75
J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 1/ 70 Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions Interference mitigation in GNSS signal acquisition through antenna arrays Dr. Javier Arribas Centre Tecnol` ogic de Telecomunicacions de Catalunya (CTTC) Interference Management for Tomorrow’s Wireless Networks Newcom# Summer School Sophia Antipolis - May 28-31, 2013

Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

  • Upload
    others

  • View
    23

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 1/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Interference mitigation in GNSS signal acquisition throughantenna arrays

Dr. Javier Arribas

Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)

Interference Management for Tomorrow’s Wireless NetworksNewcom# Summer School Sophia Antipolis - May 28-31, 2013

Page 2: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 2/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Overview

Introduction

Motivation and Objectives

Array-based acquisition theory

Array platform implementation

Conclusions

Page 3: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Introduction

Motivation and Objectives

Array-based acquisition theory

Array platform implementation

Conclusions

Page 4: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 4/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Introduction to GNSS• Global Navigation Satellite Systems (GNSS) is the general concept used to

identify those positioning systems that enable the determination of the userposition and time by means of measured distances between the receiver and aset of visible satellites.

Figure: Position determination by GNSSs. Source: Kai Borre, Darius Plausinaitis,Reconfigurable GNSS Receivers, 2007.

(a) GPS (b)Galileo

(c)Glonass

(d)Compass

(e)IRNSS

(f)QZSS

Page 5: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 5/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

GNSS signal structure

DS-CDMA transmitted signal for the i-th satellite:

sT,i(t) = eI,i(t)+ jeQ,i(t), (1)

where the subindex I and Q denote in-phase and quadrature component respectively,and are defined as:

eI,i(t) =√

2PI,i

∑mI=−∞

bI,i(mI)

NcI

∑uI=1

LcI

∑kI=1

cI,i(kI)gI(t−mITbI −uITPRNI − kITcI ) (2)

with the following definitions for the I component - analogous for the Q component:• PI,i is the transmitted signal power.• bI,i(m) ∈ −1,1 is the sequence of telemetry bits, with TbI being the bit period.• cI,i(k) ∈ −1,1 is the Pseudo Random Noise (PRN) spreading sequence, with

the chip length of the codeword and the chip period defined as LcI and TcI ,respectively. TPRNI = LcI TcI is the codeword period. The number of codeepochs per telemetry bit is NcI .

• gI(t) is the energy-normalized chip shaping pulse.

Page 6: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 6/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Simplified receiver signal model

Considering only the LOSS contribution coming from Ms satellites and thepredominant propagation effects:

xRF(t) = ℜ

Ms

∑i=1

αi(t)sT,i(t− τi(t))ej2π(fc+fd,i(t))t

+n(t), (3)

where fc is the carrier frequency, θi = [αi(t), fd,i(t),τi(t)] are the complex amplitude,the Doppler frequency shift, and the time delay, respectively, which are the signalsynchronization parameters for the i-th satellite signal and n(t) is additive whiteGaussian noise plus other undesired terms (such as multipath or interferences).The implicit channel model is defined as Wide-Sense Stationary UncorrelatedScattering (WSSUS).

Page 7: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 7/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

GNSS receiver block diagram

RFfront-end

ADC

AcquisitionAcquisition

Codetracking

Carriertracking

TLMdemod.

PVT

Userapplication

AGC

Satellite channels

GNSSantenna

Hardware based Hardware or software based

Figure: Simplified GNSS receiver high-level block diagram.

Page 8: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 8/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Acquisition operation

Target: provide a coarse estimation of the synchronization parameters vector θi foreach received satellite:

θi = [αi, fd,i, τi︸ ︷︷ ︸Grid Search

] (4)

Figure: Acquisition test function output vs. time-delay and Doppler-shift of a noise-free andnoisy Galileo-like MBOC(6,1,1/11) signal.

Page 9: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 9/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Acquisition parameters

Acquisition performance indicators

• Sensitivity• TTFFcold = Twarm−up +Tacq +Ttrack +TNAV+GST +TPVT

Performance degradation sources:• Signal attenuation: fading

and low level signalconditions.

• Interferences.

• Navigation message.• Receiver and satellite

movement.• Receiver sample clock drift.

Page 10: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 10/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

GNSS Interference sourcesAmong the VHF and UHF spurious transmissions (DVB-T, TACAN, and DME), the adjacentfrequencies to GNSS links are populated as:

Band [MHz] Usage1435-1530 Mobile (aeronautical telemetry)1530-1545 Mobile-satellite (space-to-Earth)

Maritime mobile-satellite (space-to-Earth)1545-1549.5 Aeronautical mobile-satellite (space-to-Earth)

Mobile-satellite (space-to-Earth)1549.5-1558.5 Aeronautical mobile-satellite (space-to-Earth)

Mobile-satellite (space-to-Earth)1613.8-1626.5 Mobile-satellite (Earth-to-space)1626.5-1645.5 Mobile-satellite (Earth-to-space)1646.5-1651 Aeronautical mobile-satellite (Earth-to-space)1651-1660 Mobile-satellite (Earth-to-space)1668-1675 Meteorological aids (radiosonde)1700-1710 Meteorological-satellite (space-to-Earth)1710-1755 Mobile communications

Table: Sources and Services of image Interference for single-conversion GPS L1 / Galileo E1front-end [Wil02].

The proposed deployment of Lightsquared’s 4G communication network could create a newinterference situation specially when using the 1552.7 MHz band, as notified for the first timeby the U.S. NTIA to U.S. FCC in January 2011.

Page 11: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Introduction

Motivation and Objectives

Array-based acquisition theory

Array platform implementation

Conclusions

Page 12: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 12/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Problem definition

• New and upgraded GNSSs are being used to provide safety-critical guidance:• Modernized GPS and forthcoming Galileo will provide integrity monitoring

mechanisms: RAIM, SBAS, GBAS, and Galileo embedded integrity concept.• Robust and highly accurate positioning and time dissemination service.• Used for the transport safety of persons and goods, such as in Civil aviation,

Railroad transport, and Commercial maritime.⇒ The acquisition operation can become the bottleneck of GNSS receivers:

• Tracking initialization depends on acquisition results.• Acquisition has the lowest sensitivity of the whole receiver operation.• Strong interferences and jamming signals could increase the acquisition time or

even can make the acquisition fail.

Page 13: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 13/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

State-of-the-Art

ADC

GNSSAntenna

Interference rejection

-Pulse blanker-Notch filter-Transformed domain excision

ConventionalGNSS receiver

El. maskRF

front-end

El. mask

Figure: Single-antenna receiver interference rejection.

Single-antenna solutions for acquisition interference mitigation

• Time diversity: pulse blanking and Automatic Gain Control (AGC).• Frequency diversity: Continuous Wave Interference (CWI) notch filters.• Spatial diversity: antenna radiation pattern.

Page 14: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 14/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Research opportunity

Figure: Array-based GNSS receiver.

• Antenna-array key benefits:• In addition to code, time and frequency diversities, arrays exploit spatial diversity.• Interference and jamming signals rejection.• Sensitivity improvement due to the array gain.

• Acquisition with antenna arrays has not yet received much attention:• Intense research activity on single antenna receivers.• Antenna arrays applied to tracking assuming the success of the acquisition.

⇒ Existing antenna-array solutions suitable for acquisition:• Minimum Variance Distortionless Response (MVDR) beamformer: requires an

estimation of both the signal DOA and the array attitude.• Spatial-domain grid search: requires a calibrated array, but it increases the

dimensions of the search grid.• Blind null-steering beamformers: DOA not necessary, but no array gain.

Page 15: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 15/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Research opportunity

• Lack of suitable array-based GNSS real-time receiver commerciallyavailable• Closed implementations with few technical information made public.

Figure: NovAtel GAJT commercial null-steering GNSS array.

• Scientific applications of GNSSs require flexible implementations• The Software Defined Radio (SDR) receiver approach is suitable to test new

algorithms with low development costs.• Interest for a limited-market but highly demanding applications such as reference

stations, geodesy and surveying, among other scientific goals.

Page 16: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 16/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Main objectives of the project

Exploit the spatial diversity in acquisition

• Improve the existing GNSS acquisition algorithms performance.• Improve the GNSS interference robustness proposing novel array-based

acquisition algorithms using the statistical detection theory framework.

Demonstrate the implementation feasibility

• Design and implementation of an array-based GNSS receiver platform• Proof-of-concept of array-based acquisition algorithms working in real-time

• Interference mitigation.• Performance measurements in realistic scenarios.

• Tightly coupled with GNSS software receivers.

Page 17: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Introduction

Motivation and Objectives

Array-based acquisition theory

Array platform implementation

Conclusions

Page 18: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 18/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Objectives

Exploit the spatial diversity in acquisition

• Improve the existing GNSS acquisition algorithms performance.• Improve the GNSS interference robustness proposing novel array-based

acquisition algorithms using the statistical detection theory framework.

Demonstrate the implementation feasibility

• Design and implementation of an array-based GNSS receiver platform• Proof-of-concept of array-based acquisition algorithms working in real-time

• Interference mitigation.• Performance measurements in realistic scenarios.

• Tightly coupled with GNSS software receivers.

Page 19: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 19/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Antenna-array signal model

N-elements baseband array signal model for single satellite:

X(t) = hd(t, fd,τ)+N(t), (5)

where• X(t) = [xbb(t− (K−1)Ts) . . .xbb(t)] ∈ CN×K is referred as the space-time data

matrix, where xbb(t) = [x1(t) . . .xN(t)]T is defined as the baseband snapshot,and K is the number of captured snapshots. The acquisition time is defined asTacq = KTs where Fs = 1/Ts is the sampling frequency.

• h = [h1 . . .hN ]T ∈ CN×1 is the non-structured channel model, which includes

both the channel and the array response.• d(t, fd,τ) = [sT,i(t− (K−1)Ts− τi)ej2πfd,i(t−(K−1)Ts), . . . ,sT,i(t− τi)ej2πfd,it] ∈C1×K is the received GNSS baseband signal for the i-th satellite.

• N(t) = [n(t− (K−1)Ts) . . .n(t)] ∈ CN×K is a complex, circularly symmetricGaussian vector process with a zero-mean, temporally white and spatiallycolored with an arbitrary (also unknown) spatial covariance matrixQ ∈ CN×N that models both the noise and other non desirable terms such asinterferences.

Page 20: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 20/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Detection theory

Binary hypothesis testing problem:

H1 : X(t) = hd(t, fd,τ)+N(t) (6)

H0 : X(t) = N(t), (7)

where H0 is the null hypothesis, when there is no signal present, and H1 is thealternative hypothesis, when the searched signal is present.

Page 21: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 21/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Neymann-Pearson (NP) detector

Likelihood Ratio Test (LRT):

L(X) =p(X;Q,θa,H1)

p(X;Q,H0)=

1πNK det(Q)K exp

−TrQ−1C

1

πNK det(Q)K exp−TrQ−1Rxx

> γ, (8)

where the PDF of a complex multivariate Gaussian vector for K snapshots is used,and

C = Rxx− rxdhH−hrHxd +hRddhH , (9)

with• Rxx =

1K XXH is the autocorrelation matrix estimation

• rxd = 1K XdH is the cross-correlation vector estimation

• Rdd = 1K ddH is the PRN code autocorrelation estimation

Page 22: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 22/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Generalized Likelihood Ratio Test (GLRT) detectorGLRT criterion: assume no a priori knowledge of the PDFs parameters and replacethem by their respective Maximum Likelihood Estimators (MLE).

GLRT expression:

L(X) =p(X;QH1

, θa,H1)

p(X;QH0,H0)

=

1πNK det(QH1

)K exp−Tr(Q−1

H1C)

1πNK det(QH0

)K exp−Tr(Q−1

H0Rxx)

> γ, (10)

where (·) is the MLE of the signal and noise parameters.

Maximum Likelihood Estimators [FP06]

QH1= C

∣∣h=h,fd=fd ,τ=τ

(11)

QH0= C

∣∣h=0 = Rxx (12)

h = rxdR−1dd∣∣QH1

=QH1,fd=fd ,τ=τ

(13)

fd, τ = argminfd ,τ

ln(det(W(fd,τ))), (14)

where W(fd,τ) = Rxx− rxd(fd,τ)R−1dd rxd(fd,τ)H = QH1

∣∣h=h,fd ,τ.

