell�osungand to calculate absolute structure factors from fringe distances (Mac Gillavry 1940;as is well known the Pendell�osung effect in case of X-rays was detected by Kato andLang in perfect Si crystals only in 1959).

A little later Max von Laue reformulated the theory (Laue 1931) by solving Max-well's equations for a periodic electric susceptibility which, as Kohler had shown, isdirectly proportional to the electron charge distribution in the crystal. He kept all theelegant concepts which Ewald had developed for discussing the ªfundamental equationsºof the theory. In this way Laue was well prepared for a successful interpretation of thecontrast in Kossel lines (1935 after a visit in Danzig). Here the accomodation of wavefields to the diffracting lattice planes had been discussed for the first time ±± a key tothe understanding of the Borrmann effect.

512 Hildebrandt, Wagenfeld : Introduction

As has been mentioned above Borrmann extended the Kossel technique to the trans-mission case and observed a reversal of the dark/white line contrast which he assumedto be the result of increased absorption. This was confirmed 1940/41 in Berlin withthicker calcite and quartz crystals and theoretically explained by Laue (1949). The im-pression the Borrmann effect had made at that time has been described by Ewald:

ªThe firm conviction that absorption is a pure effect of mass must be remembered inorder to understand the commotion created by the experiments of G. Borrmann. . .º(Ewald 1965).

The measurements in Hechingen then yielded a further crucial progress (Borrmann1950). Using still thicker crystals and narrow incident beams (disregarding Ewald's or-der to apply the ªbathing methodº) Borrmann got not only a much more pronouncedabsorption effect but also first indications of a beam path of the least absorbed X-raysfollowing the direction of the ªdiffractingº lattice planes (rather than that of incidenceor reflection) within the crystal. It was only after having overcome von Laue's resistancethat Borrmann got the permission to publish in Z. Physik not only the results of hismeasurements but also their interpretation, using optical terms like ªbeam pathsº orªabsorption of beamsº (cp. Burzlaff et al 1997; there Borrmann's and his co-workersmost important publications are listed).

These observations and conclusions (Borrmann 1950) together with Laue's theoreti-cal work on beam paths then inspired Borrmann to the idea that a fan of beams fillingup the whole angular range of diffraction should enter a perfect lattice. With the verifi-cation of this ªBorrmann fanº (Borrmann et al 1955) a series of important experimentsin Berlin began, all of them contributing to the founding of a true ªcrystal optics ofX-raysº in the sense of and in full agreement with Ewald's paper of 1917 which onlynow had disclosed all of its secrets. ±± Borrmann and Ewald shared their strong interestfor X-ray optics in perfect crystals. Together with v.Laue, Authier, Kato, Kohra, Langand many others Borrmann confirmed beautifully the predictions of Ewald's dynamicaltheory of X-ray diffraction. ±±

One year ago Borrmann sent a letter containing an interpretation of his work to oneof us (GH) which should finish this introduction.

A

Die ungeheuren Erfolge der Kristallstrukturanalyse mittels R�ontgenstrahlen ruhen aufzwei S�aulen:

Die zu untersuchenden Kristalle, ob nat�urlichen Ursprungs oder gez�uchtet, sind inaller Regel Mosaikkristalle.

Die ,,kinematische\ Theorie beschreibt Streuung und Interferenz der R�ontgenstrahlenin diesen Kristallen richtig.

Daneben gibt es aber noch die ,,dynamische\ Theorie der Beugung am Idealkristall(ohne Gitterbaufehler), das ist ±± nach C. G. Darwins Pioniertat von 1914 ±± P. P.Ewalds ,,Kristalloptik der R�ontgenstrahlen\ von 1917. Sie beschreibt auf ihrem heutigenEntwicklungsstand im Fall der Interferenz eine F�ulle von Erscheinungen, von denen imMosaikkristall keine Spur zu finden ist. Dabei sind die beiden Theorien nicht etwagrundverschieden, im Gegenteil, das integrale Reflexionsverm�ogen des Idealkristalls ver-wandelt sich in das des Mosaikkristalls, wenn der als Pl�attchen gedachte Kristall nurhinreichend d�unn ist (Beweis im Braggfall durch Darwin, im Lauefall durch M. v. Lauein seinem Buch ,,R�ontgenstrahl-Interferenzen\, § 31).

