11
1 Interface MD Validation July 15, 2017 Hendrik Heinz Department of Chemical and Biological Engineering Materials Science and Engineering Program University of Colorado-Boulder, CO, USA

Interface MD Validation - WordPress.com€¦ · Validation Overview • Lattice parameters are usually

  • Upload
    others

  • View
    19

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    Interface MD

    Validation

    July 15, 2017

    Hendrik HeinzDepartment of Chemical and Biological

    EngineeringMaterials Science and Engineering Program

    University of Colorado-Boulder, CO, USA

  • 2

    Validation Overview

    • Lattice parameters are usually

  • 3

    Clay-Water Interfaces – Example Pyrophyllite

    Giese et al., Phys. Chem. Miner. 1991, 17, 611-616

    • No spreading and some hydrophobicity

    - note absence of Na+ ions

    • Contact angle θ = 80 ±5º in equilibrium

    Experiment: θ = 79.2 ±7.4º

    CLAYFF: θ = 105 ±5º X

    Si Al

    O H

    CEC = 0

    meq/100g

    CHARMM-IFF

  • 4

    Metal-Organic Interfaces: Comparison of DFT (M06)

    and IFF

    Gupta et al. J. Phys. Chem. C 2016, 120, 17454.

    CHARMM-IFF

    DFT (M06-L)

  • 5

    Also lipids free energies on gold

    ~10% agreement with expt –Quirke et al. Chem. Phys. Lett. 2016, 664, 199;

    Horsewell et al. Faraday Disc. 2002, 121, 405.

    Match Between DFT and IFF Better than 10%

    Gupta et al. J. Phys. Chem. C 2016, 120, 17454.

  • 6

    Peptide Binding to Silica Surfaces in Solution

    at Different pH

    Adsorption isotherm (experiment) Simulation (CHARMM-IFF)

    0

    20

    40

    60

    80

    100

    50 18 9 09 7 5 3

    Approx. pH

    Surface ionization (%)

    LDHSLHS (-)

    AFILPTG (=)

    KLPGWSG (+)

    Tim

    e in

    clo

    se c

    onta

    ctw

    ith s

    urfa

    ce (

    %)

    0

    2

    4

    6

    8

    10

    8.5 7.4 5 3

    LDHSLHS (-)

    AFILPTG (=)

    Adsorb

    ed a

    mount

    (peptides p

    er

    nm

    2 )

    KLPGWSG (+)

    pH

    F. S. Emami, C. C. Perry, H. Heinz, et al. Chem. Mater. 2014, 26, 5725.

    • Free energies of binding range from -8 kcal/mol to 0 kcal/mol in experiment and

    are reproduced with ±1 kcal/mol precision in the simulationFFSiOH fails X

  • 7

    Lattice Parameters - Examples

    • Computed unit cell parameters (NPT dynamics) agree ±0.5% with experimental X-Ray crystal structures (previously ±3-5%)

    Example compounds cell

    dim.

    a

    (nm)

    b

    (nm)

    c

    (nm)

    α

    (°)β

    (°)γ

    (°)V

    (nm3)

    rms dev

    (pm/atom)

    Mica

    K2Si6Al6O20(OH)4

    exp

    sim

    531 2.596

    2.585

    2.705

    2.691

    2.005

    2.006

    90

    89.54

    95.73

    95.36

    90

    90.01

    14.00

    13.89

    0

    15

    Hydroxyapatite

    Ca10(PO4)6(OH)2

    exp

    sim

    222 1.883

    1.882

    1.883

    1.881

    1.375

    1.375

    90.00

    90.00

    90.00

    90.00

    120.0

    120.0

    4.224

    4.214

    0

    20

    Gypsum

    CaSO4 · 2 H2O

    exp

    sim

    313 1.703

    1.703

    1.521

    1.521

    1.886

    1.856

    90.0

    90.0

    114.08

    112.1

    90.0

    90.0

    4.462

    4.455

    0

    26

    Tobermorite 11 Å

    Ca4Si6 O15(OH)2 · 5 H2O

    exp

    sim

    221 1.347

    1.348

    1.477

    1.467

    2.249

    2.247

    90

    89.55

    90

    90.15

    123.25

    123.13

    3.741

    3.721

    0

    23

    Gold

    Au

    exp

    sim

    555 2.039

    2.039

    2.039

    2.039

    2.039

    2.039

    90.0

    90.0

    90.0

    90.0

    90.0

    90.0

    8.478

    8.477

    0

    1

  • 8

    Cleavage Energy and Modulus – Examples

    Heinz, Emami, et al. Langmuir Feature 2013, 29, 1754.::

    ::

    ::

  • 9

    Hydration Energy as a Function of pH -

    Hydroxyapatite

    T. J. Lin, H. Heinz J. Phys. Chem. C 2016, 120, 4975. Chem. Soc. Rev. 2016, 45, 412.

    different

    mechanisms

    15 10 5

    Cleavage

    energy

    comp

    expt 1000-1200 350-500

    Immersion

    energy in

    water

    reactive

    600-700

    Eb ~ -4.7

    kcal/mol

    (010)

    • C-term.

