27
Intro to Biogeochemical Modeling Ocean & Coupled Keith Lindsay, NCAR/CGD NCAR is sponsored by the National Science Foundation

Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

IntrotoBiogeochemicalModelingOcean&Coupled

KeithLindsay,NCAR/CGD

NCARissponsoredbytheNationalScienceFoundation

Page 2: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

LectureOutline

1) LargeScaleOceanBiogeochemicalFeatures2) TechniquesforModelingBiologicalProductivity3) SkillAssessment4) GlobalCarbonCycle5) Summary

Page 3: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

NO3 (anutrient),O2 (dissolvedgas)AlongPacificTransect

Page 4: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

DIC(~CO2)AlongSamePacificTransect

Page 5: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

TakahashiAir-SeaCO2 GasFlux

Page 6: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

PrimaryProcessesGoverningDistributionofNutrients,O2,Carbon,etc.

• BiologicalProductivityinEuphotic Zone– ConsumesNutrients&InorganicCarbon– ProducesOrganicMatter&O2

• ExportofOrganicMatteroutofEuphotic Zone– SinkingParticles(e.g.detritus,CaCO3 shells,…)– CirculationofSuspendedMatter

• Remineralization ofOrganicMatter– ‘reverse’ofproductivity,consumesO2

• GeneralCirculation– Advective Transport– Lateral&VerticalMixing

• TemperatureDependentAir-SeaGasExchange

Page 7: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

OtherProcesses,SmallerGlobalImpact,RegionallySignificant

• AtmosphericNutrientDeposition– Fe,N,P,…

• SedimentaryBurial• RiverineInputs

• NitrogenFixation– ConversionofdissolvedN2 gasintoNH4

• Denitrification– ConsumptionofNO3 duringremineralization

Page 8: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

WhatisanNPZDmodel?

N Nutrientnitrate,ammonium,phosphate,silicate,iron,etc.

P Phytoplanktonphotosynthesizers

Z Zooplanktongrazers

D Detritus

CanonicalExampleFasham,Ducklow,McKelvie,JMar.Res.,Vol.48,pp.591-639,1990.

Manymorevariationsareused… Fasham modeldiagramfromwww.gotm.net

Page 9: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric
Page 10: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

Howdoyouestimateparametersandfunctionalforms?

• Laboratory&fieldincubations– P-Icurves– Nutrientuptakecurves

• Tune/Optimizeagainstfielddata• PreviousModels

Page 11: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

PlanktonFunctionalTypes(PFTs)

• Categorizeplanktonspeciesbyhowtheyfunctionanduserepresentativetypes/groups

• ExampledefinitionfromLeQuéré etal.,GlobalChangeBiology,Vol.11,pp.2016-2040,2005.– Explicitbiogeochemicalrole– Biomassandproductivitycontrolledbydistinctphysiological,environmental,ornutrientrequirements

– BehaviorhasdistincteffectonotherPFTs– Quantitativeimportanceinsomeregionoftheocean

Page 12: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

Skill&Portabilityin12DifferentNPZDmodelsFriedrichs etal.,JGR-Oceans,2007.

(b)Simplemodelsdojustaswellasmorecomplexmodelswhentunedforspecificsites.(c)Morecomplexmodelsdobetteratmultiplesiteswithsingleparametersets.(d)Morecomplexmodelsperformbetteratdifferentsiteswhentunedforonesite.

untuned tunedpersite

tunedatbothsitessimultaneously

runatonesitewithtuningfromother

Page 13: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

Doney etal.(J.Mar.Systems,2009)

CCSMBECmodel

Moore,Doney,Lindsay,GlobalBiogeochemicalCycles,2004.Mooreetal.,JClimate,2013.

Page 14: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

PrimaryFeaturesofCESMBECModel

• Nutrients:N,P,Si,Fe• 4PlanktonFunctionalGroups– 3Autotrophs,1Grazer– Implicitcoccolithophores– 32tracersinCESM2.0

• 27inCESM1.2and24inCESM1.0/1.1

• FixedC:Nratiosinplankton• VariableP:C,Fe:C,Si:C,Chl:C ratios– P:CwasfixedinCESM1.2andpreviousversions

• FemodelhasprognosticFe-bindingligand– asofCESM2.0

Page 15: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

KnownGapsinOceanBGCinCESM1

• Calcification&openoceanCaCO3 dissolutionratesareindependentofCO3 saturationstate