Cryst. Res. Technol. 33 (1998) 4 513

So steht Ewalds Theorie da als die umfassende Theorie der R�ontgenstrahl-Interferen-zen. Man wird sagen d�urfen, man habe die R�ontgeninterferenzen voll verstanden, wennman Ewalds Theorie verstanden hat. Das aber war anfangs nicht einfach. M. v. Laueschrieb 1931: ,,Ewalds dynamische Theorie der R�ontgenstrahlinterferenzen geh�ort nachunserer Ansicht auf alle Zeiten zu den Meisterwerken der mathematischen Physik. Siebew�altigte mit gl�anzenden Methoden ein zun�achst schier unl�osbares Problem, . . .\. Aberjene Methoden ,,waren nicht nur schwierig zu finden, sie bereiten in manchen Teilenauch dem Leser Schwierigkeiten.\ Herr von Laue sah sich herausgefordert, ,,der Theorieeine leichter verst�andliche Form zu geben\.

Damit war viel erreicht, das hat die Zukunft gezeigt. Aber etwas blieb, die Theoriebarg ein Geheimnis, ihr Wesen war unerkannt.

Im Handbuch der Physik, Bd. 23/2 (1933), S. 299 finden wir Ewalds Forderung andie Experimentatoren: wenn Versuche zur dynamischen Theorie, dann, bitte, mit der,,Bademethode\. ,,Es mu� darauf aufmerksam gemacht werden, da� f�ur die �Ubereinstim-mung zwischen Theorie und Versuch au�er der G�ute des Kristalls noch zwei Punktewesentlich sind:a) die Umsp�ulung des kleinen Kristalls mit R�ontgenstrahlen (ªBademethodeº). Es kann

hierdurch erstens im ganzen Kristall die Wechselwirkung zwischen Prim�ar- und Se-kund�arstrahl eintreten, die bei Begrenzung des Einfalls durch Blenden (namentlichbei der Laueanordnung) mangelhaft ist . . .

b) die runde Form des Diamanten . . .\Dementsprechend gab es Versuche an runden und ellipsoidischen Diamanten.Die ,,Wechselwirkung zwischen Prim�ar- und Sekund�arstrahl\ meint die �Uberlagerung

der die einfallende Welle im Kristall fortsetzenden gebrochenen Welle mit der von derNetzebene reflektierten Welle, d. h. die Bildung eines (von M. v. Laue so genannten)Wellenfeldes. Die dynamische Theorie ist die Theorie dieser Wellenfelder.

Die ebenen Wellen der Theorie sind unbegrenzt gedacht. Ewald fragte sich, ob dieResultate der Theorie richtig bleiben, wenn im Experiment mit Spaltblenden gearbeitetwird. Seine Antwort war Nein. Bei begrenzter einfallender Welle sind auch die gebro-chene und die reflektierte Welle begrenzt, und wenn sie im Kristall in ihrer angestamm-ten Richtung fortschreiten, k�onnen sie sich trennen: das Wellenfeld existiert nicht mehr.Das sollte durch die Bademethode verhindert werden.

B

G. B. kannte die Badevorschrift des Handbuchs. Zu seinen Beobachtungen aber kam erauf ganz anderem Wege (vgl. Burzlaff et al. 1997). Er fand: Die nach der Theorie ander Eintrittsstelle des Kristalls paarweise entstehenden Wellen, je eine gebrochene undeine reflektierte, trennen sich nicht, das von ihnen gebildete Wellenfeld bleibt erhaltenund durchquert den Kristall auf eigenem Weg, um an der Austrittsfl�ache in seine zweiKomponenten zu zerfallen.

Was die dynamische Theorie dazu sagt, konnte aus M. v. Laues Theorie der Energie-str�omung entnommen werden (v. Laue 1952). Die Fortpflanzungsrichtung eines Wellen-feldes ist durch seinen Poyntingvektor gegeben. Es gilt der h�ochst einfache Satz: DerPoyntingvektor eines Wellenfeldes ist gleich der Summe der Poyntingvektoren der zweibeteiligten Wellen. (Der Poyntingvektor einer ebenen Welle ist die in Richtung ihrer Fort-pflanzung aufgetragene Intensit�at).

