40
INTERNAL FLOWS Fluid Mechanics II

INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Embed Size (px)

Citation preview

Page 1: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

INTERNAL  FLOWS  Fluid  Mechanics  II  

Page 2: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

General Concept of Flows in Pipe 2

p  As a uniform flow enters a pipe, the velocity at the pipe walls must decrease to zero (no-slip boundary condition). Continuity indicates that the velocity at the center must increase.

p  Thus, the velocity profile is changing continuously from the pipe entrance until it reaches a fully developed condition. This distance, L, is called the entrance length.

Dr. M. Khosravy

Page 3: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

p  For fully developed flows (x>>L), flows become parallel, , the mean pressure remains constant over the pipe cross-section

3

v = (u(y),0,0)

General Concept of Flows in Pipe

Dr. M. Khosravy

Page 4: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

General Concept of Flows in Pipe 4

l Flows   in   a   long   pipe   (far   away   from   pipe   entrance   and   exit    region,   x>>L)   are   the   limit   results   of   boundary   layer   flows.  There  are  two  types  of  pipe  flows:  laminar  and  turbulent  

 

Dr. M. Khosravy

Page 5: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

l  CriJcal  Reynolds  number  (Recr)  for  flow  in  a  round  pipe  Re  <  2300  :  laminar  2300  ≤  Re  ≤  4000  :  transiJonal    Re  >  4000  :  turbulent  

l  Note  that  these  values  are  approximate.  

l  For  a  given  applicaJon,  Recr  depends  upon  

l  Pipe  roughness  l  VibraJons  l  Upstream  fluctuaJons,  disturbances  

(valves,  elbows,  etc.  that  may  disturb  the  flow)  

General Concept of Flows in Pipe

5

Dr. M. Khosravy

Page 6: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

General Concept of Flows in Pipe 6

l Whether  the  flow  is  laminar  or  turbulent  depends  on  the  Reynolds  number,  where  Um  is  the  cross-­‐secJonal  mean  velocity  defined  by    

 

l TransiJon  from  laminar  to  turbulent  for  flows  in  circular  pipe  of  diameter  D  occur  at  Re=2300  

Um =1A

udAA!!

Dr. M. Khosravy

Um Um

Page 7: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

General Concept of Flows in Pipe

l For  pipes  with  variable  diameter,  m  is  sJll  the  same  due  to  conservaJon  of  mass,  but  V1  ≠  V2  

D2

V2

2

1

V1

D1

m m

7

Dr. M. Khosravy

Page 8: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

General Concept of Flows in Pipe 8

l When  pipe  flow  is  turbulent.  The  velocity  is  unsteadily  random  (changing  randomly  with  Jme),  the  flow  is  characterized  by  the  mean  (Jme-­‐averaged)  velocity  defined  as:    

l Due  to  turbulent  mixing,  the  velocity  profile  of  turbulent  pipe  flow  is  more  uniform  then  that  of  laminar  flow.    

v (y) = limT!"

12T

v(y, t)dt#T

T

$

Dr. M. Khosravy

Page 9: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Dr. M. Khosravy

9

l Hence,   the   mean   velocity   gradient   at   the   wall   for   turbulent  flow  is  larger  than  laminar  flow.    

l The  wall   shear  stress,       ,is  a   funcJon  of   the  velocity  gradient.  The  greater  the  change  in          with  respect  to  y  at  the  wall,  the  higher  is  the  wall  shear  stress.  Therefore,  the  wall  shear  stress  and  the  fricJonal  losses  are  higher  in  turbulent  flow.  

wτu

General Concept of Flows in Pipe

Page 10: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Poiseuille Flow

Dr. M. Khosravy

10

l  Consider  the  steady,  fully  developed  laminar  flow  in  a  straight  pipe  of  circular  cross  secJon  with  constant  diameter,  D.  

l  The  coordinate  is  chosen  such  that  x  is  along  the  pipe  and  y  is  in  the  radius  direcJon  with  the  origin  at  the  center  of  the  pipe.  

