30
Integration of Power-Supply Capacitors with Ultrahigh Density on Silicon Using Particulate Electrodes POWERSOC 2012 P M Raj, Himani Sharma, Kanika Sethi, Prof. Rao Tummala 3D Systems Packaging Research Center Georgia Institute of Technology, Atlanta, GA 30332-0560

Integration of Power-Supply Capacitors with Ultrahigh ...pwrsocevents.com/wp-content/uploads/2012-presentations/session-4/4... · on Silicon Using Particulate Electrodes POWERSOC

  • Upload
    buiphuc

  • View
    217

  • Download
    1

Embed Size (px)

Citation preview

Integration of Power-Supply Capacitors with Ultrahigh Density on Silicon Using Particulate Electrodes

POWERSOC 2012

P M Raj, Himani Sharma, Kanika Sethi, Prof. Rao Tummala

3D Systems Packaging Research Center

Georgia Institute of Technology, Atlanta, GA 30332-0560

2nd GIT Workshop, November 14-16, 2012

Slide 1

Outline –  Component integration using 3D IPAC Concept –  3D IPAC goals –  Applications

o VRM and decoupling §  Thinfilm decoupling capacitors

o Power convertor §  High-density capacitors

2nd GIT Workshop, November 14-16, 2012

Slide 2

Passives Trend

Silicon and Glass IPDs

400-500 microns 500 microns (0402)

Discretes

Thick Devices 500-800 microns

Array of Discretes

500 microns (0402)

Thick Devices 500-800 microns 200-800 microns

Courtesy: Kemet, Fraunhofer IZM

3D IPAC

40 microns

40-100 microns

2nd GIT Workshop, November 14-16, 2012

Slide 3

Passives Passives

What is 3D IPAC Concept and Why? Active IC Active IC

40 µm

10 µm

1.  Ultra-thin Glass Core ~ 30 µm

2.  Low Loss

3.  Fine-pitch and coarse-pitch through-package vias

4.  Passive components on both sides of glass. •  RF capacitors, inductors •  Power supply capacitors and inductors •  Decoupling Capacitors •  Precision components

5.  Active components for power, digital, RF and Analog

6.  Interconnections

3D IPAC is a functional module

30 µm

2nd GIT Workshop, November 14-16, 2012

Slide 4

3D IPAC on Interposer

Passives Passives

Active IC Active IC

40 µm

10 µm

30 µm

3D IC

Si/Glass Core

3D IPAC

Thin 3D IPAC Capacitor

IC

10 µm

30 µm

3D IPAC

IC

2nd GIT Workshop, November 14-16, 2012

Slide 5

3D IPAC in the 3D POP

Passives Passives

Active IC Active IC

40 µm

10 µm

30 µm

2nd GIT Workshop, November 14-16, 2012

Slide 6

3D IPAC on PWB

Passives

Active IC Active IC

40 µm

10 µm

30 µm

PWB

2nd GIT Workshop, November 14-16, 2012

Slide 7

Goals of 3D IPAC §  Miniaturization:

–  5X reduction in thickness

§  Cost: –  2—5X reduction in cost

§  Performance: –  Higher bandwidth at lower power compared to today’s systems

§  Functionality: –  Double-side component integration for heterogeneous functions in an

ultrathin module

2nd GIT Workshop, November 14-16, 2012

Slide 8

3D IPAC – Applications

RF MODULE Power Convertor Module

PDN Module

Glass

Active MOSFET Switches

High-density Capacitors

High-density Inductors

•  RF ICs •  High Q and Precision

Components: •  Capacitors •  Resistors •  Inductors

•  Voltage regulator module

•  VRM output capacitors •  Decoupling capacitors

•  Power switches •  High-density capacitor •  High-density inductor

High-density Output Capacitors

Glass

High Frequency Decoupling

POWER IC

80 µm Glass

10 µm

Precision RF Capacitors

Precision Resistors

RF Inductors

By-pass capacitors

RF IC

2nd GIT Workshop, November 14-16, 2012

Slide 9

3D IPAC – PDN Module

POWER

GROUND FR4

Case 3

3D IPAC VRM

Glass core

Logic IC

30 µm

•  Improved power integrity for 3D ICs and packages with thinner packages

•  VRM and decoupling functions in the interposer, close to the package

•  Reduces the number of decoupling capacitors

•  Thin power ICs (ex. MOSFET switches)

•  High-density inductors

•  High-density capacitors

Glass

High Frequency Decoupling

POWER IC

2nd GIT Workshop, November 14-16, 2012

Slide 10

§  Thinfilms (100-300 nm): –  Thinner films (Barium Strontium Titanate); –  Faster crystallization; –  Higher capacitance density of 14 nF/mm2

Key Result BST on Si/SiN/Ta/Ni

BST sputtering Ar/O2 (60% O2); 100 W; 2.5 hrs

Annealing conditions

750 C, 30 min in N2

Capacitance density 9 – 11 nF/mm2

Higher yield with large area electrodes 220 nF achieved on 0.28 cm2

Leakage current of the order µA/cm2 achieved up to 3 V (4 nF/mm2)

Yield 85% (30/35 devices yielded)

Sputtered BST Thinfilm Capacitors

2nd GIT Workshop, November 14-16, 2012

Slide 11

Solgel PZT –Thinfilm Capacitors

1.2 x 2.5mm2: 100-110 nF,

loss 0.1-0.3

Yield 51% (56/110)

yield 14% (8/57)

225 nF,

2.9 x 2.5mm2: loss 0.4-1.2

2.5 µF/cm2 (1 V) 1 µF/cm2 (10 V)