Page 23: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 23/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

GLRT statisticsInserting (11) and (12) in (10), we obtain the test statistic function [Arr12]:

TGL(X) = maxfd ,τ

rH

xd(fd,τ)R−1dd R−1

xx rxd(fd,τ)> γ , (15)

Assuming Rxx ' Rxx, TGL(X) is distributed as:

TGL(X)∼

χ22N(δTGL;H1

), in H1,

χ22N(δTGL;H0

= 0), in H0,(16)

GLRT theoretical performance

Pfa(γ) = exp

−γ

2σ2TGL

N−1

∑k=0

1k!

2σ2TGL

)k, (17)

Pd(γ) = QN

δTGL(Rxx,h)

σTGL

,

√γ

σTGL

, (18)

where σ2TGL

= 12K and QN is the generalized Marcum Q-function of order N. The

detector enjoys a Constant False Alarm Rate (CFAR) condition as Pfa(γ) doesnot depend on X.

Page 24: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 24/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

GLRT performance

The chi-square non-centrality parameter can be expressed as:

δTGL(Rxx,h) = RddhHR−1xx h' hHR−1

xx h. (19)

Uniformly Most Powerful (UMP) conditionA UMP detector has the highest possible Pd for a given Pfa.Karlin-Rubin Theorem: Suppose that T(X) is a sufficient statistics for θ, and thefamily of PDFs associated to T(X) has a Monotone Likelihood Ratio (MLR). Then,the test that rejects H0 if an only if T(X)> γ is a UMP test.We check TGL(X) against the MLR condition as

p(TGL(X);δ2)

p(TGL(X);δ1)=

p(χ22N(δ2))

p(χ22N(δ1))

, (20)

where δ1 = δTGL(Rxx,h1) and δ2 = δTGL(Rxx,h2) are two possible values for thenon-centrality parameter of the chi-square defied in (19). The ratio is monotonenon-decreasing for all δ2 > δ1. The GLRT for GNSS array-based acquisition is aUMP test.

Page 25: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 25/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Simulation results: theoretical PDFs and histograms

RFfront-end

ADC

GNSSAntenna array

H0

H1Array-basedacquisition

T (X )

Figure: Array-based GNSS acquisition concept.

0 100 200 300 400 500 600 700 8000

50

100

150

200

250

TGL(X)

Fre

quen

cy

H0 Histogram.

H1 Histogram.

H0 Theoretical PDF.

H1 Theoretical PDF.

(a) TGL(X)

Figure: Histogram and theoretical PDF in both H1 and H0 acquisition hypotheses for GalileoE1 signal acquisition simulation (CN0=38 dB-Hz, no interferences).

Page 26: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 26/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

GLRT interference rejection capability

Assume M uncorrelated interferences impinging into the array through a channelmatrix Hi = [hi,1, . . . ,hi,M ] ∈ CN×M and an arbitrary basis function matrixDi = [dT

i,1, . . . ,dTi,M ]T ∈ CM×K . Then, the noise term is modeled as:

N = HiDi +Nw, (21)

where Nw ∼ CN (0,σ2I). The inverse covariance matrix can be approximated as:

Q−1 ' σ−2P⊥Hi

, (22)

where P⊥Hi= (I−Hi(HH

i Hi)−1HH

i ) and RDiDi ' I.Assuming ERxx 'Q, then

δTGL(σ2,h,Hi) =

hHP⊥Hih

σ2 =hHhσ2 −

hPHi hH

σ2 , (23)

where PHi = Hi(HHi Hi)

−1HHi . The SNR can be expressed as ρ = hHh

σ2 = N PsPn

.

Page 27: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 27/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

GLRT interference rejection capability

(a) N = 2 (b) N = 3 (c) N = 4

(d) N = 8 (e) N = 12 (f) N = 24

Figure: Evolution of δTGL (ρ,N, h, hi) in the presence of an uncorrelated interference impinginginto the array from Az = 45 and El = 45, with ρ = 1.

Page 28: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 28/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Existing solutions: Acquisition after beamforming

RFfront-end

ADC

GNSSAntenna array

y = w HXX y

TDBF(y) °

H0

H1

w optR xx

h0

Beamformerprocessor

Single antennaacquisition

Figure: Acquisition after beamforming concept.

Minimum Variance Distortionless Response (MVDR) GLRT test function

TMVDR(X) =rH

xd(R−1xx h0)(R−1

xx h0)H rxd

hH0 R−1

xx h0' 1

σ2

|rHxdP⊥Hi

h0|2

‖hH0 P⊥Hi

‖2, (24)

where h0 ∈ CN×1 is the signal DOA steering vector.

Power Minimization Beamformer: signal DOA unavailable

Minimize the output power establishing a reference antenna

h0 = [10 . . . 0]. (25)

Page 29: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 29/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Simulation results: performance in ideal conditions

20 25 30 35 40 450

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CN0 [dB]

Pd

Cla

irvo

yant

GLRT

Col

oredM

VD

R

PW

RM

in.

Single Antenna GLRTGLRT White

TWh(X)TGL(X)TNP (X)TSingle(X)TPWR(X)TMV DR(X)

Figure: Galileo E1 acquisition Pd vs. satellite CN0 in the presence of an in-band widebandinterference for different algorithms (IN0 = 85 dB-Hz, Pfa = 0.001, fs = 6 MSPS, Tacq = 4ms). No pointing error in TMVDR(X).

Page 30: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 30/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Simulation results: performance with pointing error

20 25 30 35 40 450

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CN0 [dB]

Pd

Cla

irvo

yant

MVD

R

GLRT

Col

ored

PW

RM

in.

GLRT WhiteSingle Antenna GLRT

TWh(X)TGL(X)TNP (X)TSingle(X)TPWR(X)TMV DR(X)

Figure: Galileo E1 acquisition Pd vs. satellite CN0 in the presence of an in-band widebandinterference for different algorithms (IN0 = 85 dB-Hz, Pfa = 0.001, fs = 6 MSPS, Tacq = 4ms). 20 DOA pointing error in TMVDR(X). (array uncalibrated in acquisition)

Page 31: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 31/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Realistic conditions

• finite sample size• signal quantization effects• satellite signal synchronization errors

TrackingTracking

AcquisitionAcquisitionAcquisition

S/H

Array-basedAcquisition

Ideal Sample and Hold

Operation

N bits Quantizer

Multichannel coherent RF front-end

LNA

Antenna array IdealAGC

Multichannel ADC

Array-basedTracking

Snapshots Memory buffer

PVT

GNSS Receiver

Act

ive

sate

llite

chan

nels

Figure: GNSS receiver block diagram, as simulated.

Page 32: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 32/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

A Metric to measure the presence of errors in Rxx

Geodesic distance: For any two points inside S = R ∈ CN×N : RH = R,R 0,the geodesic distance is the length of the geodesic curve that connects them:

distg(R1,R2) = ‖M‖F, (26)

where ‖M‖F =√

(∑i | ln(λi)|2) stands for the logarithmic version of the Frobenius

norm, M = ln(R−12

1 R2R−12

1 ), and λi represents the i-th eigenvalue of matrix

R−12

1 R2R−12

1 . The geodesic distance is able to detect differences both in theeigenvectors and in the eigenvalues of Rxx and Rxx.

Page 33: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 33/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Quantization effects in Rxx

1 2 3 4 5 6 70

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Quantization bits

¯dis

t g(R

xx,R

xqxq)Rxx and 85 dB-Hz interference

Rxqxq and 45 dB-Hz. interference

Rxqxq and 55 dB-Hz. interference

Rxqxq and 65 dB-Hz. interference

Rxqxq and 75 dB-Hz. interference

Rxqxq and 85 dB-Hz. interference

Figure: distg(Rxx, Rxqxq ) vs. different quantization bits and an in-band CW interferenceimpinging into the array with different IN0.

Page 34: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 34/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Quantization effects in Rxx

Receiver Operating Characteristic (ROC) curve

0 0.05 0.1 0.15 0.20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm probability (Pfa)

Det

ection

pro

bab

ility

(Pd)

dg = 0

dg = 2

dg = 1

dg = 3

dg = 5

Increase ofdg = distg(Rxx, Rxx)

dg = 4

dg = 6TGL(X) theoretical

Figure: Effect of the distg(Rxx, Rxx) in the acquisition performance of TGL(X), with anin-band CWI impinging into the array with IN0 = 85 dB-Hz.

Page 35: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 35/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Acquisition performance vs. ADC resolution

70 80 90 100 110 120 1300.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Interference I/N0

Pd

GLRT white TWh(Xq)

GLRT colored TGL(Xq)

Single antenna MF TMF (Xq)

11.3 dB 23.4 dB

TGL(Xq)Nb = 2 bits

TGL(Xq)Nb = 4 bits

TGL(Xq)Nb = 8 bits

TMF (Xq)Nb = [2, 8]bits

TWh(Xq)Nb = [2, 8]bits

Figure: Pd in an scenario with satellite CN0 = 44 dB-Hz, and an in-band CW interferenceimpinging into the array with IN0 = 70−136 dB-Hz, for Pfa = 0.001 and Nb = 2−8 bits.

Page 36: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 36/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Front-end bandwidth effect in acquisition IThe pre-correlation SNR is defined as ρacq =

P′sP′n

, where

P′s = Ps

∫ 12

−12

Gs(f )|HFE(f )|2df , (27)

P′n =N0

2BFE

∫ 12

− 12

|HFE(f )|2df , (28)

with• N0 is the antenna noise density and BFE is the front-end pass-band bandwidth• Gs(f ) = 10

11 GBOC(1,1)+111 GBOC(6,1) is the PSD (for Galileo MBOC(6,1,1/11))

• HFE(f ) is the DTFT of the front-end baseband-equivalent impulse responseConsidering now d′ = d∗hFE, using Wiener-Khinchine, we compute Rd′d as:

Rd′d[τ] =∫ 1

2

−12

Gs(f )HFE(f )ej2πf τdf , (29)

and therefore PsRd′d[0] = Ps∫ 0.5−0.5 Gs(f )HFE(f )df . Now considering HFE(f )

response of an ideal band-pass filter, then

PsRd′d[0] = Ps

∫ BFE2fs

− BFE2fs

Gs(f ) = P′s. (30)

Page 37: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 37/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Front-end bandwidth effect in acquisition IIFinally, by inserting P′s and P′n in the non-centrality parameter of the performanceexpressions we can write

δTGL =|µRxd |2

Rxx' P′s

P′n= ρacq, (31)

which implies that the maximization of ρacq maximizes the acquisition performance.

2 4 6 8 10 12x 10

6

−41

−40

−39

−38

−37

−36

−35

−34

−33

−32

Acquisition Baseband Bandwidth [Hz]

Bas

eban

d S

NR

[dB

]

Simulated SNRTheoretical SNR

Best Baseband SNR

C/N0=34 dB−Hz.

(a) SNR vs. BW

0 0.02 0.04 0.06 0.08 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pfa

Pd

2MHz.

2MHz.

3MHz.

3MHz.

4MHz.

4MHz.

6MHz.

6MHz.

8MHz.

8MHz.

10MHz.

10MHz.

13MHz.

13MHz.Bbb

(b) ROC vs. BW

Figure: Theoretical and simulated Galileo E1 MBOC(6,1,1/11) SNR and ROC curves vs. thebaseband BW.

Page 38: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 38/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Front-end bandwidth effect in acquisition III

−1 −0.5 0 0.5 1

−8

−6

−4

−2

0

Delay τ (Code chips)

Nor

mal

ized

|Rd’

d L(τ)|

2 (dB

)

3MHz.4MHz.5MHz.6MHz.7MHz.8MHz.9MHz.10MHz.11MHz.12MHz.2MHz.

Increase of theautocorrelationpeakwidth.

Despreading gainreduction.

Figure: Autocorrelation of Galileo E1 MBOC(6,1,1/11) signal with the local replica versus τ fordifferent baseband bandwidths.

Page 39: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Introduction

Motivation and Objectives

Array-based acquisition theory

Array platform implementation

Conclusions

Page 40: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 40/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Objectives

Exploit the spatial diversity in acquisition

• Improve the existing GNSS acquisition algorithms performance.• Improve the GNSS interference robustness proposing novel array-based

acquisition algorithms using the statistical detection theory framework.

