15
INTRINSIC AND EXTRINSIC P T EFFECTS ON J/ SHADOWING This work, on behalf of E. G. Ferreiro F. Fleuret J.-P. Lansberg A. Rakotozafindrabe Work in progress… 14/03/22 F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008 1 s NN =200 GeV d+Au collisions at RHIC (and its consequences in Au+Au)

Intrinsic and extrinsic p t effects on J/ y shadowing This work , on behalf of

Embed Size (px)

DESCRIPTION

Transverse momentum dependence of J/ Y shadowing effects in  s NN = 200 GeV d+Au collisions at RHIC (and its consequences in Au+Au). Intrinsic and extrinsic p t effects on J/ y shadowing This work , on behalf of - PowerPoint PPT Presentation

Citation preview

INTRINSIC AND EXTRINSIC PT EFFECTS ON J/ SHADOWING

This work, on behalf of

E. G. FerreiroF. Fleuret

J.-P. LansbergA. Rakotozafindrabe

Work in progress…

19/04/23F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

1

Transverse momentum dependence of J/ shadowing effects in

sNN=200 GeV d+Au collisions at RHIC (and its consequences in Au+Au)

Introduction2

Shadowing and d+Au PHENIX data

19/04/23F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

200 GeV/c PHENIX d+Au data

Phys. Rev. C 77, 024912 (2008)

Shadowing modelisation from R.Vogt, Phys.Rev. C71 (2005) 054902Assuming pT=0

²² MQ

es

Mx

es

Mx

y

y

2

1

2 remarks:• Need at least 2 different breakup to fit RdAu.vs.Ncoll

• No prediction for RdAu.vs.pT

Ncoll

/

/

Jppcoll

JdAu

dAu dNN

dNR

Nuclear modification

factor

Goal of this work: introduce J/ pT in shadowing computation In this talk, we’ll consider EKS98 shadowing only Investigating two mechanisms

g+g J/ « intrinsic » scheme: the pT of the J/ comes from initial partons Can be parametrized using the data

g+g J/+g « extrinsic » scheme: the pT of the J/ is balanced by the outgoing gluon Need a model to be described

Rd

Au

-2.2<y<-1.2

-0.35<y<0.35

1.2<y<2.2

This workGlauber modelisation of CNM effects

3

An event generator to produce J/ samples Based on a glauber Monte Carlo

Use J/ production models (or data) to get (J/ y, pT, x1, x2, Q²

Using EKS98, modify the J/ cross section according to:

Compare with data using:

Use « intrinsic » (g+gJ/) and « extrinsic » (g+g J/+g) schemes as inputs to get J/ kinematics information

19/04/23F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

J/Ψppcoll

Bshadow

Ashadow

J/ΨAB σN,Q²,bxR,Q²,bxRσ 21

/

/

Jppcoll

JAB

AB dNN

dNR

See arXiv:0801.4949 for more details

« intrinsic » J/ productiong+g J/

4

y, pT, x1, x2, Q² can be determined with data : using PHENIX p+p data Phys. Rev. Lett. 98, 232002 (2007)

• kinematics:

• y, pT randomly picked on the data

• Then, compute kinematics as input of shadowing factors

19/04/23F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

²²

²²²

T

yT

yT

TT

MQ

es

Mx

es

Mx

pMM

2

1

,Q²,bxRshadow 21,

« extrinsinc » J/ production g+g J/+g

5

19/04/23F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

Color singlet and color Color singlet and color octet octet calculations compared with PHENIX run 3 (200 GeV/c) p+p data :

PHENIX, Phys. Rev. Lett 92, 051802 (2004).

S-channel cut S-channel cut mechanism mechanism (extension of the color singlet model) compared with PHENIX run 5 (200 GeV/c) p+p data:

Haberzettl and Lansberg, Phys. Rev. Lett. 100, 032006 (2008).

Good description for pT > 2 GeV/c

No description below 2 GeV/c

Model provides y, pT, x1; get and Q²=M²+pT²

Use s-channel cut Use s-channel cut model in the model in the followingfollowing

yT2

yT1

2eMxss

M²esMxx

d+Au Rapidity dependenceintrinsic.vs.extrinsic

6

Intrinsic (g+g Intrinsic (g+g J/ J/))

• Small difference when adding pT. In p+p: <pT> < 2 GeV/c

• No significant difference between pT from central and forward rapidity

Extrinsic (g+g Extrinsic (g+g J/ J/ + g) + g)

significant difference between intrinsic and extrinsic scheme : more antishadowing at mid rapidity ; less shadowing at forward rapidity.

