18
Your Occasion November 24, 2015 Seoul National University Quantum Field Laser Laboratory Interferometric Laser Cooling of Atomic Rubidium 15.11.17 Jinuk Kim Quantum-Field Laser Laboratory Department of Physics and Astronomy Seoul National University, Korea

InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

Your Occasion November 24, 2015

Seoul National University Quantum Field Laser Laboratory

Interferometric Laser Cooling of Atomic Rubidium15.11.17

Jinuk KimQuantum-Field Laser Laboratory

Department of Physics and AstronomySeoul National University, Korea

Page 2: InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

Your Occasion November 24, 2015

Seoul National University Quantum Field Laser Laboratory

Page 3: InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

Your Occasion November 24, 2015

Seoul National University Quantum Field Laser Laboratory

Publication list

• 'Algorithmic cooling' in a momentum state quantum computer , Phys Rev Lett 91 037904 (2003)

• Coherent amplification in laser cooling and trapping , PhysRev A 73 033409 (2006)

• Atom cooling using the dipole force of a single retroreflectedlaser beam, Phys Rev A 80 013836 (2009)

• Opto-mechanical cooling with generalized interferometers , Phys Rev Lett 105 013602 (2010)

• Mirror-mediated cooling: a paradigm for particle cooling via the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378 (2013)

Page 4: InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

Your Occasion November 24, 2015

Seoul National University Quantum Field Laser Laboratory

Contents

Principle of the cooling skim

Experimental implementation

Limitations and advantages

Page 5: InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

Your Occasion November 24, 2015

Seoul National University Quantum Field Laser Laboratory

Page 6: InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

Your Occasion November 24, 2015

Seoul National University Quantum Field Laser Laboratory

Mean impulse

0휋2푘휏−

휋2푘휏

푐 ≃1 + cos 푘푣휏 − 휙

2

Page 7: InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

Your Occasion November 24, 2015

Seoul National University Quantum Field Laser Laboratory

85Rb

|2⟩

|1⟩

Page 8: InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

Your Occasion November 24, 2015

Seoul National University Quantum Field Laser Laboratory

85Rb

5푃 /

5푆 / 퐹 = 2

5푆 / 퐹 = 3

1

2

11퐺퐻푧

Ω = 2휋 × 400푘퐻푧

depump beam

Page 9: InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

Your Occasion November 24, 2015

Seoul National University Quantum Field Laser Laboratory

Raman pulse generation

780푛푚

+300푀퐻푧

−2.7퐺퐻푧

ECDL : external-cavity diode laserPBSC : polarizing beam splitter cubeTA : tapered amplifierOSA : optical spectrum analyzerBSh : beam shaper and focusing lens

Page 10: InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

Your Occasion November 24, 2015

Seoul National University Quantum Field Laser Laboratory

Spectral filtering - carrier wave removal

퐸 =푒 푐표푠휃푒 푠푖푛휃 퐸 =

푒 ( )푐표푠휃푒 푠푖푛휃

=퐽 (푚)푐표푠휃

푠푖푛휃 푒 +푐표푠휃0 푒 푖 퐽 푚 푒

EOM

PBS(transmission axisorthogonal to

polarization of the carrier)

carrier wave and sidebands have different polarizationEOM

Page 11: InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

Your Occasion November 24, 2015

Seoul National University Quantum Field Laser Laboratory

Spectral filtering – unwanted sideband removalMach-Zehnder interferometer

EOM

휔 휔

maximized when phase difference of two path : 훿 휔 = 0, 훿 휔 = 휋

refractive index depends on the temperaturedestructive interference

constructive interference

Page 12: InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

Your Occasion November 24, 2015

Seoul National University Quantum Field Laser Laboratory

Raman velocimetry

5푃 /

5푆 / 퐹 = 2

5푆 / 퐹 = 3

1

2

MOT beam

repump beam

Page 13: InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

Your Occasion November 24, 2015

Seoul National University Quantum Field Laser Laboratory

Timing diagram of experiment

cooling velocity distributionmeasurement

Page 14: InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

Your Occasion November 24, 2015

Seoul National University Quantum Field Laser Laboratory

Result

(3.2 ± 0.4)휇퐾

(21 ± 2)휇퐾

(10 ± 1)휇퐾

4.8 ± 0.5 휇퐾

Page 15: InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

Your Occasion November 24, 2015

Seoul National University Quantum Field Laser Laboratory

Page 16: InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

Your Occasion November 24, 2015

Seoul National University Quantum Field Laser Laboratory

Advantage

Page 17: InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

Your Occasion November 24, 2015

Seoul National University Quantum Field Laser Laboratory

Advantage

Page 18: InterferometricLaser Cooling of Atomic Rubidium 15.11sal.snu.ac.kr/uploads/Journal-Club-151117.pdf · the retarded dipole force, Annual Review of Cold Atoms & Molecules 1, 353-378

Your Occasion November 24, 2015

Seoul National University Quantum Field Laser Laboratory

Cooling atoms with microwave

It is impossible to cool atoms with microwave analog to magneto optical trap. Because fast spontaneous emission is a crucial part of MOT for initializing atoms and removing entropy of the atoms.

There is a paper about cooling an artificial atom with microwave.Principle of their method is the same as optical cooling of trapped ion.Valenzuela, S.O. et al. Microwave-induced cooling of a superconducting qubit. Science 314, 1589-1592 (2006)