Demonstrate the implementation feasibility

• Design and implementation of an array-based GNSS receiver platform• Proof-of-concept of array-based acquisition algorithms working in real-time

• Interference mitigation.• Performance measurements in realistic scenarios.

• Tightly coupled with GNSS software receivers.

Page 41: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 41/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Generic GNSS array-based receiver platform

RF front-end

LNA

ADCAcquisition

&Beamformer

FPGA

RF front-end

LNA

Local Oscillator

SDR GNSSReceiver

PC

Multichannel phase-coherent front-end FPGA platform

Antenna array

RF

IF

Figure: Simplified system block diagram.

RF BPF

RF

LNA1

Local Oscillator

Single-channel front-end detail

Antenna

array

element

IF BPF IF VGA

IF

ADC

i-th CH

Beamforming

platform

LNA2

Figure: Simplified front-end for each antenna element.

Page 42: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 42/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Front-end requirements overview

Parameter Effect in Acquisition Effect in Tracking↑ Bandwidth (BW) ↓ sensitivity ↑ τ precision

if BW exceeds the main lobe (see RMSE CRB)(SNR loss)

↑ Noise Figure (NF) ↓ sensitivity ↓ τ precision(↓ CN0) (↓ CN0)

↑ ADC active bits (Nb) ↑ sensitivity ↑ sensitivity(No CN0 ↓ if Nb ≥ 4) (No CN0 ↓ if Nb ≥ 4)

↑ Linearity ↑ interference robustness ↑ interference robustness

Page 43: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 43/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Receiver performance bounds

30 35 40 45 50 55 600

0.5

1

1.5

2

2.5

3

3.5

Carrier-to-Noise density Ratio (C/N0) [dB]

RM

Sco

de

trac

kin

ger

ror

[m]

Bbb = 1MHz

Bbb = 2MHz

Bbb = 3MHz

Bbb = 4MHz

Bbb = 6MHz

Bbb = 8MHz

Bbb = 10MHz

Bbb = 12MHz

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Front-end Noise Figure [dB]

RM

Sco

de

trac

kin

ger

ror

[m]

Bbb = 1MHz

Bbb = 2MHz

Bbb = 3MHz

Bbb = 4MHz

Bbb = 6MHz

Bbb = 8MHz

Bbb = 10MHz

Bbb = 12MHz

Figure: GPS L1 C/A code tracking Cramer-Rao Bound (CRB) minimum RMSE vs. front-endNF, BW, and signal CN0 [Wei94].

ADC resolution CN0 degradation fs ≥ 2Bs CN0 degradation fs = 2Bp1 bit 1.96 dB 3.5 dB2 bits 0.55 dB 1.2 dB3 bits 0.16 dB 0.6 dB4 bits or more ≤ 0.16 ≤ 0.6 dB

Table: GPS L1 C/A CN0 degradation vs. ADC resolution assuming Gaussian noise [Par96].

Page 44: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 44/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Front-end specifications

• Bandwidth, fs, and Noise Figure (NF): set by the desired GNSS performance.• Gain: the thermal noise excites the ADC, thus:

GFE ≥ PADC−Pn,

GFE ≥ 10log

((VLSB2Nbits−1)2

ZADC

)kTaBp

, (32)

where VLSB is the Least Significant Bit voltage (RMS), Nbits is the number ofactive bits and Pn = kTaBp is the noise power where k = 1.3806×10−23 J/Kand Ta is the antenna sky temperature, and Bp is the passband bandwidth.

• Linearity Parameters: Compression Point (CP) and Third Order InterceptionPoint (IP3) are set by the maximum admissible input power

Pint max = PFSR−GFE. (33)

where PFSR is the ADC full-scale input power. The front-end should behavelinear for an input signal power Pin ≤ Pint max.

ADC Particular case: VFSR = 2 Vpp, ZADC = 50 Ω, PFSR = 19.1 dBm, and Nb = 12.FE Specifications: Nb ≥ 4, PADC ≥−35 dBm, Pn =−107.8 dBm, GFE ≥ 72.8 dBPint max = PFSR−GFE =−53.7 dBm, PCP ≥ Pint max and PIP3 ≥ (Pint max +9.6).

Page 45: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 45/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Proposed front-end channel architecture and specifications

RF BPF

LNA1

Local Oscillator

Antenna array element

IF BPF IF VGA

ADCi-th CH

LNA2LNA

MIXER

antG 1LNAG 2LNAGRFBPFL VGAG

cable

MIXG

IFBPFLcableL

1LNAF 2LNAF VGAFantF

MIXF, 1CP LNAP , 2CP LNAP ,CP MIXP ,CP VGAP FSRP

,p IFB

,s IFB,p RFB

,s RFB

,CP antP

By applying the Friis formula we obtain the overall NF as:

FFE = Fant +Lcable−1

Gant+

FLNA1−1Gant

Lcable

+LRF BPF−1

GantGLNA1Lcable

+FLNA2−1GantGLNA1

LcableLRF BPF

+

+FMIX−1

GantGLNA1GLNA2LcableLRF BPF

+LIF BPF−1

GantGLNA1GLNA2GMIXLcableLRF BPF

+FVGA−1

GantGLNA1GLNA2GMIXLcableLRF BPFLIF BPF

, (34)

and

Component Compression point Computed min. valueAntenna LNA PCP,ant ≥ PCP,LNA1−Gant +Lcable −55.9 dBm

LNA1 PCP,LNA1 ≥ PCP,LNA2−GLNA1 +LRF BPF −44.9 dBmLNA2 PCP,LNA2 ≥ PCP,MIX−GLNA2 −25.9 dBmMixer PCP,MIX ≥ PCP,VGA−GMIX +LIF BPF −10.9 dBmVGA PCP,VGA ≥ PFSR−GVGA −15.9 dBm

Page 46: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 46/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Antenna array elements

Figure: Garmin GA27c active antenna.

−8.9

−7.8

−6.7

−5.6

−4.5

−3.4

−2.3

−1.2

−0.1

1 dB

0o

30o

60o

90o

60o

30o

0o

PATCH 1PATCH 2PATCH 3PATCH 4PATCH 5

Figure: Antenna array prototype and differences between radiation patterns of some antennaelements in elevation.

Page 47: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 47/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Local Oscillator distribution network

Figure: Eight ports Wilkinson PCB layout and prototype.

1.4

1

1.4

2

1.4

3

1.4

4

1.4

5

1.4

6

1.4

7

1.4

8

1.4

9

1.5

0

1.5

1

1.5

2

1.5

3

1.5

4

1.5

5

1.5

6

1.5

7

1.5

8

1.5

9

1.6

0

1.6

1

1.6

2

1.6

3

1.6

4

1.6

5

1.6

6

1.6

7

1.6

8

1.6

9

1.4

0

1.7

0

-8

-6

-4

-2

-10

0

f req, GHz

unw

rap(p

hase(S

(2,1

)))-

unw

rap(p

hase(S

(2,1

)))

unw

rap(p

hase(S

(4,3

)))-

unw

rap(p

hase(S

(2,1

)))

unw

rap(p

hase(S

(6,5

)))-

unw

rap(p

hase(S

(2,1

)))

unw

rap(p

hase(S

(8,7

)))-

unw

rap(p

hase(S

(2,1

)))

unw

rap(p

hase(S

(10,9

)))-

unw

rap(p

hase(S

(2,1

)))

unw

rap(p

hase(S

(12,1

1))

)-unw

rap(p

hase(S

(2,1

)))

unw

rap(p

hase(S

(14,1

3))

)-unw

rap(p

hase(S

(2,1

)))

unw

rap(p

hase(S

(16,1

5))

)-unw

rap(p

hase(S

(2,1

)))

Figure: Measured output signal phase differences [].

Page 48: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 48/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Multichannel PCB implementation

PAC101PAC102COC1

PAC201 PAC202COC2

PAC301PAC302COC3

PAC401

PAC402COC4

PAC502

PAC501COC5

PAC60CH102

PAC60CH101

COC60CH1

PAC60CH202PAC60CH201

COC60CH2

PAC60CH302

PAC60CH301

COC60CH3

PAC60CH402

PAC60CH401

COC60CH4

PAC60CH502

PAC60CH501

COC60CH5PAC60CH602

PAC60CH601

COC60CH6

PAC60CH702

PAC60CH701

COC60CH7

PAC60CH802

PAC60CH801

COC60CH8

PAC70CH101PAC70CH102

COC70CH1PAC70CH201

PAC70CH202

COC70CH2

PAC70CH301PAC70CH302

COC70CH3

PAC70CH401PAC70CH402

COC70CH4

PAC70CH501PAC70CH502

COC70CH5

PAC70CH601

PAC70CH602

COC70CH6PAC70CH701PAC70CH702

COC70CH7

PAC70CH801PAC70CH802

COC70CH8

PAC80CH101

PAC80CH102

COC80CH1

PAC80CH201

PAC80CH202

COC80CH2PAC80CH301

PAC80CH302

COC80CH3

PAC80CH401

PAC80CH402

COC80CH4

PAC80CH501

PAC80CH502

COC80CH5

PAC80CH601

PAC80CH602

COC80CH6

PAC80CH701

PAC80CH702

COC80CH7

PAC80CH801

PAC80CH802

COC80CH8

PAC90CH102PAC90CH101COC90CH1 PAC90CH202

PAC90CH201 COC90CH2 PAC90CH302

PAC90CH301 COC90CH3PAC90CH402

PAC90CH401COC90CH4 PAC90CH502

PAC90CH501 COC90CH5PAC90CH602

PAC90CH601COC90CH6 PAC90CH702

PAC90CH701COC90CH7 PAC90CH802

PAC90CH801 COC90CH8

PAC100CH102

PAC100CH101 COC100CH1PAC100CH202

PAC100CH201COC100CH2

PAC100CH302

PAC100CH301 COC100CH3PAC100CH402

PAC100CH401

COC100CH4 PAC100CH502

PAC100CH501 COC100CH5PAC100CH602

PAC100CH601

COC100CH6 PAC100CH702PAC100CH701 COC100CH7

PAC100CH802PAC100CH801 COC100CH8

PAC110CH102

PAC110CH101

COC110CH1PAC110CH202

PAC110CH201

COC110CH2PAC110CH302

PAC110CH301

COC110CH3PAC110CH402

PAC110CH401

COC110CH4PAC110CH502

PAC110CH501

COC110CH5PAC110CH602

PAC110CH601

COC110CH6PAC110CH702

PAC110CH701

COC110CH7PAC110CH802PAC110CH801COC110CH8

PAC120CH102

PAC120CH101COC120CH1PAC120CH202

PAC120CH201

COC120CH2PAC120CH302

PAC120CH301

COC120CH3PAC120CH402

PAC120CH401

COC120CH4PAC120CH502

PAC120CH501

COC120CH5PAC120CH602

PAC120CH601

COC120CH6PAC120CH702

PAC120CH701

COC120CH7PAC120CH802PAC120CH801

COC120CH8

PAC130CH101PAC130CH102

COC130CH1

PAC130CH201

PAC130CH202

COC130CH2

PAC130CH301

PAC130CH302

COC130CH3PAC130CH401

PAC130CH402

COC130CH4

PAC130CH501

PAC130CH502

COC130CH5PAC130CH601

PAC130CH602

COC130CH6

PAC130CH701

PAC130CH702

COC130CH7

PAC130CH801

PAC130CH802

COC130CH8

PAC140CH102 PAC140CH101COC140CH1 PAC140CH202 PAC140CH201 COC140CH2

PAC140CH302 PAC140CH301 COC140CH3 PAC140CH402 PAC140CH401 COC140CH4PAC140CH502 PAC140CH501COC140CH5 PAC140CH602 PAC140CH601 COC140CH6 PAC140CH702 PAC140CH701 COC140CH7

PAC140CH802 PAC140CH801 COC140CH8PAC150CH102 PAC150CH101 COC150CH1 PAC150CH202 PAC150CH201 COC150CH2

PAC150CH302 PAC150CH301 COC150CH3 PAC150CH402 PAC150CH401 COC150CH4 PAC150CH502 PAC150CH501 COC150CH5 PAC150CH602 PAC150CH601