τD

b

y

x1p 2p

Page 11: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Dr. M. Khosravy

11

l For   a   control   volume   of   a   cylinder   near   the   pipe   center,   the  balance  of  momentum   in   integral   form   in  x-­‐direcJon   requires  that  the  pressure  force,                          

                                     acJng  on  the  faces  of  the  cylinder  be  equal  to  the  shear  stress                              acJng    on  the  circumferenJal  area,  hence  

 

l  In  accordance  with  the  law  of  fricJon  (Newtonian  fluid),  have:  

 

(p1 ! p2 )! y2

2! yb"

! = (p1 ! p2 )" y2b

! (y) = !µ dudy since u decreases with increasing y

Poiseuille Flow

Page 12: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

l  Therefore:  

 when                                                        is  constant  (negaJve)  

l  Upon  integraJon:    

 

 

The  constant  of  integraJon,  C,  is  obtained  from  the  condiJon  of  no-­‐slip  at  the  wall.  So,    u=0  at  y=R=D/2,  there  fore  C=R2/4  and  finally:    

u(y) = ! p1 ! p24µb

R2 ! y2( ) = ! 1µdpdx

C ! y2

4"#$

%&'

dudy

= (p2 ! p1)!µb

y2= !µb

dpdx

y2

u(y) = ! 14µ

dpdx

R2 ! y2( )

dudy

= (p2 ! p1)b

12

Dr. M. Khosravy

Poiseuille Flow

Page 13: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Poiseuille Flow

Dr. M. Khosravy

13

l  The  velocity  distribuJon  is  parabolic  over  the  radius,  and  the  maximum  velocity  on  the  pipe  axis  becomes:  

l  Therefore,  

l  The  volume  flow  rate  is:  

um = ! 14µ

dpdxR2

uum

=1! y2

R2

Q = u(y)2!ydy" = #1

4µ"dpdx

R2 # y 2( )2!ydy

Q = #!8µ

dpdxR4 =

12um!R

2

Page 14: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Poiseuille Flow

Dr. M. Khosravy

14

l  The  flow  rate  is  proporJonal  to  the  first  power  of  the  pressure  gradient  and  to  the  fourth  power  of  the  radius  of  the  pipe.  

l  Define  mean  velocity  as  

l  Therefore,  

 

l  This  soluJon  occurs  in  pracJce  as  long  as,  

Um = Q!R2

Um = 12um = 1

8µ! dpdx

"#$

%&' R

2

Re =UmDv< 2300

! dpdx

= 8µR2UmHence,  

Page 15: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Poiseuille Flow

Dr. M. Khosravy

15

l  The  relaJon  between  the  negaJve  pressure  gradient  and  the  mean  velocity  of  the  flow  is  represented  in  engineering  applicaJon  by  introducing  a  resistance  coefficient  of  pipe  flow,  f.  

l  This  coefficient  is  a  non-­‐dimensional  negaJve  pressure  gradient  using    the  dynamic  head  as  pressure  scale  and  the  pipe  diameter  as  length  scale,  i.e.,    

l  Introducing  the  above  expression  for  (-­‐dp/dx),    so,  

f = 2D!Um

28µUm

R2= 32µ!Um

2R

Ref 64=

! dpdx

= fD12!Um

2

Page 16: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Poiseuille Flow

Dr. M. Khosravy

16

l At  the  wall,  

l So,  

 

l As  a  result,  the  wall  fricJon  coefficient  is:      

!w = !µ dudy y=R

= !µ dpdx2y4µ y=R

= ! R2dpdx

Cf =!w12"Um

2= f4= 16Re

2!wR

= ! dpdx

= fD12"Um

2

Page 17: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Head Loss in Pipe

Dr. M. Khosravy

17

l  For  flows  in  pipes,  the  total  energy  per  unit  of  mass  is  

     given  by                                                              where  the  correcJon  factor            is    

     defined  as,  

 

 with                                      being  the  mass  flow  rate  and  A  is  the  cross  secJonal  area.  

p!+ "Um

2

2+ gy

!"#

$%&

! = !u2"udA

A"!mUm

2

!m = !Q

α

Page 18: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Head Loss in Pipe

Dr. M. Khosravy

18

l  So  the  total  head  loss  between  secJon  1  and  2  of  pipes  is:  

l  hl=head  loss  due  to  fricJonal  effects  in  fully  developed  flow  in  constant  area  conduits  

l  hlm=minor  losses  due  to  entrances,  fi`ngs,  area  changes,  etcs.  

hlt =p1!