19/04/23F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

No breakup cross section used for this plot

yyT es

Me

s

Mx ~,21

d+Au Rapidity dependencebreakup (absorption) cross section

7

Nuclear absorption addedNuclear absorption added

• Intrinsic scheme:

• following PHENIX PRC 77, 024912 (2008), best match is obtained with breakup = abs = 2.8 mb

•Extrinsic scheme:

• breakup = 2.8 mb is not enough for extrinsic scheme to match data

• Try breakup = 4.2 mb as measured by NA50. good match

• to be done: determining best breakup using ² minimization

19/04/23F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

d+Au Centrality dependenceintrinsic .vs. extrinsic (w/ absorption)

8

RRdAudAu .vs. N .vs. Ncollcoll

Backward rapidity : Backward rapidity :

Intrinsic + breakup=2.8 mb fails to reproduce the data (better with breakup=5.2mb)

Extrinsic + breakup = 4.2 mb reproduces the data

Mid rapidity: Mid rapidity:

Both scenarios have the same behavior. Good match

Forward rapidity: Forward rapidity:

Both scenarios have the same behavior. Good match

19/04/23F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

PHENIX Phys. Rev. C 77, 024912 (2008)

Ncoll

« extrinsic » shows a fair agreement with the data using the same breakup = 4.2 mb for all

rapidities

d+Au Transverse momentum dependenceintrinsic .vs. extrinsic (w/ absorption)

9

RRdAudAu .vs. p .vs. pTT

1.1.Backward rapidity:Backward rapidity: Same behavior for both scenarios ; difficult to conclude about the slope

____________________________

2.2.Mid rapidity:Mid rapidity: Same behavior for both scenarios and match the data

____________________________

3.3.Forward rapidity:Forward rapidity: Both scenarios have the same behavior ; slopes seem smaller than in the data

ppTT broadening ? broadening ?

Cronin effect ?Cronin effect ?

19/04/23F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

Difficult to concludeNeed more precise data

Au+Au centrality dependenceintrinsic .vs. extrinsic (w/ absorption)

10

Intrinsic• Same CNM suppression at forward

and central rapidity. More « additionnal » suppression observed at forward than at mid rapidity

Extrinsic• More CNM suppression at

forward than at central rapidity. Seems to be consistent with the behavior observed in most central data. RAA/CNM to be done…

19/04/23F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

Npart Npart

Au+Au rapidity dependenceintrinsic .vs. extrinsic (w/ absorption)

11

• Intrinsic

• Shape of CNM effects ~flat for all centrality bins suppression due to HDM effects is larger at forward rapidity than at central rapidity.

• Extrinsic

• Shape of CNM effects is changing with centrality and follows the data suppression due to HDM effects is ~flat for all centrality bins.

19/04/23F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

Au+Au transverse momentum dependence

12

19/04/23F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

Intrinsic

Extrinsic

No major difference between intrinsic and extrinsic Both models seem to reproduce fairly well the slopes of |y|<0.35 data at any

centrality Both models fail to reproduce the slopes of |y| [1.2,2.2] data for central

events larger slope in the data (Cronin effect ?) Will look at <pT²>…

Conclusion13

We have investigated effects of « intrinsic » (g+g J/) and « extrinsic » (g+g J/+g) pT schemes on shadowing (using EKS98)

Observe significant differences in the shadowing effects when using the two schemes it is important to understand J/ production in p+p collisions

These differences affect the conclusion we can make when studying HDM effects in Au+Au collisions The difference between RAuAu

forward / RAuAucentral can be partly due to CNM effects

The RAuAu.vs.y shape can be partly due to CNM effects

Transverse momentum studies give additionnal information RAuAu.vs.pT shape is fairly well reproduced by CNM effects at mid-rapidity RAuAu.vs.pT slope is smaller for CNM effects than for the data at forward rapidity

More precise d+Au data are needed to better constraint the models new d+Au data have been recorded this year (run 8) 30 times more data…

19/04/23F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

intrinsicintrinsic extrinsicextrinsic

14

Backup slidex1,2.vs.y

19/04/23F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

x1x2x2 x1

y y

Backup slideEKS98

15

19/04/23F. Fleuret LLR-CNRS/IN2P3 FFLR - Hard Probes 2008

PHENIX μ, North PHENIX , SOUTH

PHENIX e

X1 X2

J/ Northy > 0

X1 X2

J/Southy < 0

X1 X2

J/Central y = 0

Large x2 (in Au) ~0.090Small x2 (in Au) ~0.003

Intermediate x2 ~ 0.02

d

Au

rapidity y

x2

South Central NorthEskola, Kolhinen, Vogt Nucl. Phys. A696 (2001)