• RiverineinputsofBGCtracersareprescribed• C,N,P,Si,CaCO3 buriedinsedimentsarelostfromthesystem

• NotreatmentofBGCinsea-ice

• Focusinonlowertrophiclevels

Page 16: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

ModelValidation:ExamplesofDataSets

• Macronutrients(PO4,NO3,SiO3)andO2 fromWorldOceanAtlas

• DIC,ALKfromGLODAPAnalysis• pCO2 andCO2 FluxassembledbyTakahashi• SurfaceChl measuredbysatellite• Productivityestimatedfromsatellite• JGOFSstudysites• HOTS&BATStimeseries

Page 17: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

Air-seaCO2 Flux

Doneyetal.(Deep-SeaRes.II,2009)

model

observations

Page 18: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

KnownChallenges

• OptimizeBGCmodelparameters– Functionalgroupapproachincreasesuncertaintyofparameters(i.e.multiplespecies,withdifferentcharacteristics,areclumpedtogether)

– Don’twanttoovertune toomuchtocompensateforbiasesinphysicalmodel

• GivenBGCmodelparametersandphysicalcirculation,generatebalancedBGCstate– Needtodealw/diurnaltomillenial timescales– UsingNewton-Krylov forthisisaworkinprogress

Page 19: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

LargeScaleGlobalCarbonCycle

FigurecourtesyPMEL

Page 20: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

20th CenturyCO2 FluxesintoAtmosphereinCESM1(BGC)

(a)Total(b)FossilFuels(c)Sea-to-Air(d)Land-to-Air

Lindsayetal.,2014,JClim

Page 21: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

20th CenturyCO2 FluxesintoAtmosphereinCESM1.2+(BGC)

(a)Total(b)FossilFuels(c)Sea-to-Air(d)Land-to-Air

Page 22: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

SeasonalCycleofCO2,CESM1(BGC)

PointBarrow,Alaska MaunaLoa,Hawaii

PalmerStation,Antarctica SouthPole

Lindsayetal.,2014,JClim

Page 23: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

SeasonalCycleofCO2,CESM1.2+(BGC)

PointBarrow,Alaska MaunaLoa,Hawaii

PalmerStation,Antarctica SouthPole

Page 24: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

AtmosphericCO2 inCMIP5EarthSystem

Models

Hoffmannetal,JGR-BGS,2013

Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381

ESM Historical Atmospheric CO2 Mole Fraction

CO

2 (ppm

)

280

300

320

340

360

380

400

420

280

300

320

340

360

380

400

420a)

Year

CO

2 (ppm

)

1850 1870 1890 1910 1930 1950 1970 1990 2010

280

300

320

340

360

380

400

420

280

300

320

340

360

380

400

420b)

Figure 1. (a) Most ESMs exhibit a high bias in atmospheric carbon dioxide(CO2) mole fraction. The predicted atmospheric CO2 mole fraction for the 19historical simulations shown here ranges from 357 to 405 ppm at the end ofthe CMIP5 historical period (1850–2005). (b) The multimodel mean is biasedhigh from 1946 throughout the remainder of the twentieth century, ending5.6 ppm above observations in 2005.

century (Figure 1b). By the end of the his-torical model simulation period (2005),the multimodel mean was 5.6 ppm aboveobservations and the models ranged from21.7 ppm below to 26.2 ppm above theobserved CO2 mole fraction of 378.8 ppm.Of the 19 historical simulations from 15ESMs included in this analysis, only twopredicted a CO2 mole fraction well belowobservations in 2005. By 2010, near the endof the observational record, the multimodelmean was 7.9 ppm higher than the globalmean CO2 mole fraction reported by NOAAGMD [Conway et al., 1994]. This bias wasprobably a conservative estimate of the truemultimodel mean bias because fossil fuelemissions from the RCP 8.5 scenario during2006–2010 (8.6 Pg C yr−1) were slightly lowerthan the observed emissions (8.7 Pg C yr−1)[Peters et al., 2013; Le Quéré et al., 2013].