514 Hildebrandt, Wagenfeld : Introduction

Auf dieser Basis war die dynamische Theorie neu zu diskutieren. Die Vielfalt der beob-achteten Erscheinungen hat folgende Gr�unde:

An der Eintrittsstelle entstehen nicht nur ein Wellenfeld, sondern deren vier.Das Intensit�atsverh�altnis der zwei Komponenten eines jeden Wellenfeldes kann jeden

Wert zwischen Null und Unendlich haben.So resultieren im Kristall (innerhalb des Winkelbereiches der Interferenz) vier von den

Poyntingvektoren der Wellenfelder gebildete einander �uberlagerte F�acher (,,Strahlenf�a-cher\).

Alle diese Wellenfelder werden verschieden stark absorbiert. Der Absorptionskoeffizi-ent kann bis auf ein Prozent seines normalen Wertes absinken. Das ist (mit Ge und Si,Reflex 220) erreicht worden, als alle Atome der Elementarzelle in den Knotenebenen desWellenfeldes lagen, die elektrische Feldst�arke dort dauernd Null und durch K�uhlen desKristalls die W�armebewegung der Atome bis auf die Nullpunktsunruhe verschwundenwar.

Summe: Man darf wohl sagen, G. B. habe zum Verst�andnis der dynamischen Theorieentscheidend beigetragen, damit zu ihrer Aktualisierung und Anwendung. Nun sah man,was Kristalloptik der R�ontgenstrahlen wirklich ist, konnte ihre Sch�atze heben.

G. Borrmann

The present authors are grateful for many years of stimulating and fruitful coopera-tion. Thank you, Professor Borrmann!

References

Bethe, H.: Theorie der Beugung von Elektronen an Kristallen. Ann. Phys. (Lpz). 87 (1928) 55Borrmann, G.: �Uber Extinktionsdiagramme von Quarz. Physikal. Zs. 42 (1941) 157Borrmann, G.: Die Absorption von R�ontgenstrahlen im Fall der Interferenz. Z. Physik 127 (1950)

297Borrmann, G., Hildebrandt, G., Wagner, H.: R�ontgenstrahl-F�acher im Kalkspat. Z. Physik

142 (1955) 406Burzlaff, H., Hildebrandt, G., Borrmann, G.: Verleihung der Carl-Hermann-Medaille an Ger-

hard Borrmann (Marburg, 11. M�arz 1996). Z. Kristallogr. 212 (1997) 617Ewald, P. P.: Zur Begr�undung der Kristalloptik; III: Die Kristalloptik der R�ontgenstrahlen. Ann.

Phys. (Lpz) 54 (1917) 519Ewald, P. P.: The origin of the Dynamical Theory of X-Ray Diffraction. J. Phys. Soc. Japan 17,

Suppl. B-II (1961) 48Ewald, P. P.: Crystal Optics for Visible Light and X-Rays. Rev. Mod. Phys. 37 (1965) 46Laue, M. v. (1912): Eine quantitative Pr�ufung der Theorie f�ur die Interferenz-Erscheinungen bei

R�ontgenstrahlen. Naturwiss. 16 (1952) 368(reprint of the original publication)

Laue, M. v.: Die dynamische Theorie der R�ontgenstrahlinterferenzen in neuer Form. Ergebn. ex.Naturwiss. 10 (1931) 133

Laue, M. v.: Die Absorption der R�ontgenstrahlen in Kristallen im Interferenzfall. Acta Cryst. 2(1949) 106Die Energiestr�omung bei R�ontgenstrahl-Interferenzen in Kristallen. Ibid. 5 (1952) 619.

Mac Gillavry, C. H.: Zur Pr�ufung der dynamischen Theorie der Elektronenbeugung am Kristall-gitter. Physica 7 (1940) 329

Cryst. Res. Technol. 33 (1998) 4 515