28
Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens 6.Meslin’s split lens

Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Embed Size (px)

Citation preview

Page 1: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Interference: Division of wave fronts1. Young’s double slit arrangement 2. Lloyd’s mirror 3. Fresnel’s mirrors4. Fresnel’s bi-prism5. Billet’s split lens6. Meslin’s split lens

Page 2: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Interference: Division of amplitude

1. Pohl’s patterns2. Fringes from a transparent film3. Fringes from a wedge4. Michelson’s interferometer5. Newton’s rings 6. Fabry-Perot interferometer

Page 3: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Interferometers

Page 4: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Albert Abraham Michelson (1852-1931)

( The Nobel Prize: 1907)

• Michelson measured the velocity of light with amazing delicacy in 1881.

• Michelson and Morley showed that the light travels at a constant speed in all inertial frames of reference.

• Michelson measured the standard meter in terms of wavelength of cadmium light

Page 5: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Michelson Morley

Page 6: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Photograph of Michelson Interferometer

Page 7: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Michelson Interferometer

This instrument can produce both types of interference fringes i.e., circular fringes of equal inclination at infinity and localized fringes of equal thickness.

Page 8: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Schematic diagram

Page 9: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens
Page 10: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Effective linear arrangement for circular fringe

An observer looking through the telescope will see , a reflected image of M1

and the images S’ and S” of the source provided by and M2.

Page 11: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Order of fringes 1, 2, 3, …, Minima:

1, 2, 3, …, Maxmima:

Order of the fringe, if the central fringe is dark: 𝑚0=2𝑑 /𝜆

For any value of d, the central fringe has the largest value of m.

As d is increased new fringes appear at the centre and the existing fringes move outwards, and finally move out of the field of view.

Page 12: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens
Page 13: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Haidinger Fringe

Page 14: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens
Page 15: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Measurement of wavelength of light

2𝑑 cos𝜃=¿𝑚𝜆¿2𝑑=𝑚0 𝜆(𝜃=0)

Move one of the mirrors to a new position d’ so that the order of the fringe at the centre is changed from mo to m.

2𝑑 ′=𝑚 𝜆

⟹2|𝑑−𝑑′|=|𝑚0−𝑚|𝜆=𝑛𝜆

⟹𝜆=2 ∆ 𝑑 /(∆𝑚)

Page 16: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

C0ncordance

2𝑑1=𝑝𝜆1=𝑞 (𝜆1+∆ 𝜆   )

2𝑑=𝑚0 𝜆

If fringe patterns due to two wavelengths coincide at the centre,

The fringe pattern is very bright

Page 17: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens
Page 18: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Fringe system at concordance

2𝑑1=𝑝𝜆1=𝑞 (𝜆1+∆ 𝜆   )

Page 19: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Measurement of wavelength separation2𝑑=𝑚0 𝜆

2𝑑1=𝑝𝜆1=𝑞 (𝜆1+∆ 𝜆   )The condition for concordance:

The fringe pattern is d

As d is increased and with

When the bright fringe pattern of λ1coincides with the dark fringe pattern of λ1+λ, and vice-versa and the fringe pattern is washed away (Discordance).

Page 20: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Fringe patterns at discordance

Page 21: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

The condition for concordance: 2𝑑1=𝑝𝜆1=𝑞 (𝜆1+∆ 𝜆   )

• Δ can be measured by increasing d1 to d2 so that the two sets of fringes, initially concordant, become discordant and are finally concordant again.

• If p changes to p+n, and q changes to q+(n-1) we have concordant fringes again.

2𝑑2=(𝑝+𝑛)𝜆1=(𝑞+𝑛−1)(𝜆1+∆ 𝜆   )⟹2(𝑑2−𝑑1)=𝑛𝜆1=(𝑛−1)(𝜆1+∆ 𝜆   )⟹2 (𝑑2 −𝑑1 )=𝑛𝜆1∧(𝑛−1 ) ∆ 𝜆=𝜆1

⟹2 (𝑑2 −𝑑1 )=𝑛𝜆1 ≈𝜆1

2

∆ 𝜆𝑓𝑜𝑟 𝑛≫1

⟹∆ 𝜆≈ 𝜆12/2 (𝑑2 −𝑑1 )

Page 22: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

•Measurement of the coherence length of a spectral line

•Measurement of thickness of thin transparent flakes

•Measurement of refractive index of gases

Page 23: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Newton’s rings

Page 24: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Pair of rays method

Condition for dark rings

2 /n nt r R n

Page 25: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

1𝑉

=1𝑈

−2𝑅

=𝑅− 2𝑈𝑅𝑈

⟹𝑉=𝑅𝑈

𝑅−2𝑈

𝑑=𝑉 −𝑈= 𝑅𝑈𝑅−2𝑈

−𝑈 ≈2𝑈 2

𝑅,𝑎𝑠 𝑅≫𝑈

𝑆1𝑁=𝑑cos𝜃𝑚≈ 𝑑(1−𝜃𝑚

2

2 )=𝑚𝜆 𝑓𝑜𝑟 𝑎𝑑𝑎𝑟𝑘𝑟𝑖𝑛𝑔

𝐴𝑠𝑑𝜆

=𝑚0 ,𝑚0 −𝑚=𝑑𝜃𝑚2 /2𝜆⟹𝜃𝑛

2 =2𝑛𝜆/𝑑

Page 26: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

A

𝑟𝑛2 ≈𝑈 2𝜃𝑛

2=2𝑛𝜆𝑈 2

𝑑=2𝑛𝜆𝑈 2

( 2𝑈 2

𝑅 )=𝑛𝜆𝑅

⟹𝑟𝑛=√𝑛𝜆𝑅  

Page 27: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Newton’s rings

Page 28: Interference: Division of wave fronts 1.Young’s double slit arrangement 2.Lloyd’s mirror 3.Fresnel’s mirrors 4.Fresnel’s bi-prism 5.Billet’s split lens

Measurement of R.I. of a liquid

=

𝑡𝑛=𝑟𝑛

2

2𝑅⟹𝑠𝑎𝑔𝑖𝑡𝑡𝑎 𝑓𝑜𝑟𝑚𝑢𝑙𝑎

2 𝑡𝑛=𝑛𝜆⟹𝑟𝑛2 =2 𝑡𝑛𝑅=𝑛𝜆𝑅

For an air film,

For a liquid film of R.I. μ,

𝑟𝑛2

~𝑟𝑛2 =𝜇