COC150CH6PAC150CH702 PAC150CH701

COC150CH7

PAC150CH802 PAC150CH801COC150CH8

PAC160CH102 PAC160CH101

COC160CH1PAC160CH202 PAC160CH201

COC160CH2

PAC160CH302 PAC160CH301

COC160CH3

PAC160CH402 PAC160CH401

COC160CH4

PAC160CH502 PAC160CH501

COC160CH5PAC160CH602 PAC160CH601

COC160CH6

PAC160CH702 PAC160CH701

COC160CH7PAC160CH802 PAC160CH801

COC160CH8

PAC170CH102PAC170CH101COC170CH1

PAC170CH202PAC170CH201 COC170CH2

PAC170CH302PAC170CH301 COC170CH3

PAC170CH402

PAC170CH401 COC170CH4 PAC170CH502PAC170CH501COC170CH5

PAC170CH602

PAC170CH601 COC170CH6PAC170CH702

PAC170CH701 COC170CH7PAC170CH802

PAC170CH801COC170CH8

PAC180CH102

PAC180CH101COC180CH1 PAC180CH202

PAC180CH201COC180CH2PAC180CH302

PAC180CH301COC180CH3 PAC180CH402

PAC180CH401

COC180CH4 PAC180CH502

PAC180CH501COC180CH5 PAC180CH602

PAC180CH601COC180CH6PAC180CH702

PAC180CH701

COC180CH7PAC180CH802

PAC180CH801COC180CH8

PAC190CH102PAC190CH101

COC190CH1 PAC190CH202PAC190CH201

COC190CH2 PAC190CH302PAC190CH301COC190CH3 PAC190CH402

PAC190CH401

COC190CH4PAC190CH502

PAC190CH501

COC190CH5PAC190CH602

PAC190CH601 COC190CH6PAC190CH702PAC190CH701 COC190CH7

PAC190CH802

PAC190CH801

COC190CH8PAC200CH102PAC200CH101

COC200CH1PAC200CH202PAC200CH201

COC200CH2PAC200CH302PAC200CH301

COC200CH3PAC200CH402

PAC200CH401

COC200CH4PAC200CH502

PAC200CH501COC200CH5PAC200CH602

PAC200CH601COC200CH6PAC200CH702PAC200CH701COC200CH7

PAC200CH802

PAC200CH801

COC200CH8

PAC210CH102 PAC210CH101

COC210CH1PAC210CH202 PAC210CH201COC210CH2

PAC210CH302 PAC210CH301 COC210CH3 PAC210CH402 PAC210CH401 COC210CH4 PAC210CH502 PAC210CH501 COC210CH5 PAC210CH602 PAC210CH601 COC210CH6 PAC210CH702 PAC210CH701 COC210CH7PAC210CH802 PAC210CH801

COC210CH8

PAC220CH102

PAC220CH101

COC220CH1

PAC220CH202PAC220CH201

COC220CH2PAC220CH302

PAC220CH301

COC220CH3

PAC220CH402

PAC220CH401

COC220CH4PAC220CH502

PAC220CH501

COC220CH5

PAC220CH602

PAC220CH601

COC220CH6

PAC220CH702PAC220CH701

COC220CH7PAC220CH802

PAC220CH801COC220CH8

PAC230CH102 PAC230CH101

COC230CH1PAC230CH202 PAC230CH201 COC230CH2 PAC230CH302 PAC230CH301 COC230CH3 PAC230CH402 PAC230CH401 COC230CH4 PAC230CH502 PAC230CH501 COC230CH5 PAC230CH602 PAC230CH601

COC230CH6PAC230CH702 PAC230CH701 COC230CH7 PAC230CH802 PAC230CH801

COC230CH8

PAC240CH102 PAC240CH101COC240CH1

PAC240CH202 PAC240CH201COC240CH2

PAC240CH302 PAC240CH301 COC240CH3 PAC240CH402 PAC240CH401 COC240CH4 PAC240CH502 PAC240CH501COC240CH5 PAC240CH602 PAC240CH601 COC240CH6 PAC240CH702 PAC240CH701 COC240CH7 PAC240CH802 PAC240CH801

COC240CH8

PAC250CH102

PAC250CH101 COC250CH1PAC250CH202

PAC250CH201COC250CH2 PAC250CH302

PAC250CH301 COC250CH3PAC250CH402PAC250CH401

COC250CH4

PAC250CH502PAC250CH501

COC250CH5

PAC250CH602PAC250CH601COC250CH6

PAC250CH702PAC250CH701 COC250CH7 PAC250CH802

PAC250CH801 COC250CH8PAC260CH102

PAC260CH101

COC260CH1

PAC260CH202

PAC260CH201

COC260CH2

PAC260CH302PAC260CH301

COC260CH3

PAC260CH402PAC260CH401COC260CH4 PAC260CH502

PAC260CH501

COC260CH5

PAC260CH602PAC260CH601

COC260CH6

PAC260CH702PAC260CH701

COC260CH7

PAC260CH802

PAC260CH801COC260CH8

PAC270CH102

PAC270CH101

COC270CH1

PAC270CH202PAC270CH201

COC270CH2

PAC270CH302

PAC270CH301

COC270CH3

PAC270CH402PAC270CH401

COC270CH4

PAC270CH502

PAC270CH501

COC270CH5

PAC270CH602PAC270CH601

COC270CH6

PAC270CH702PAC270CH701

COC270CH7

PAC270CH802PAC270CH801

COC270CH8

PAJ101 PAJ102

PAJ103 PAJ104

PAJ105 PAJ106

PAJ107 PAJ108

COJ1

PAJ20CH101

PAJ20CH102COJ20CH1 PAJ20CH201

PAJ20CH202

COJ20CH2

PAJ20CH301

PAJ20CH302

COJ20CH3

PAJ20CH401

PAJ20CH402

COJ20CH4

PAJ20CH501

PAJ20CH502

COJ20CH5

PAJ20CH601

PAJ20CH602

COJ20CH6

PAJ20CH701

PAJ20CH702

COJ20CH7

PAJ20CH801

PAJ20CH802

COJ20CH8

PAL10CH102 PAL10CH101 COL10CH1 PAL10CH202PAL10CH201 COL10CH2 PAL10CH302PAL10CH301 COL10CH3 PAL10CH402 PAL10CH401 COL10CH4 PAL10CH502PAL10CH501 COL10CH5 PAL10CH602 PAL10CH601 COL10CH6 PAL10CH702 PAL10CH701 COL10CH7 PAL10CH802 PAL10CH801COL10CH8

PAL20CH102

PAL20CH101

COL20CH1 PAL20CH202PAL20CH201 COL20CH2 PAL20CH302

PAL20CH301 COL20CH3PAL20CH402

PAL20CH401 COL20CH4 PAL20CH502

PAL20CH501 COL20CH5 PAL20CH602PAL20CH601 COL20CH6 PAL20CH702

PAL20CH701 COL20CH7 PAL20CH802

PAL20CH801COL20CH8

PAL30CH102PAL30CH101COL30CH1 PAL30CH202PAL30CH201COL30CH2 PAL30CH302PAL30CH301COL30CH3

PAL30CH402PAL30CH401COL30CH4 PAL30CH502PAL30CH501COL30CH5 PAL30CH602PAL30CH601COL30CH6 PAL30CH702PAL30CH701COL30CH7PAL30CH802PAL30CH801