3.2. Causes of the Contemporary BiasMost ESMs exhibited a small or moderatelow bias in ocean carbon accumulation from1870 to 1930 when compared with adjustedestimates from Khatiwala et al. [2013], butmost ESMs were contained within the enve-lope of observational uncertainty after 1930(Figure 2a). Ocean carbon accumulationranged from 88 to 261 Pg C, with a multi-

model mean of 145 Pg C, as compared with observational estimates of 142 ± 38 Pg C through year 2010.Excluding the two outlier models that had unlikely land contemporary sink estimates (FGOALS-s2.0 andMRI-ESM1), the range of ocean carbon accumulation was reduced to 101–210 Pg C with a mean of 141 Pg Cat 2010, a better match with observations. However, most ocean models achieved this correspondencewith observational estimates primarily as a consequence of high biases in atmospheric CO2 mole fraction.Normalizing ocean carbon accumulation with atmospheric accumulation

(ΔCO

ΔCA

)provided a measure of

the strength of ocean carbon storage in emissions-forced simulations that partially accounted for atmo-spheric CO2 biases. Performing this normalization and comparing with adjusted ocean inventories fromSabine et al. [2004] for 1994 (Figure S2) and from Khatiwala et al. [2013] for 2010 (Figure 3) indicated that themajority of models were near or below the observed ratio. Across the different models, the ocean/atmosphere ratio ranged from 0.42 to 0.99, with a multimodel mean of 0.61, which compared well with theobservational estimate of 0.64 ± 0.15 in 2010. Excluding the same two outlier models (FGOALS-s2.0 andMRI-ESM1), the range of the ocean/atmosphere ratio was reduced to 0.42–0.91, with a mean of 0.58.

Terrestrial biosphere models within ESMs also had a wide range of responses, with both positive and neg-ative net carbon accumulation throughout the twentieth century (Figures 3 and S2). Terrestrial and oceancarbon accumulation compensated for one another (R = −0.91, Figure S3), reducing the bias in predictedatmospheric CO2. This compensation effect was exemplified by the INM-CM4 model, which had the correctatmospheric CO2 in 2005, but had strong ocean uptake that was balanced by weak land carbon uptake. Dur-ing the second half of the twentieth century, the land carbon sink was persistent with high rates during the1990s and 2000s (Table 2). Thought to be due to changes in human land use (i.e., reduced deforestation,new afforestation, and secondary regrowth of previously cleared land), wildfire suppression [Girod et al.,2007; Hurtt et al., 2002], and enhanced forest growth due to rising atmospheric CO2 levels and higher ratesof nitrogen deposition [Pan et al., 2011; Phillips et al., 2009], this growing land sink reinforced rising oceanuptake rates and resulted in a doubling of global carbon uptake between 1960 and 2010 [Ballantyne et al.,

HOFFMAN ET AL. ©2013. The Authors. 149

Page 25: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

OceanandLandCarbonAccumulationinCMIP5EarthSystemModels

Hoffmannetal,JGR-BGS,2013

Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381

ESM Historical Ocean and Land Carbon Accumulation

Oce

an C

Acc

umul

atio

n (P

g C

)

050

100

150

200

250

050

100

150

200

250

a)

Year

Land

C A

ccum

ulat

ion

(Pg

C)

1850 1870 1890 1910 1930 1950 1970 1990 2010

−175

−125

−75

−25

2575

−175

−125

−75

−25

2575

b)

Figure 2. (a) Ocean and (b) land anthropogenic carbon inventories fromCMIP5 models compared to estimates from Khatiwala et al. [2013]. MostESMs exhibit a low bias in ocean anthropogenic carbon accumulation from1870 to 1930 as compared with adjusted estimates from Khatiwala et al.[2013]. While some models enter the envelope of observational uncer-tainty later in the twentieth century, this was often a consequence of theincreasing high bias in atmospheric CO2 mole fractions. ESMs had a widerange of land carbon accumulation responses to increasing atmosphericCO2 and land use change, ranging from a cumulative source of 170 Pg C toa cumulative sink of 107 Pg C in 2010. In these figures, solid colored linesrepresent historical simulation results and the extending dashed line seg-ments represent the first 5 years of the RCP 8.5 simulations. The shadedpolygon represents the uncertainties surrounding the adjusted observationalestimates of ocean and land carbon accumulation, and the error bars corre-spond to the ±20% uncertainty in the Khatiwala et al. [2013] best estimateof ocean carbon accumulation for 2010.

2012]. Although the multimodel mean dis-tribution of land sinks closely matched theobservations, individual model estimatesvaried widely. BCC-CSM1.1-M, CESM1-BGC,FGOALS-s2.0, GFDL-ESM2M, HadGEM2-ES,INM-CM4, and NorESM1-ME tended tounderestimate land sinks, whereas CanESM2and MRI-ESM1 tended to overestimate them(Figure 2b).