+"1Um1

2

2+ gy1

#

$%%

&

'(()

p2!

+"2Um2

2

2+ gy2

#

$%%

&

'((

hlt = hl + hlm

Page 19: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Head Loss in Pipe

Dr. M. Khosravy

19

l  So,  for  a  fully  developed  flow  through  a  constant-­‐area  pipe,  

l  And  if  y1=y2,  

hl =p1 ! p2!

+ g(y1 ! y2 )

hl =p1 ! p2!

= "p!

Page 20: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Head Loss in Pipe

Dr. M. Khosravy

20

l For  laminar  flow,  

 

l Hence  

! dpdx

= "pL

= ! 32µUm

D2

hl =!p!

= 32LµUm

D2 = 64µ!UmD

LDUm2

2= 64Re

LDUm2

2

hl = f LDUm2

2

Page 21: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Turbulent Pipe Flow

Dr. M. Khosravy

21

l  For  turbulent  flows’  we  cannot  evaluate  the  pressure  drop  analyJcally.  We  must  use  experimental  data  and  dimensional  analysis.  

l  In  fully  developed  turbulent  pipe  flow,  the  pressure  drop,                ,  due  to  fricJon  in  a  horizontal  constant-­‐area  pipe  is  know  to  depend  on:  l  Pipe  diameter,  D    l  Pipe  length,  L  l  Pipe  roughness,  e  l  Average  flow  velocity,  Um    l  Fluid  density,      l  Fluid  viscosity,    

ρµ

Page 22: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Turbulent Pipe Flow

Dr. M. Khosravy

22

l  Therefore,  

l  Dimensional  analysis,  

 

l  Experiments  show  that  the  non-­‐dimensional  head  loss  is  directly  proporJonal  to  L/D,  hence  

!p!Um

2 ="1µ

!U mD, LD, eD

"#$

%&'

hl =!p!

( hl!Um

2 ="1 Re,LD, eD

"#$

%&'

!p = !p D,L,e,Um,!,µ( )

hlUm

2 / 2= LD!2 Re, e

D!"#

$%&

Page 23: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Turbulent Pipe Flow

Dr. M. Khosravy

23

l  Defining  the  fricJon  factor  as,                                                        ,  hence  

 

 

 

 where  f  is  determined  experimentally.  

 

l  The  experimental  result  are  usually  ploded  in  a  chart  called  Moody  Diagram.  

f =!2 Re,eD

!"#

$%&

hl = f LD

!"#

$%&Um2

2!"#

$%&

Page 24: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Moody Diagram  

Dr. M. Khosravy

24

Page 25: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Turbulent Pipe Flow

Dr. M. Khosravy

25

l  In   order   to   solve   the   pipe   flow   problems   numerically,   a  mathemaJcal   formulaJon   is   required   for   the   fricJon   factor,   f,   in  terms  of  the  Reynolds  number  and  the  relaJve  roughness.  

l  The  most  widely  used  formula  for  the  fricJon  factor   is  that  due  to  Colebrook,  

 

l  This   an   implicit   equaJon,   so   iteraJon   procedure   is   needed   to  determine.  

1f= !2 log e / D

3.7+ 2.51Re f

"

#$%

&'

Page 26: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Turbulent Pipe Flow

Dr. M. Khosravy

26

l Miller  suggested  to  use  for  the  iniJal  esJmate,  

 

l That  produces  results  within  1%  in  a  single  iteraJon  

fo = 0.25 loge / D3.7

+ 2.51Re0.9

!"#

$%&

'()

*+,

-2

Page 27: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Minor Loss

Dr. M. Khosravy

27

l  The  minor  head  loss  may  be  expressed  as,  

where   the   loss   coefficient,  K,  must   be   determined   experimentally   for   each  case.  

l  Minor  head  loss  may  be  expressed  as  

   

where  Le  is  an  equivalent  length  of  straight  pipe  

hlm = f LeD

!"#

$%&Um

2

2!"#

$%&

hlm = KU m2

2

Page 28: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Minor Loss

Dr. M. Khosravy

28

p  Source of minor loss:

1. Inlets & Outlets 2. Enlargements & Contractions 3. Valves & Fittings 4. Pipe Bends

Page 29: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Minor  Losses  

l Total   head   loss   in   a   system   is   comprised   of   major  losses   (in   the  pipe   secJons)   and   the  minor   losses   (in  the  components)  

 l If  the  piping  system  has  constant  diameter  

i pipe sections

j components

29

Dr. M. Khosravy

Page 30: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

30

Dr. M. Khosravy

Page 31: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

31

Dr. M. Khosravy

Page 32: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

p  Pipe flow results sometimes can be used for non-circular ducts or open channel flows to estimate the head loss

p  Use Hydraulic Diameter,

A - Cross section area; P - Wetted perimeter p  For a circular duct,

p  For rectangular duct,

where Ar =b/a is the geometric aspect ratio

Non-Circular Ducts

Dr. M. Khosravy

32

PADh4=

DDDDh ==ππ 4/4 2

)1(24)(24AraAr

baabDh +=+

=

Page 33: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Non-Circular Ducts

Dr. M. Khosravy

33

p  Effect of Aspect Ratio (b/a): n  For square ducts:

n  For wide rectangular ducts with b>>a:

Thus, flows behave like channel flows n  However, pipe flow results can be used with good

accuracy only when:

a=b Ar=1 Dh=a

Ar Dh2a ∞

1/3<Ar<3

b

a

ba

b

ab

a

Page 34: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Piping  Networks  and  Pump  SelecJon  l  Two  general  types  of  networks  

l  Pipes  in  series  l  Volume  flow  rate  is  constant  l  Head  loss  is  the  summaJon  of  parts  

l  Pipes  in  parallel  l  Volume  flow  rate  is  the  sum  of  the  components  

l  Pressure  loss  across  all  branches  is  the  same  

34

Dr. M. Khosravy

Page 35: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Piping  Networks  and  Pump  SelecJon  

l For  parallel  pipes,  perform  CV  analysis  between  points  A  and  B  

 

l Since  Δp  is  the  same  for  all  branches,  head  loss  in  all  branches  is  the  same  

35

Dr. M. Khosravy

Page 36: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Piping  Networks  and  Pump  SelecJon  l  Head  loss  relaJonship  between  branches  allows  the  following  raJos  to  be  developed  

 

 

l  Real  pipe  systems  result  in  a  system  of  non-­‐linear  equaJons.    Very  easy  to  solve  with  EES!  

l  Note:    the  analogy  with  electrical  circuits  should  be  obvious  l  Flow  flow  rate  (VA)  :  current  (I)  l  Pressure  gradient  (Δp)  :  electrical  potenJal  (V)  l  Head  loss  (hL):  resistance  (R),  however  hL  is  very  nonlinear  

36

Dr. M. Khosravy

Page 37: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Piping  Networks  and  Pump  SelecJon  

l When  a  piping  system  involves  pumps  and/or  turbines,  pump  and  turbine  head  must  be  included  in  the  energy  equaJon  

 

l The  useful  head  of  the  pump  (hpump,u)  or  the  head  extracted  by  the  turbine  (hturbine,e),  are  funcJons  of  volume  flow  rate,  i.e.,  they  are  not  constants.  

l OperaJng  point  of  system  is  where  the  system  is  in  balance,  e.g.,  where  pump  head  is  equal  to  the  head  losses.  

37

Dr. M. Khosravy

Page 38: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Pump  and  systems  curves  l  Supply   curve   for   hpump,u:    determine   experimentally   by  manufacturer.    When  using  EES,  it   is   easy   to   build   in   funcJonal  relaJonship  for  hpump,u.  

l  System   curve   determined   from  analysis   of   fluid   dynamics  equaJons  

l  Ope r a J n g   p o i n t   i s   t h e  intersecJon   of   supply   and  demand  curves  

l  If   peak   efficiency   is   far   from  operaJng  point,  pump  is  wrong  for  that  applicaJon.  

38

Dr. M. Khosravy

Page 39: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Dr. M. Khosravy

39

Page 40: INTERNAL(FLOWS( - دانشگاه آزاد اسلامی ...kiau.ac.ir/~mostafa.khosravy/myCourses/Fluid_Mechanics_II_files/4... · INTERNAL(FLOWS(Fluid(Mechanics(II. General Concept

Dr. M. Khosravy

40