COL30CH8

PAL40CH102PAL40CH101 COL40CH1

PAL40CH202

PAL40CH201 COL40CH2 PAL40CH302

PAL40CH301 COL40CH3 PAL40CH402PAL40CH401 COL40CH4

PAL40CH502PAL40CH501 COL40CH5

PAL40CH602PAL40CH601 COL40CH6

PAL40CH702PAL40CH701 COL40CH7 PAL40CH802

PAL40CH801 COL40CH8

PAL50CH102

PAL50CH101

COL50CH1 PAL50CH202

PAL50CH201COL50CH2

PAL50CH302PAL50CH301 COL50CH3 PAL50CH402

PAL50CH401COL50CH4 PAL50CH502

PAL50CH501 COL50CH5PAL50CH602PAL50CH601 COL50CH6 PAL50CH702

PAL50CH701 COL50CH7PAL50CH802

PAL50CH801 COL50CH8

PAL60CH102

PAL60CH101

COL60CH1 PAL60CH202

PAL60CH201COL60CH2 PAL60CH302

PAL60CH301COL60CH3 PAL60CH402PAL60CH401

COL60CH4PAL60CH502PAL60CH501COL60CH5

PAL60CH602

PAL60CH601COL60CH6PAL60CH702

PAL60CH701COL60CH7 PAL60CH802

PAL60CH801 COL60CH8PAL70CH102PAL70CH101COL70CH1 PAL70CH202PAL70CH201COL70CH2 PAL70CH302PAL70CH301COL70CH3

PAL70CH402PAL70CH401COL70CH4PAL70CH502PAL70CH501COL70CH5 PAL70CH602PAL70CH601COL70CH6 PAL70CH702PAL70CH701COL70CH7

PAL70CH802PAL70CH801COL70CH8

PAP101 PAP102 COP1 PAP201PAP202 COP2

PAP301 PAP302COP3

PAP401PAP402 COP4

PAP501 PAP502COP5

PAP602PAP601

COP6

PAP701PAP702

COP7

PAP801PAP802 COP8

PAP901 PAP902COP9

PAP1001PAP1002 COP10

PAP1101 PAP1102COP11

PAP1201PAP1202

COP12 PAP1301PAP1302

COP13

PAP1401PAP1402 COP14

PAP1501 PAP1502COP15

PAP1601PAP1602 COP16

PAP1701 PAP1702COP17

PAP1801PAP1802

COP18 PAP1901PAP1902

COP19

PAP2001PAP2002 COP20

PAP2101 PAP2102COP21

PAP2201PAP2202 COP22

PAP2301 PAP2302COP23

PAP2401PAP2402

COP24 PAP2501PAP2502

COP25

PAR101 PAR102 COR1PAR201 PAR202 COR2PAR301 PAR302 COR3PAR401 PAR402 COR4

PASAW10CH1013

PASAW10CH1012 PASAW10CH1011

PASAW10CH106PASAW10CH105

PASAW10CH1010

PASAW10CH109

PASAW10CH107

PASAW10CH108PASAW10CH103

PASAW10CH104

PASAW10CH102

PASAW10CH101

COSAW10CH1

PASAW10CH2013

PASAW10CH2012 PASAW10CH2011

PASAW10CH206PASAW10CH205

PASAW10CH2010

PASAW10CH209

PASAW10CH207

PASAW10CH208PASAW10CH203

PASAW10CH204

PASAW10CH202

PASAW10CH201

COSAW10CH2

PASAW10CH3013

PASAW10CH3012 PASAW10CH3011

PASAW10CH306PASAW10CH305

PASAW10CH3010

PASAW10CH309

PASAW10CH307

PASAW10CH308PASAW10CH303

PASAW10CH304

PASAW10CH302

PASAW10CH301

COSAW10CH3

PASAW10CH4013

PASAW10CH4012 PASAW10CH4011

PASAW10CH406PASAW10CH405

PASAW10CH4010

PASAW10CH409

PASAW10CH407

PASAW10CH408PASAW10CH403

PASAW10CH404

PASAW10CH402

PASAW10CH401

COSAW10CH4

PASAW10CH5013

PASAW10CH5012 PASAW10CH5011

PASAW10CH506PASAW10CH505

PASAW10CH5010

PASAW10CH509

PASAW10CH507

PASAW10CH508PASAW10CH503

PASAW10CH504

PASAW10CH502

PASAW10CH501

COSAW10CH5

PASAW10CH6013

PASAW10CH6012 PASAW10CH6011

PASAW10CH606PASAW10CH605

PASAW10CH6010

PASAW10CH609

PASAW10CH607

PASAW10CH608PASAW10CH603

PASAW10CH604

PASAW10CH602

PASAW10CH601

COSAW10CH6

PASAW10CH7013

PASAW10CH7012 PASAW10CH7011

PASAW10CH706PASAW10CH705

PASAW10CH7010

PASAW10CH709

PASAW10CH707

PASAW10CH708PASAW10CH703

PASAW10CH704

PASAW10CH702

PASAW10CH701

COSAW10CH7

PASAW10CH8013

PASAW10CH8012 PASAW10CH8011

PASAW10CH806PASAW10CH805

PASAW10CH8010

PASAW10CH809

PASAW10CH807

PASAW10CH808PASAW10CH803

PASAW10CH804

PASAW10CH802

PASAW10CH801

COSAW10CH8

PAT10CH101

PAT10CH106

PAT10CH102PAT10CH103

PAT10CH104COT10CH1

PAT10CH201

PAT10CH206

PAT10CH202PAT10CH203

PAT10CH204COT10CH2

PAT10CH301

PAT10CH306

PAT10CH302PAT10CH303

PAT10CH304COT10CH3

PAT10CH401

PAT10CH406

PAT10CH402PAT10CH403

PAT10CH404 COT10CH4

PAT10CH501

PAT10CH506

PAT10CH502PAT10CH503

PAT10CH504 COT10CH5PAT10CH601

PAT10CH606

PAT10CH602PAT10CH603

PAT10CH604COT10CH6

PAT10CH701

PAT10CH706

PAT10CH702PAT10CH703

PAT10CH704COT10CH7

PAT10CH801

PAT10CH806

PAT10CH802PAT10CH803

PAT10CH804COT10CH8

PAT20CH101

PAT20CH106

PAT20CH102 PAT20CH103

PAT20CH104COT20CH1 PAT20CH201

PAT20CH206

PAT20CH202 PAT20CH203

PAT20CH204COT20CH2 PAT20CH301

PAT20CH306

PAT20CH302 PAT20CH303

PAT20CH304COT20CH3

PAT20CH401

PAT20CH406

PAT20CH402 PAT20CH403

PAT20CH404COT20CH4

PAT20CH501

PAT20CH506

PAT20CH502 PAT20CH503

PAT20CH504COT20CH5

PAT20CH601

PAT20CH606

PAT20CH602 PAT20CH603

PAT20CH604COT20CH6

PAT20CH701

PAT20CH706

PAT20CH702 PAT20CH703

PAT20CH704COT20CH7

PAT20CH801

PAT20CH806

PAT20CH802 PAT20CH803

PAT20CH804COT20CH8

PAU103 PAU101PAU102

COU1

PAU205

PAU204PAU203PAU202

PAU201COU2 PAU30CH102

PAU30CH101PAU30CH103

PAU30CH104COU30CH1PAU30CH202

PAU30CH201PAU30CH203

PAU30CH204 COU30CH2PAU30CH302

PAU30CH301PAU30CH303

PAU30CH304 COU30CH3PAU30CH402

PAU30CH401PAU30CH403

PAU30CH404 COU30CH4PAU30CH502

PAU30CH501PAU30CH503

PAU30CH504 COU30CH5PAU30CH602

PAU30CH601PAU30CH603

PAU30CH604 COU30CH6PAU30CH702

PAU30CH701PAU30CH703

PAU30CH704 COU30CH7PAU30CH802

PAU30CH801PAU30CH803

PAU30CH804 COU30CH8

PAU40CH104 PAU40CH101

PAU40CH102PAU40CH103

COU40CH1PAU40CH204 PAU40CH201

PAU40CH202PAU40CH203

COU40CH2PAU40CH304 PAU40CH301

PAU40CH302PAU40CH303COU40CH3

PAU40CH404 PAU40CH401

PAU40CH402PAU40CH403COU40CH4 PAU40CH504 PAU40CH501

PAU40CH502PAU40CH503COU40CH5

PAU40CH604 PAU40CH601

PAU40CH602PAU40CH603COU40CH6 PAU40CH704 PAU40CH701

PAU40CH702PAU40CH703COU40CH7

PAU40CH804 PAU40CH801

PAU40CH802PAU40CH803COU40CH8

PAU50CH104PAU50CH105 PAU50CH106PAU50CH101PAU50CH103PAU50CH102 COU50CH1 PAU50CH204PAU50CH205 PAU50CH206

PAU50CH201PAU50CH203PAU50CH202 COU50CH2 PAU50CH304PAU50CH305PAU50CH306

PAU50CH301PAU50CH303PAU50CH302 COU50CH3 PAU50CH404PAU50CH405PAU50CH406

PAU50CH401PAU50CH403PAU50CH402 COU50CH4 PAU50CH504PAU50CH505PAU50CH506

PAU50CH501PAU50CH503PAU50CH502 COU50CH5 PAU50CH604PAU50CH605 PAU50CH606PAU50CH601PAU50CH603PAU50CH602 COU50CH6 PAU50CH704PAU50CH705 PAU50CH706