3.3. Implications of ContemporaryAtmospheric CO2 Biases in CMIP5 ModelsHigh atmospheric CO2 biases producedradiative forcing during the latter half ofthe twentieth century that was too largein the affected ESMs (Table 3). For the year2010, the multimodel mean atmosphericCO2 mole fraction was 7.9 ppm aboveobservations, corresponding to a radia-tive forcing that was 0.10 W m−2 higherthan that obtained from the observedatmospheric CO2 mole fraction. The inte-grated effect of the radiative forcing biasfrom the multimodel mean during thenineteenth and twentieth centuries ledto CO2-induced temperature change thatwas 0.06◦C higher by 2010 than an esti-mate derived from the observed CO2

trajectory. Across all ESMs, the temperaturechange bias for 2010 ranged from −0.20◦Cto 0.24◦C. Because land and ocean carbonuptake rates are likely to be reduced withclimate warming (negative !L and !O), thesetemperature biases have the potential tofurther reinforce atmospheric CO2 biases inthe 21st century, leading to persistent anddivergent biases into the future for many

aspects of the climate system, unless compensated for by biases in concentration-carbon feedbacks ("L and"O) or climate sensitivities (#). Atmospheric CO2 mole fraction projections out to 2100 under the RCP 8.5 sce-nario for all ESMs are shown in Figure S4. Corresponding anthropogenic carbon inventories for the oceanand land out to 2100 are shown in Figure S5.

3.4. Persistence of Biases Into the FutureTo explore the persistence of atmospheric CO2 biases beyond the present, we examined the relationshipbetween 5 year mean contemporary and future atmospheric CO2 mole fractions from ESMs. Figure 4areveals a strong linear relationship between the predicted sizes of contemporary and future atmosphericCO2 biases in 2060 with a coefficient of determination R2 = 0.70. This correlation declined to R2 = 0.54 in2100 (Figure 4b) probably as a consequence of varying climate–carbon cycle feedbacks taking effect in dif-ferent models. Because model biases in atmospheric CO2 mole fraction are persistent, biases at year 1850affect biases at year 2010. To investigate the impact of different model baselines, we also examined the rela-tionship between the 5 year mean contemporary and future anthropogenic atmospheric carbon inventoryin 2060 (Figure S6a) and 2100 (Figure S6b), taking into account uncertainties from measurements of nine-teenth century CO2 and fossil emissions. This alternative metric slightly changed the ordering of models andstrengthened the coefficient of determination, further confirming the robustness of the bias persistencerelationship. To explore the value of a tuned model with no CO2 bias at the end of the historical period,we compared the CCTM estimate described in section 2 with the set of CMIP5 model predictions and the

HOFFMAN ET AL. ©2013. The Authors. 150

Page 26: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

SubsetofLiteratureonCarbonCycleinEarthSystemModels

• C4MIP– Friedlingstein etal.,JClim,2006

• CarbonCycleModelEvaluation– Randerson etal.,GlobalChangeBiology,2009– Cadule etal.,GBC,2010– Anav etal.,JClim,2013– Hoffmannetal.,JGR-BGS,2013

• EmissionsCompatiblew/PrescribedCO2 Concentrations– Jonesetal.,JClim,2013

• Feedbacksin1%CO2 rampingCMIP5experiments– Arora etal.,JClim,2013– Schwingeretal.,JClim,2014

• Emergentconstraints– Coxetal.,Nature,2013– Wangetal.,GRL,2014– Wenzeletal.,JGR-BGS,2014

Page 27: Intro to Biogeochemical Modeling Ocean & Coupled...Models Hoffmann et al, JGR-BGS, 2013 Journal of Geophysical Research: Biogeosciences 10.1002/2013JG002381 ESM Historical Atmospheric

Summary• Largescaleoceanbiogeochemicalfeaturesaredeterminedby

handfulofprocesses• ‘Perfect’ecosystemmodeldoesn’texist,manysimplificationsneed

tobemade.Improvingmodelsisongoingresearch.Scientificquestionsandobservationalconstraintsguidethisprocess.

• GlobalcarboncycleisnowpresentinnumerousCMIPclassmodels(ESMs).ObservationsofatmosphericCO2,onmultipletimescales,arevaluableconstraintonmodels.

• Land&oceanuptakeofanthropogenicCO2,particularlysensitivitytoclimatechangeisongoingresearch.

• LiteratureontheglobalcarboncycleinESMs(e.g.CMIP5)isgrowingrapidly.

• PracticalNotesforactivatingthecarboncycleinCESMareavailableandwillbepresentedinLand/BGCbreakout.