    • NH3+ at K7

    Adsorption

    of peptide

    SVSVGGK

    (010)

    Eb ~ -9.0

    kcal/mol

    • S1, S3

    Ca P O C N H

    pH

    • V2, V4

    (identified by

    phage display)

  • 10

    Influence of Chosen Energy Expression is Small –

    Example Tricalcium Aluminate

    Sometimes 5-10% lower modulus and cleavage energy using 9-6 LJ

    potential (PCFF) vs 12-6 LJ potential (CHARMM etc)

    Mishra, Heinz et al. Dalton Trans. 2014, 43, 10602.

  • 11

    References by Type of Compound

    Below is a list of references that introduce and validate the force fields. Citing references to these papers

    need also be followed for details as many groups have meanwhile used IFF and added to the validation.

    • Clay minerals/layered silicates: J. Am. Chem. Soc. 2003, 125, 9500-9510. DOI: 10.1021/ja021248m. Chem. Mater. 2005, 17,

    5658. DOI: 10.1021/cm0509328. J. Chem. Phys. 2006, 124, 224713. DOI: 10.1063/1.2202330. Chem. Mater. 2007, 19, 59-

    68. DOI: 10.1021/cm062019s. J. Phys. Chem. C 2010, 114, 1763-1772. DOI: 10.1021/jp907012w. Chem. Mater. 2010, 22,

    1595-1605. DOI: 10.1021/cm902784r. J. Phys. Chem. C 2011, 115, 22292-22300. DOI: 10.1021/jp208383f.

    • Fcc metals: J. Phys. Chem. C 2008, 112, 17281-17290. DOI: 10.1021/jp801931d. J. Am. Chem. Soc. 2009, 131, 9704-9714.

    DOI: 10.1021/ja900531f. Phys. Chem. Chem. Phys. 2009, 11, 1989-2001. DOI: 10.1039/B816187A. J. R. Soc. Interface

    2011, 8, 220-232. DOI: 10.1098/rsif.2010.0318. Soft Matter 2011, 7, 2113-2120. DOI: 10.1039/C0SM01118E. J. Am. Chem.

    Soc. 2011, 133, 12346-12349. DOI: 10.1021/ja203726n. Small 2012, 8, 1049-1059. DOI: 10.1002/smll.201102066. Nano

    Lett. 2013, 13, 840-846. DOI: 10.1021/nl400022g. Many further recent papers.

    • Silica: J. Am. Chem. Soc. 2012, 134, 6244-6256. DOI: 10.1021/ja211307u. Chem. Mater. 2014, 26, 2647-2658. DOI:

    10.1021/cm500365c. Chem. Mater. 2014, 26, 5725-5734. DOI: 10.1021/cm5026987.

    • Hydroxyapatite: Langmuir 2013, 29, 1754-1765. DOI: 10.1021/la3038846. J. Phys. Chem. C 2016, 120, 4975-4992. DOI:

    10.1021/acs.jpcc.5b12504.

    • Cement minerals/LDH: J. Phys. Chem. C 2013, 117, 10417-10432. DOI: 10.1021/jp312815g. Langmuir 2013, 29, 1754-1765.

    DOI: 10.1021/la3038846. Dalton Trans. 2014, 43, 10602-10616. DOI: 10.1039/C4DT00438H.

    • Calcium sulfates: Langmuir 2013, 29, 1754-1765. DOI: 10.1021/la3038846.

    • Poly(ethylene oxide): Langmuir 2013, 29, 1754-1765. DOI: 10.1021/la3038846.

    • Overview papers: Langmuir 2013, 29, 1754-1765. DOI: 10.1021/la3038846. Chem. Soc. Rev. 2016, 45, 412-448. DOI:

    10.1039/C5CS00890E. For clays only: Clay Miner. 2012, 47, 205-230. DOI: 10.1180/claymin.2012.047.2.05.