PAU50CH701PAU50CH703PAU50CH702 COU50CH7 PAU50CH804 PAU50CH805PAU50CH806PAU50CH801PAU50CH803 PAU50CH802 COU50CH8

PAU60CH106PAU60CH105PAU60CH104PAU60CH103 PAU60CH102PAU60CH101

COU60CH1 PAU60CH206PAU60CH205PAU60CH204

PAU60CH203 PAU60CH202 PAU60CH201COU60CH2PAU60CH306PAU60CH305PAU60CH304

PAU60CH303 PAU60CH302 PAU60CH301

COU60CH3 PAU60CH406PAU60CH405PAU60CH404

PAU60CH403 PAU60CH402 PAU60CH401

COU60CH4PAU60CH506PAU60CH505PAU60CH504

PAU60CH503PAU60CH502 PAU60CH501

COU60CH5

PAU60CH606PAU60CH605PAU60CH604

PAU60CH603 PAU60CH602 PAU60CH601

COU60CH6PAU60CH706PAU60CH705PAU60CH704

PAU60CH703 PAU60CH702 PAU60CH701

COU60CH7PAU60CH806PAU60CH805PAU60CH804

PAU60CH803 PAU60CH802 PAU60CH801

COU60CH8

PAU70CH101PAU70CH102PAU70CH103

PAU70CH104

PAU70CH105PAU70CH106PAU70CH107PAU70CH108

PAU70CH1016PAU70CH1015PAU70CH1014

PAU70CH1013

PAU70CH1012PAU70CH1011PAU70CH1010PAU70CH109

COU70CH1

PAU70CH201PAU70CH202PAU70CH203PAU70CH204

PAU70CH205

PAU70CH206PAU70CH207PAU70CH208

PAU70CH2016PAU70CH2015PAU70CH2014PAU70CH2013

PAU70CH2012

PAU70CH2011PAU70CH2010PAU70CH209

COU70CH2

PAU70CH301PAU70CH302PAU70CH303

PAU70CH304PAU70CH305PAU70CH306PAU70CH307PAU70CH308

PAU70CH3016PAU70CH3015PAU70CH3014

PAU70CH3013PAU70CH3012PAU70CH3011PAU70CH3010PAU70CH309

COU70CH3

PAU70CH401PAU70CH402

PAU70CH403PAU70CH404PAU70CH405PAU70CH406PAU70CH407PAU70CH408

PAU70CH4016PAU70CH4015

PAU70CH4014PAU70CH4013PAU70CH4012PAU70CH4011PAU70CH4010PAU70CH409

COU70CH4

PAU70CH501PAU70CH502

PAU70CH503PAU70CH504PAU70CH505PAU70CH506PAU70CH507PAU70CH508

PAU70CH5016PAU70CH5015

PAU70CH5014PAU70CH5013PAU70CH5012PAU70CH5011PAU70CH5010PAU70CH509

COU70CH5

PAU70CH601PAU70CH602

PAU70CH603PAU70CH604PAU70CH605PAU70CH606PAU70CH607PAU70CH608

PAU70CH6016PAU70CH6015

PAU70CH6014PAU70CH6013PAU70CH6012PAU70CH6011PAU70CH6010PAU70CH609

COU70CH6

PAU70CH701PAU70CH702

PAU70CH703PAU70CH704PAU70CH705PAU70CH706PAU70CH707PAU70CH708

PAU70CH7016PAU70CH7015

PAU70CH7014PAU70CH7013PAU70CH7012PAU70CH7011PAU70CH7010PAU70CH709

COU70CH7

PAU70CH801PAU70CH802

PAU70CH803PAU70CH804PAU70CH805PAU70CH806PAU70CH807PAU70CH808

PAU70CH8016PAU70CH8015

PAU70CH8014PAU70CH8013PAU70CH8012PAU70CH8011PAU70CH8010PAU70CH809

COU70CH8

PAJ102 PAR101

PAU70CH103 PAU70CH203PAU70CH303 PAU70CH403 PAU70CH503 PAU70CH603 PAU70CH703 PAU70CH803PAJ104 PAR201 PAU70CH104

PAU70CH204

PAU70CH304 PAU70CH404 PAU70CH504 PAU70CH604 PAU70CH704 PAU70CH804

PAJ106 PAR301

PAU70CH105 PAU70CH205

PAU70CH305 PAU70CH405 PAU70CH505 PAU70CH605 PAU70CH705 PAU70CH805

PAJ108 PAR401

PAU70CH106 PAU70CH206 PAU70CH306 PAU70CH406 PAU70CH506 PAU70CH606 PAU70CH706 PAU70CH806

PAC101

PAC201

PAC301

PAC401

PAC501

PAC60CH101PAC60CH201 PAC60CH301 PAC60CH401 PAC60CH501 PAC60CH601 PAC60CH701 PAC60CH801

PAC70CH101PAC70CH201 PAC70CH301 PAC70CH401 PAC70CH501 PAC70CH601 PAC70CH701 PAC70CH801

PAC80CH101 PAC80CH201 PAC80CH301 PAC80CH401 PAC80CH501 PAC80CH601 PAC80CH701 PAC80CH801

PAC120CH101 PAC120CH201 PAC120CH301 PAC120CH401 PAC120CH501 PAC120CH601 PAC120CH701PAC120CH801

PAC130CH101 PAC130CH201 PAC130CH301 PAC130CH401 PAC130CH501 PAC130CH601 PAC130CH701PAC130CH801

PAC140CH101PAC140CH201

PAC140CH301 PAC140CH401PAC140CH501 PAC140CH601 PAC140CH701

PAC140CH801PAC150CH101 PAC150CH201 PAC150CH301 PAC150CH401 PAC150CH501 PAC150CH601 PAC150CH701

PAC150CH801

PAC210CH101 PAC210CH201 PAC210CH301PAC210CH401 PAC210CH501 PAC210CH601 PAC210CH701

PAC210CH801

PAC220CH101PAC220CH201

PAC220CH301 PAC220CH401 PAC220CH501 PAC220CH601PAC220CH701

PAC220CH801

PAC230CH101 PAC230CH201 PAC230CH301 PAC230CH401 PAC230CH501PAC230CH601 PAC230CH701 PAC230CH801

PAC240CH101 PAC240CH201 PAC240CH301 PAC240CH401 PAC240CH501PAC240CH601 PAC240CH701 PAC240CH801

PAC270CH102 PAC270CH202 PAC270CH302 PAC270CH402 PAC270CH502 PAC270CH602 PAC270CH702 PAC270CH802

PAJ101

PAJ103

PAJ105

PAJ107

PAL70CH101PAL70CH201 PAL70CH301

PAL70CH401

PAL70CH501 PAL70CH601 PAL70CH701PAL70CH801

PAP101 PAP202

PAP302

PAP402

PAP502

PAP602

PAP702

PAP802

PAP902

PAP1002

PAP1102

PAP1202 PAP1302

PAP1402

PAP1502

PAP1602

PAP1702

PAP1802 PAP1902

PAP2002

PAP2102

PAP2202

PAP2302

PAP2402 PAP2502

PASAW10CH101

PASAW10CH102

PASAW10CH103

PASAW10CH104

PASAW10CH106

PASAW10CH107

PASAW10CH108

PASAW10CH109

PASAW10CH1010

PASAW10CH1012

PASAW10CH1013PASAW10CH201

PASAW10CH202

PASAW10CH203

PASAW10CH204

PASAW10CH206

PASAW10CH207

PASAW10CH208

PASAW10CH209

PASAW10CH2010

PASAW10CH2012

PASAW10CH2013PASAW10CH301

PASAW10CH302

PASAW10CH303

PASAW10CH304

PASAW10CH306

PASAW10CH307

PASAW10CH308

PASAW10CH309

PASAW10CH3010

PASAW10CH3012

PASAW10CH3013PASAW10CH401

PASAW10CH402

PASAW10CH403

PASAW10CH404

PASAW10CH406

PASAW10CH407

PASAW10CH408

PASAW10CH409

PASAW10CH4010

PASAW10CH4012

PASAW10CH4013PASAW10CH501

PASAW10CH502

PASAW10CH503

PASAW10CH504

PASAW10CH506

PASAW10CH507

PASAW10CH508

PASAW10CH509

PASAW10CH5010

PASAW10CH5012

PASAW10CH5013PASAW10CH601

PASAW10CH602

PASAW10CH603

PASAW10CH604

PASAW10CH606

PASAW10CH607

PASAW10CH608

PASAW10CH609

PASAW10CH6010

PASAW10CH6012

PASAW10CH6013PASAW10CH701

PASAW10CH702

PASAW10CH703

PASAW10CH704

PASAW10CH706

PASAW10CH707

PASAW10CH708

PASAW10CH709

PASAW10CH7010

PASAW10CH7012

PASAW10CH7013PASAW10CH801

PASAW10CH802

PASAW10CH803

PASAW10CH804

PASAW10CH806

PASAW10CH807

PASAW10CH808

PASAW10CH809

PASAW10CH8010

PASAW10CH8012

PASAW10CH8013

PAT10CH102

PAT10CH104

PAT10CH202

PAT10CH204

PAT10CH302

PAT10CH304

PAT10CH402

PAT10CH404

PAT10CH502

PAT10CH504

PAT10CH602

PAT10CH604PAT10CH702

PAT10CH704

PAT10CH802

PAT10CH804

PAT20CH102

PAT20CH106PAT20CH202

PAT20CH206

PAT20CH302

PAT20CH306

PAT20CH402

PAT20CH406

PAT20CH502

PAT20CH506

PAT20CH602

PAT20CH606

PAT20CH702

PAT20CH706

PAT20CH802

PAT20CH806

PAU102

PAU202 PAU30CH102

PAU30CH104PAU30CH202

PAU30CH204PAU30CH302

PAU30CH304PAU30CH402

PAU30CH404PAU30CH502

PAU30CH504PAU30CH602

PAU30CH604PAU30CH702

PAU30CH704PAU30CH802

PAU30CH804

PAU40CH102PAU40CH202 PAU40CH302

PAU40CH402 PAU40CH502 PAU40CH602 PAU40CH702PAU40CH802

PAU50CH101PAU50CH102PAU50CH201PAU50CH202 PAU50CH301PAU50CH302 PAU50CH401PAU50CH402 PAU50CH501PAU50CH502 PAU50CH601PAU50CH602 PAU50CH701PAU50CH702

PAU50CH801PAU50CH802

PAU60CH102 PAU60CH202 PAU60CH302PAU60CH402 PAU60CH502 PAU60CH602 PAU60CH702 PAU60CH802

PAU70CH102

PAU70CH1012

PAU70CH1015 PAU70CH202

PAU70CH2012

PAU70CH2015 PAU70CH302

PAU70CH3012

PAU70CH3015 PAU70CH402

PAU70CH4012

PAU70CH4015 PAU70CH502

PAU70CH5012

PAU70CH5015 PAU70CH602

PAU70CH6012

PAU70CH6015 PAU70CH702

PAU70CH7012

PAU70CH7015 PAU70CH802

PAU70CH8012

PAU70CH8015

PAL50CH102

PAT10CH106

PAL50CH202

PAT10CH206

PAL50CH302

PAT10CH306

PAL50CH402

PAT10CH406

PAL50CH502

PAT10CH506

PAL50CH602

PAT10CH606

PAL50CH702

PAT10CH706

PAL50CH802

PAT10CH806

PAC202

PAP102

PAU101

PAC502

PAU205

PAC80CH102PAC270CH101PAJ20CH101 PAL10CH102 PAC80CH202 PAC270CH201PAJ20CH201 PAL10CH202 PAC80CH302 PAC270CH301PAJ20CH301 PAL10CH302 PAC80CH402 PAC270CH401PAJ20CH401PAL10CH402 PAC80CH502 PAC270CH501

PAJ20CH501PAL10CH502 PAC80CH602 PAC270CH601PAJ20CH601 PAL10CH602 PAC80CH702 PAC270CH701PAJ20CH701

PAL10CH702 PAC80CH802 PAC270CH801PAJ20CH801PAL10CH802

PAC90CH101

PAU30CH101

PAC90CH102

PAU50CH106

PAC90CH201

PAU30CH201

PAC90CH202

PAU50CH206

PAC90CH301

PAU30CH301

PAC90CH302

PAU50CH306

PAC90CH401

PAU30CH401

PAC90CH402

PAU50CH406

PAC90CH501

PAU30CH501

PAC90CH502

PAU50CH506

PAC90CH601

PAU30CH601

PAC90CH602

PAU50CH606

PAC90CH701

PAU30CH701

PAC90CH702

PAU50CH706

PAC90CH801

PAU30CH801

PAC90CH802

PAU50CH806

PAC100CH101

PAU40CH101

PAC100CH102

PAU30CH103

PAC100CH201

PAU40CH201

PAC100CH202

PAU30CH203

PAC100CH301

PAU40CH301

PAC100CH302

PAU30CH303

PAC100CH401

PAU40CH401

PAC100CH402

PAU30CH403

PAC100CH501

PAU40CH501

PAC100CH502

PAU30CH503

PAC100CH601

PAU40CH601

PAC100CH602

PAU30CH603

PAC100CH701

PAU40CH701

PAC100CH702

PAU30CH703

PAC100CH801

PAU40CH801

PAC100CH802

PAU30CH803

PAC110CH101

PAL10CH101

PAP201

PAC110CH102

PAL20CH101

PAC110CH201

PAL10CH201

PAP801

PAC110CH202

PAL20CH201

PAC110CH301

PAL10CH301

PAP1401

PAC110CH302

PAL20CH301

PAC110CH401

PAL10CH401

PAP2001

PAC110CH402

PAL20CH401

PAC110CH501

PAL10CH501

PAP401

PAC110CH502

PAL20CH501

PAC110CH601

PAL10CH601

PAP1001

PAC110CH602

PAL20CH601

PAC110CH701

PAL10CH701

PAP1601

PAC110CH702

PAL20CH701

PAC110CH801

PAL10CH801

PAP2201

PAC110CH802

PAL20CH801

PAC160CH101 PAP601PAC160CH102

PAU60CH101PAC160CH201 PAP1201PAC160CH202

PAU60CH201PAC160CH301 PAP1801PAC160CH302

PAU60CH301PAC160CH401 PAP2401PAC160CH402PAU60CH401 PAC160CH501 PAP701PAC160CH502PAU60CH501 PAC160CH601 PAP1301PAC160CH602PAU60CH601 PAC160CH701 PAP1901PAC160CH702PAU60CH701

PAC160CH801 PAP2501PAC160CH802PAU60CH801

PAC170CH101

PAL40CH101

PAC170CH102

PAL30CH101

PAU60CH104

PAC170CH201

PAL40CH201

PAC170CH202

PAL30CH201

PAU60CH204

PAC170CH301

PAL40CH301

PAC170CH302

PAL30CH301

PAU60CH304

PAC170CH401

PAL40CH401

PAC170CH402

PAL30CH401

PAU60CH404

PAC170CH501

PAL40CH501

PAC170CH502

PAL30CH501

PAU60CH504

PAC170CH601

PAL40CH601

PAC170CH602

PAL30CH601

PAU60CH604

PAC170CH701

PAL40CH701

PAC170CH702

PAL30CH701

PAU60CH704

PAC170CH801

PAL40CH801

PAC170CH802

PAL30CH801

PAU60CH804

PAC180CH101

PAL60CH102

PAC180CH102

PAU60CH103

PAC180CH201

PAL60CH202

PAC180CH202

PAU60CH203

PAC180CH301

PAL60CH302

PAC180CH302

PAU60CH303

PAC180CH401

PAL60CH402

PAC180CH402

PAU60CH403

PAC180CH501

PAL60CH502

PAC180CH502

PAU60CH503

PAC180CH601

PAL60CH602

PAC180CH602

PAU60CH603

PAC180CH701

PAL60CH702

PAC180CH702

PAU60CH703

PAC180CH801

PAL60CH802

PAC180CH802

PAU60CH803

PAC190CH101

PAU70CH1016

PAC190CH102

PAT10CH101

PAC190CH201

PAU70CH2016

PAC190CH202

PAT10CH201

PAC190CH301

PAU70CH3016

PAC190CH302

PAT10CH301

PAC190CH401

PAU70CH4016

PAC190CH402

PAT10CH401

PAC190CH501

PAU70CH5016

PAC190CH502

PAT10CH501

PAC190CH601

PAU70CH6016

PAC190CH602

PAT10CH601

PAC190CH701

PAU70CH7016

PAC190CH702

PAT10CH701

PAC190CH801

PAU70CH8016

PAC190CH802

PAT10CH801

PAC200CH101

PAU70CH101

PAC200CH102

PAT10CH103

PAC200CH201

PAU70CH201

PAC200CH202

PAT10CH203

PAC200CH301

PAU70CH301

PAC200CH302

PAT10CH303

PAC200CH401

PAU70CH401

PAC200CH402

PAT10CH403

PAC200CH501

PAU70CH501

PAC200CH502

PAT10CH503

PAC200CH601

PAU70CH601

PAC200CH602

PAT10CH603

PAC200CH701

PAU70CH701

PAC200CH702

PAT10CH703

PAC200CH801

PAU70CH801

PAC200CH802

PAT10CH803

PAC230CH102PAU70CH1010PAC230CH202PAU70CH2010 PAC230CH302PAU70CH3010 PAC230CH402

PAU70CH4010

PAC230CH502PAU70CH5010 PAC230CH602PAU70CH6010 PAC230CH702PAU70CH7010

PAC230CH802PAU70CH8010

PAC240CH102PAU70CH1011 PAC240CH202

PAU70CH2011PAC240CH302

PAU70CH3011

PAC240CH402PAU70CH4011

PAC240CH502PAU70CH5011

PAC240CH602PAU70CH6011

PAC240CH702PAU70CH7011

PAC240CH802PAU70CH8011

PAC250CH101

PAT20CH103

PAC250CH102

PAU70CH109

PAC250CH201

PAT20CH203

PAC250CH202

PAU70CH209

PAC250CH301

PAT20CH303

PAC250CH302

PAU70CH309

PAC250CH401

PAT20CH403

PAC250CH402

PAU70CH409

PAC250CH501

PAT20CH503

PAC250CH502

PAU70CH509

PAC250CH601

PAT20CH603

PAC250CH602

PAU70CH609

PAC250CH701

PAT20CH703

PAC250CH702

PAU70CH709

PAC250CH801

PAT20CH803

PAC250CH802

PAU70CH809

PAC260CH101

PAT20CH101

PAC260CH102

PAU70CH108

PAC260CH201

PAT20CH201

PAC260CH202

PAU70CH208

PAC260CH301

PAT20CH301

PAC260CH302

PAU70CH308

PAC260CH401

PAT20CH401

PAC260CH402

PAU70CH408

PAC260CH501

PAT20CH501

PAC260CH502

PAU70CH508

PAC260CH601

PAT20CH601

PAC260CH602

PAU70CH608

PAC260CH701

PAT20CH701

PAC260CH702

PAU70CH708

PAC260CH801

PAT20CH801

PAC260CH802

PAU70CH808

PAL20CH102

PAU50CH103

PAL20CH202

PAU50CH203

PAL20CH302

PAU50CH303

PAL20CH402

PAU50CH403

PAL20CH502

PAU50CH503

PAL20CH602

PAU50CH603

PAL20CH702

PAU50CH703

PAL20CH802

PAU50CH803

PAL40CH102

PASAW10CH1011

PAL40CH202

PASAW10CH2011

PAL40CH302

PASAW10CH3011

PAL40CH402

PASAW10CH4011

PAL40CH502

PASAW10CH5011

PAL40CH602

PASAW10CH6011

PAL40CH702

PASAW10CH7011

PAL40CH802

PASAW10CH8011

PAL50CH101

PASAW10CH105

PAL50CH201

PASAW10CH205

PAL50CH301

PASAW10CH305

PAL50CH401

PASAW10CH405

PAL50CH501

PASAW10CH505

PAL50CH601

PASAW10CH605

PAL50CH701

PASAW10CH705

PAL50CH801

PASAW10CH805

PAP301

PAT20CH104

PAP501

PAT20CH504

PAP901

PAT20CH204

PAP1101

PAT20CH604

PAP1501

PAT20CH304

PAP1701

PAT20CH704

PAP2101

PAT20CH404

PAP2301

PAT20CH804

PAL60CH101PAL70CH102

PAU40CH103

PAL60CH201

PAL70CH202

PAU40CH203

PAL60CH301

PAL70CH302

PAU40CH303

PAL60CH401

PAL70CH402

PAU40CH403

PAL60CH501

PAL70CH502

PAU40CH503

PAL60CH601

PAL70CH602

PAU40CH603

PAL60CH701

PAL70CH702

PAU40CH703

PAL60CH801

PAL70CH802

PAU40CH803

PAC402

PAC120CH102PAC120CH202 PAC120CH302 PAC120CH402 PAC120CH502 PAC120CH602 PAC120CH702 PAC120CH802

PAC130CH102PAC130CH202 PAC130CH302 PAC130CH402 PAC130CH502 PAC130CH602 PAC130CH702 PAC130CH802

PAU204

PAU50CH104PAU50CH105 PAU50CH204PAU50CH205 PAU50CH304PAU50CH305 PAU50CH404PAU50CH405 PAU50CH504PAU50CH505 PAU50CH604PAU50CH605 PAU50CH704PAU50CH705PAU50CH804 PAU50CH805

PAC102

PAC302

PAC60CH102PAC60CH202 PAC60CH302 PAC60CH402 PAC60CH502 PAC60CH602 PAC60CH702

PAC60CH802

PAC70CH102PAC70CH202 PAC70CH302 PAC70CH402 PAC70CH502 PAC70CH602 PAC70CH702 PAC70CH802

PAC140CH102PAC140CH202

PAC140CH302 PAC140CH402PAC140CH502 PAC140CH602 PAC140CH702

PAC140CH802PAC150CH102 PAC150CH202 PAC150CH302 PAC150CH402 PAC150CH502 PAC150CH602 PAC150CH702

PAC150CH802

PAC210CH102 PAC210CH202 PAC210CH302PAC210CH402 PAC210CH502 PAC210CH602 PAC210CH702

PAC210CH802

PAC220CH102PAC220CH202 PAC220CH302 PAC220CH402 PAC220CH502 PAC220CH602 PAC220CH702

PAC220CH802

PAJ20CH102 PAJ20CH202 PAJ20CH302 PAJ20CH402 PAJ20CH502 PAJ20CH602 PAJ20CH702 PAJ20CH802

PAL30CH102 PAL30CH202 PAL30CH302 PAL30CH402 PAL30CH502PAL30CH602 PAL30CH702

PAL30CH802

PAR102

PAR202

PAR302

PAR402

PAU103

PAU201

PAU203

PAU40CH104PAU40CH204 PAU40CH304

PAU40CH404 PAU40CH504 PAU40CH604 PAU40CH704PAU40CH804

PAU60CH105PAU60CH106 PAU60CH205 PAU60CH206 PAU60CH305 PAU60CH306PAU60CH405 PAU60CH406 PAU60CH505 PAU60CH506 PAU60CH605 PAU60CH606 PAU60CH705 PAU60CH706 PAU60CH805 PAU60CH806

PAU70CH107

PAU70CH1013

PAU70CH1014

PAU70CH207

PAU70CH2013

PAU70CH2014

PAU70CH307

PAU70CH3013

PAU70CH3014

PAU70CH407

PAU70CH4013PAU70CH4014

PAU70CH507

PAU70CH5013PAU70CH5014

PAU70CH607

PAU70CH6013PAU70CH6014

PAU70CH707

PAU70CH7013PAU70CH7014

PAU70CH807

PAU70CH8013PAU70CH8014

Figure: PCB design and prototype.

RF inputs LO inputs IF outputsAGC control

Front-end PCBLO inputs

LO Wilkinson divider

LO synthesizer

Power Supply

PLL ref. clock

LO output

Figure: Front-end housing and setup on the antenna-array frame.

Page 49: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 49/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Front-end channel design specifications and prototype performance summary

Parameter Simulated Value Measured Value SpecificationRF frequency 1575.42 MHz 1575.42 MHz 1575.42 MHzIF frequency 70 MHz 69.9988 MHz 70 MHz (*)

Passband bandwidth (Bp) 17.8 MHz 17.5 MHz ≥ 12 MHzStopband bandwidth (Bs) 20 MHz 22 MHz ≤ 20 MHz (*)

GFE 73.9 dB 58+Gant = 73 dB ≥ 72.8 dBNFFE 2.178 dB 2.18 dB ≤ 4 dBPCP,FE — −65.3 dBm >−44.9 dBm (*)PIP3,FE — −65.3+9.6 =−54.7 dBm >−35.3 dBm (*)

Image rejection 60.2 dB 57 dB ≥ 40 dBPhase noise (10 kHz) −75.65 dBc −82 dBc —

Table: Simulated and measured front-end performance compared to design specifications.

• Out-of-specs linearity: considering an in-band interference signal present at the antennaterminals with Pint = PCP,FE, the front-end linearity is sufficient to test the algorithmsinterference mitigation capability for IN0≤ 113 dB-Hz considering Ta = 100 K.

Page 50: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 50/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

FPGA Digital processing detailed block diagram

XILINX ML605 FPGA BOARD

8 CHADC

RF

8 C

HFR

ON

T-EN

D

SAMPLECLOCK

DOWNCONVERTERS&

DECIMATING FILTERS

ADCINTERFACE

SPATIALFILTER

Gb ETHMAC

CPUuBLAZE

HARDWARE ACCELERATOR

AC

QU

ISIT

ION

CO

NTR

OL

BEAMFORMERCONTROL

FPGACLOCK

MMCMADV

USB TO UART

BRIDGE

SNAPSHOTSRAM

UART

CH1

CH8

8 C

H B

US SDR GNSS

Receiver

PC

CALIBRATIONCORRECTION

GNSS FPGA PLATFORM

PLL REF

12 bits x IF channel

(22+22) bits x BB channel

(22+22) bits x BB channel (16+16) bits BB

(32+32) bits

Fs=40 Msps Fs=5 Msps

(22+22) bits x BB channel

Page 51: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 51/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Autocorrelation matrix estimation implementation

Rxx =1K

XXH =

=1K

[K

∑k=1

x(k)x∗1(k), . . . ,K

∑k=1

x(k)x∗N(k)

]=

=1K

K

∑k=1

x1(k)x∗1(k) . . .K

∑k=1

x1(k)x∗N(k)

.... . .

...K

∑k=1

xN(k)x∗1(k) . . .K

∑k=1

xN(k)x∗N(k)

.(35)

Rxx(1,j)

Rxx(2,j)

Rxx(3,j)

Rxx(4,j)

Rxx(5,j)

Rxx(6,j)

Rxx(7,j)

Rxx(8,j)

Column (j)Processor time

multiplexing

MU

LTIPLICATIO

N P

HA

SEIN

TEGR

ATION

PHAS

E

Page 52: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 52/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Real-time logic for Rxx.S

NA

PS

HO

TSR

AM

C

B

ACPL MULT 8

C

B

ACPL ADD 1

MUXC

B

ACPL MULT 1

Dout_bAddr_a

Addr_b

Dout_a

WR

Din_a

DUAL PORT

RAM

C

B

ACPL ADD 8

Rxx(1,j)[k]

Rxx(8,j)[k]

Rxx(1,j)[k-1]Rxx(2,j)[k-1]Rxx(3,j)[k-1]Rxx(4,j)[k-1]Rxx(5,j)[k-1]Rxx(6,j)[k-1]Rxx(7,j)[k-1]Rxx(8,j)[k-1]Rxx(1,j)[k-1]

Dout

Rxx(8,j)[k-1]

ACQ CTLRxx_AddrRxx_Data

FSMLOGIC

RAM_wr

RAM_Addr

StartEnd

Start_Rxx_calcEnd_Rxx_calc

Addr

Snapshots_Addr=k

Column_sel=j

Rxx estimator

)(1 kx

)(8 kx

(18+18)b

(32+32)b

(16+16)b(32+32)b

(22+22)b

)(1* kx

)(8* kx

Page 53: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 53/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Cross-correlation vector estimation implementation

rxd(fd, τ ) =1K

Xd(fd, τ)H =

=

[K

∑k=1

x1(k)e−j2πfd d∗(k, τ), . . . ,K

∑k=1

xN(k)e−j2πfd d∗(k, τ)

]. (36)

Rxd(1)[t]

Rxd(1)[t-1]

Rxd(1)[t-1]

Rxd(1)[t]

Rxd(1)[t-1]

Rxd(1)[t]

Rxd(1)[t-1]

Rxd(1)[t]

Rxd(1)[t-1]

Rxd(1)[t]

Rxd(1)[t-1]

Rxd(1)[t]

Rxd(1)[t-1]

Rxd(1)[t]

Rxd(1)[t-1]

Rxd(1)[t]

MU

LTIPLIC

ATIO

N

PH

AS

EIN

TEG

RA

TION

PHA

SE

Page 54: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 54/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Real-time logic for rxd.

DopplerWipe-off

SN

APS

HO

TSR

AM

Dout_bAddr_a

Addr_b

Dout_a

WR

Din_a

DUAL PORT

RAM

Rxd(1)[k-1]Rxd(2)[k-1]Rxd(3)[k-1]Rxd(4)[k-1]Rxd(5)[k-1]Rxd(6)[k-1]Rxd(7)[k-1]Rxd(8)[k-1]

Dout

ACQ CTL

Rxd_Addr

Rxd_Data

Start_Rxd_calc

End_Rxd_calc

Addr

Rxd estimator

C

B

ACPL MULT 1

C

B

ACPL ADD 1

C

B

A

BPSK

MOD 1

reset

Parallel load

Count

COUNTER FSMLOGIC

RAM_wr

RAM_Addr

StartEndReset

Code Delay

reset

SV

PRN_out

GPS C/A

PRN

Rxd(1)[k]

C

B

ACPL MULT 8

C

B

ACPL ADD 8

C

B

A

BPSK

MOD 8

Rxd(8)[k]

Rxd(1)[k-1]

Rxd(8)[k-1]

SVNUM

Doppler

(22+

22)b

)(1 kx

)(8 kx

(8+8)b

(31+

31)b

(31+

31)b

(32+32)b

1 b

Page 55: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 55/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

High-level operations: FPGA embedded software-defined processor

EMBEDDED PROCESSOR RESET

INITPLATFORM

WAITFOR

COMMAND

SET SAT ID,

SET ACQUISION

COMPUTE

COMPUTE

GLRTCOLORED

COMPUTEACQUISITION

GLRTWHITE

SINGLEANTENNA

MF

SENDRESULTS

UART AXI LITE

AXI LITE

ACQUISITIONCONTROL

FSL

FSL

FSL

FSL

FSLYOUR

ACQUISITIONALGORITHM

FSL

SDR GNSSReceiver

PC

Page 56: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 56/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Calibration process1. Generate a reference carrier fcal = fc + fref, capture X, and estimate the amplitudes

vector acal = [ 1√P1, . . . , 1√

PN] ∈ R1×N , where Pi =

1K ∑

K−10 xix∗i

2. Estimate the phase shifts between the reference channel and rest of the channels using

the ML estimator and compute φcal =

[e−j2π

ˆ∆k1 freffs , . . . ,e−j2π

ˆ∆ki freffs

]∈ C1×N .

3. Compute Gcal = diag(acal)diag(φcal) and apply it to the snapshots as Xcal = GcalX.

Figure: Calibration setup in an anechoicchamber.

0 500 1000 1500 2000

−1000

−500

0

500

1000

Sample index k

Am

plitu

de

0 500 1000 1500 2000−1.5

−1

−0.5

0

0.5

1

1.5

Sample index k

Am

plitu

te

Figure: Uncalibrated and calibrated snapshotsplots for fref = 10 kHz.

Page 57: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 57/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Calibration validation IA spectral Multiple Signal Classification (MUSIC) algorithm was used to estimate atest signal DOA and verify the array calibration:

(θ, ψ) = argmaxθ,ψ

1v(θ,ψ)H(I−uuH)v(θ,ψ)

, (37)

where v(θ,ψ) ∈ CN×1 is the signal steering vector, u ∈ CN×1 is the eigenvectorassociated with the most powerful eigenvalue of Rxx, and I ∈ RN×N is the identity.

10 20 30 40 50 60 70 80 900

2

4

6

8

10

12

14

Elevation ψ []

MU

SIC

DO

Aes

tim

atio

nR

oot

squar

eer

ror

[]

Calibrated DOAθ = 180

θ = 0

Figure: DOA elevation estimation pointing error for θ = 0 and θ = 180 (The array wascalibrated in the broadside direction ψ = 90).

Page 58: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 58/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Calibration validation II

Figure: MUSIC signal DOA estimation forθ = 0, ψ = 45.

Figure: MUSIC signal DOA estimation forθ = 0, ψ = 75.

Figure: MUSIC signal DOA estimation forθ = 180, ψ = 45.

Figure: MUSIC signal DOA estimation forθ = 180, ψ = 75.

Page 59: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 59/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Interference scenario setup

• A GPS L1 C/A satellite signal is transmitted using a horn antenna, with θ = 0

and ψ = 90, simulating a realistic situation were a high elevation satellite isreceived with C/N0 = 44 dB-Hz.

• An interference signal is transmitted using an auxiliary monopole antenna withan approximated DOA of θ = 45 and ψ = 45, which simulates a moderateelevation jammer or a communication signal coming from nearbycommunication tower.

• The interference signal and the satellite signal were generated by two AgilentE4438C generators. The latter was equipped with GPS Personality.

• The test functions were executed using Tacq = 1 ms of captured snapshots.

Page 60: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 60/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Interference scenario setup

Satellite antenna

Jammer antenna

45º

Antenna array receiver prototype

Reference receiver

Page 61: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 61/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Implemented acquisition functions

• GLRT colored

T1(X) = maxfd ,τ

rH

xd(fd,τ)R−1dd R−1

xx rxd(fd,τ)> γ. (38)

• GLRT white

T2(X) = maxfd ,τ

rxd(fd,τ)H rxd(fd,τ)

Tr(Rxx)

> γ. (39)

• Single antenna MF

T3(X, i) = maxfd ,τ

K−1

∑t=0‖xi(t)e−j2πfd d∗(t,τ)‖2

> γ, (40)

where i is the selected antenna element.

Page 62: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 62/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Acquisition results for CW interferenceA Continuous Wave (CW) jammer impinges into the array with fint = 1575.43MHz and J/N0 = 133 dB-Hz.

5.5 5.75 6 6.25 6.5 6.75 7 7.25 7.5 7.75 8 8.25 8.5

x 107

−70

−60

−50

−40

−30

−20

−10

0

10

Frequency [Hz]

Pow

er[d

Bm

]in-band CWinterference

GPS L1 C/A

(a) IF spectrum. (b) TSingle(x(t, fd , τ)).

(c) TGL White(X(t, fd , τ)). (d) TGL Colored(X(t, fd , τ)).

Page 63: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 63/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Acquisition results for 4G/LTEA possible Lightsquared interference was simulated using a Long Term Evolution(LTE) downlink signal with 5 MHz of bandwidth, impinging into the array withfint = 1575.42 MHz and J/N0 = 133 dB-Hz.

5.5 5.75 6 6.25 6.5 6.75 7 7.25 7.5 7.75 8 8.25 8.5

x 107

−70

−60

−50

−40

−30

−20

−10

Frequency [Hz]

Pow

er[d

Bm

]

in-band 4G/LTEinterference

GPS L1 C/A

(e) IF spectrum. (f) TSingle(t, fd , τ)).

(g) TGL White(t, fd , τ)). (h) TGL Colored(t, fd , τ)).

Page 64: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 64/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Deflection coefficient

The deflection coefficient is defined as

d2 =(ET(X;H1)−ET(X;H0))2

varT(X;H0). (41)

In the measurements, the expectations operators and the variance operator weresubstituted by its sample mean and sample variance respectively.

90 100 110 120 130 140 1500

2000

4000

6000

8000

10000

12000

14000

CW interference I/N0 [dB-Hz]

Defl

ecti

onco

effici

ent

GLRT Colored (T1(X))

GLRT White (T2(X))

Single antenna MF (T3(X))

33 dB

(i) CW interference scenario.

90 100 110 120 130 140 1500

2000

4000

6000

8000

10000

12000

14000

LTE interference I/N0 [dB-Hz]

Defl

ecti

onco

effici

ent

GLRT Colored (T1(X))

GLRT White (T2(X))

Single antenna MF (T3(X))

25 dB

(j) LTE interference scenario.

Page 65: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Introduction

Motivation and Objectives

Array-based acquisition theory

Array platform implementation

Conclusions

Page 66: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 66/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Theoretical analysis

Done:

! GLRT extension to the GNSS array signal model assuming an arbitrary andunknown covariance noise matrix. The obtained detector is able to mitigatetemporally uncorrelated interferences even if the array is unstructured andmoderately uncalibrated.

! The performance and the interference rejection capability were modeled andcompared to their theoretical bound. The detector was proven to be a UMP testdetector and has CFAR properties.

! The proposed acquisition algorithm was compared to conventional acquisitionafter the MVDR beamformer. The MVDR is severely affected by moderatepointing errors and/or array miss-calibration, while the GLRT detectorremains insensible to this situation.

! Analysis of realistic conditions to obtain preliminary hardware requirementsfor an implementation of the algorithm.

! The effect of the signal bandwidth in the acquisition has been modeled: anincrease of the bandwidth beyond the main spectrum lobe reduces the SNR,and, consequently, reduces also the performance of the acquisitionalgorithms.

Page 67: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 67/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Theoretical analysis

To Do:

f Explore the application of the Bayesian approach to the acquisition problem; itmight be possible to estimate a prior PDF for the synchronizationparameters and integrate them in the GLRT detector.

f Integration of inertial sensors in the receiver at acquisition stage.

f Ultimately, an hybridization between array-based acquisition and trackingmight be possible, since both algorithms are related in the sense that acquisitioncontains prior information suitable for tracking initialization and vice-versa.

Page 68: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 68/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Design and implementation of a real-time array-based GNSS receiver platform

Done:

! A novel real-time array-based GNSS receiver platform was developed:! A complete signal reception chain, including the antenna array and the multichannel

RF front-end for the GPS L1/ Galileo E1 was designed, implemented and tested.! The FPGA digital processing section of the platform, such as the array signal

statistics extraction modules were also implemented.! Coupled with a software defined receiver.

! Design trade-offs and implementation complexities were carefully analyzed andtaken into account.

! Proof-of-concept prototype: the array-based acquisition algorithm introducedin this Dissertation was implemented and tested under realistic conditions.

! Harsh in-band interference scenarios were tested, including narrow/wideband interferers and communication signals. The performance results werealigned with the theoretical and simulated ones, thus, completing thealgorithm validation.

Page 69: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 69/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Design and implementation of a real-time array-based GNSS receiver platform

To Do:

f The platform can be enhanced by integrating an IMU.

f Design and implementation of dual-band antenna elements patches to coverboth the GPS L1 / Galileo E1 and the GPS L5 Galileo E5a links, which providea complete SoL signals coverage of two of the most evolved GNSS.

f Explore the integration of array elements and front-end calibrationprocedures.

f Explore the application of open source soft processors such as the AeroflexGaisler LEON3 to replace the Microblaze implementation. Ultimately, it shouldbe possible to integrate the GNU Radio framework and the GNSS-SDRsoftware receiver in the soft processor.

Page 70: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 70/ 70

Introduction Motivation and Objectives Array-based acquisition theory Array platform implementation Conclusions

Interference mitigation in GNSS signal acquisition through antenna arrays

Dr. Javier Arribas([email protected])

Interference Management for Tomorrow’s Wireless NetworksNewcom# Summer School Sophia Antipolis - May 28-31, 2013

Thank you for your attention!

Page 71: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 71/ 70

Existing solutions: Acquisition after beamforming

RFfront-end

ADC

GNSSAntenna array

y = w HXX y

TDBF(y) °

H0

H1

w optR xx

h0

Beamformerprocessor

Single antennaacquisition

Figure: Acquisition after beamforming concept.

Beamformer output signal model and GLRT test function:

y = wHX, (42)

TDBF(X) = maxfd ,τ

RHyd(fd,τ)Ryd(fd,τ)

Ryy> γ, (43)

where w ∈ CN×1 is the beamformer weights vector, and

Ryd =1K

ydH = wH 1K

XdH = wH rxd (44)

Ryy =1K

yyH = wHRxxw. (45)

Page 72: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 72/ 70

Existing solutions: Acquisition after beamformingTest function distribution

TDBF(X)∼

χ22(δTDBF;H1

), in H1,

χ22(δTDBF;H0

= 0), in H0,(46)

where σ2TDBF

= 12K and

δTDBF;H1=‖µRyd

‖2

Ryy=

wHRddhhHR∗ddwwHRxxw

. (47)

Performance expressions

Pd(γ) = Q1

δTDBF;H1

σTDBF

,

√γ

σTDBF

, (48)

Pfa(γ) = exp

−γ

2σ2TDBF

, (49)

where Q1 is the generalized Marcum Q-function of order 1. The acquisition teststatistic is CFAR.

Page 73: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 73/ 70

Existing solutions: MVDR beamformer

Minimum Variance Distortionless Response (MVDR) optimum weights

minw

wHRxxw

s.t wHh0 = 1,(50)

where h0 ∈ CN×1 is the DOA steering vector. Then,

wopt =R−1

xx h0

hH0 R−1

xx h0. (51)

MVDR GLRT test function

TMVDR(X) =rH

xd(R−1xx h0)(R−1

xx h0)H rxd

hH0 R−1

xx h0' 1

σ2

|rHxdP⊥Hi

h0|2

‖hH0 P⊥Hi

‖2. (52)

Page 74: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 74/ 70

Existing solutions: Power minimization beamformerDesign condition: the DOA is unavailable. The beamformer minimizes the outputpower while not weighting a reference antenna (h0 = [10 . . . 0]).

Performance in absence of interferences (P⊥Hi= I)

TPWR(X) = σ−2‖rH

xdh0‖2 = TGL(x1, fd,τ). (53)

0 50 100 1500

100

200

300

400

500

600

700

TDBF (X)

Fre

quen

cy

H0 Histogram.

H1 Histogram.

H0 Theoretical PDF.

H1 Theoretical PDF.

Figure: TPWR(X) histogram and theoretical PDF in both H1 and H0 acquisition hypotheses forGalileo E1 signal acquisition simulation.

Page 75: Interference mitigation in GNSS signal acquisition through ...euracon.org/attached/Jarribas - GNSS interference mitigation.pdf · J. Arribas Interference mitigation in GNSS signal

J. Arribas Interference mitigation in GNSS signal acquisition through antenna arrays 70/ 70

J. Arribas, GNSS Array-based Acquisition: Theory and Implementation, PhDThesis, Universitat Politecnica de Catalunya (UPC), Barcelona, Spain, June2012.

C. Fernandez-Prades, Advanced Signal Processing Techniques for GNSSReceivers, PhD Thesis, Universitat Politecnica de Catalunya (UPC), Barcelona,Spain, May 2006.

B.W. Parkinson, and J.J. Spilker (eds.), Global Positioning System: Theory andApplications, vol. I, II, Progress in Astronautics and Aeronautics, AmericanInstitute of Aeronautics, Inc., Washington DC, 1996.

L. Weill, “C/A Code Pseudoranging Accuracy-How Good Can it Get?”,Proceedings of ION GPS-94, the 7th International Technical Meeting of theSatellite Division of the Institute of Navigation, pp. 133–141, Salt Lake City,UT, 1994.

J. R. Williams, “U.S. Spectrum Allocations 300 - 3000 MHz”, Tech. rep.,OPP/FCC, 2002.