1.0E-­‐8

1.0E-­‐7

1.0E-­‐6

1.0E-­‐5

1.0E-­‐4

1.0E-­‐3

1.0E-­‐2

1.0E-­‐1

1.0E+0

0 5 10 15

Leakage  Cu

rren

t  (A/cm

2)

Volts  (V)

PZT/LNO/Pt/Ta/Si

PZT/LNO/Si

PZT/LNO/ZrO2/Si

2nd GIT Workshop, November 14-16, 2012

Slide 12

3D IPAC-Based PDN •  Three decoupling capacitor

integration scenarios were modeled

•  SMD on board shows highest parasitics and lowest performance;

•  Requires excessive on-chip decoupling

•  ThinFilm integration in today’s packages can achieve higher frequency stability, but has limited manufacturability

•  IPAC micro-assembled close to IC shows best performance because of thin interposer and short bump parasitics;

0.01$

0.1$

1$

10$

100$

1000$

0.00E+00$ 5.00E+08$ 1.00E+09$ 1.50E+09$ 2.00E+09$

Impedance))

(Ω))

Frequency)(Hz))

SMD

Integrated

Thin IPAC capacitor

5X improvement in frequency performance with the proposed 3D IPAC strategy

2nd GIT Workshop, November 14-16, 2012

Slide 13

3D IPAC – Power Converter Module Power Module:

•  Switching regulator or charge-pump based •  Thin power ICs •  High-density inductors •  High-density capacitors

Glass

Active MOSFET Switches

High-density Capacitors

High-density Inductors

2nd GIT Workshop, November 14-16, 2012

Slide 14

High-Density Capacitors

2nd GIT Workshop, November 14-16, 2012

Slide 15

Area enhancement for 100 µm film

Pla

nar c

apac

itanc

e µ

F/cm

2

1.4

0.2

0.6

1.0

1.8

2.2

5 20 50 200 500

MLCC

2 µF/cm2

10 µF/cm2

40 µF/cm2

100 µF/cm2

Tantalum

PRC Focus

2nd GIT Workshop, November 14-16, 2012

Slide 16

Adhesion  layer  

Silicon  Carrier  

Rou3ng  Layer  

Bo7om  Electrode  

Dielectric  

 Top  Electrode  

Process flow for High-Density Capacitors

2nd GIT Workshop, November 14-16, 2012

Slide 17

Silicon  Trench  vs.  Copper  Par3culate  Electrode  

Silicon Compatible 100 X enhancement in area Expensive silicon micromachining tools

Silicon Compatible Potential for >2000 X enhancement in surface area from BET measurements ( 100 µm) Low-cost paste processing

Porous Electrode with Highest Surface Area Efficiency

2nd GIT Workshop, November 14-16, 2012

Slide 18

0

5

10

15

20

25

30

35

5 10 15 20 25 30 0

100

200

300

400

500

600

700

800

900 0.2 0.5 1 3 5 10

500 - 700 !!

ASPECT RATIO (TENCH)

PARTICLE SIZE (NANOELECTRODE)

AR

EA

EN

HA

NC

EM

EN

T

25 - 30

0

5

10

15

20

25

30

35

5 10 15 20 25 30 0

100

200

300

400

500

600

700

800

900 0.2 0.5 1 3 5 10

500 - 700

ASPECT RATIO (TENCH)

PARTICLE SIZE (NANOELECTRODE) A

RE

A E

NH

AN

CE

ME

NT (

TRE

NC

H)

AR

EA

EN

HA

NC

EM

EN

T (

NA

NO

ELE

CTR

OD

E)

25 - 30

Area Enhancement: Nanoelectrodes Vs Trenches

2nd GIT Workshop, November 14-16, 2012

Slide 19

PRC’s Background High-Density Capacitor Research

High surface area electrodes on silicon trench;

High surface area electrodes on organic substrate with etched foil

High surface area electrodes on organic substrate with sintered particles Adhe

sion layer

Adhesion layer

US 8,084,841 B2

US 8,174,017

2nd GIT Workshop, November 14-16, 2012

Slide 20

Silicon Bottom Cu

Sintered particles

Nanoelectrodes on Si

Step 1: §  Copper powder §  Dispersant (Phosphate ester) §  Binder: Propylene carbonate Step 2: §  Printing on Silicon Step 3 §  Sintering – 400o C – 600o C

§  Copper particle size : 1-2 µm §  High surface area enhancement

due to open pores §  30-40X surface area enhancement

for 25 µm film

2nd GIT Workshop, November 14-16, 2012

Slide 21

Porous electrode with Sacrificial Polymers • Using  a  sacrificial  polymer  (polypropylene  carbonate)  that  would  decompose  easily  at  

sintering  temperatures  in  reducing  atmosphere    

Porosity in place of polymer

HEAT

Polymer granules

Copper particles

Polypropylene  carbonate  Vola3le  by-­‐product  

2nd GIT Workshop, November 14-16, 2012

Slide 22

ALD Conformality Studies

§  Increase diffusion time of the ALD vapor

§  For aspect ratio of 1000 –  1 torr: 100 seconds –  0.2 torr: 500 seconds –  Larger than ALD pumpdown

time; –  ALD time can start becoming

larger;

§  For aspect ratio of 10: –  Micro to milli seconds; –  Very small fraction of ALD

pumpdown time; –  no affect on ALD process time;

1

100

10000 10 100 1000

10

0.001

0.1

0.01

0.0001

Aspect Ratio

Torr

X

s

econ

ds

Based on modeling by: Gordon, Haussman and Kim (Harvard); Shephard (IBM)

2nd GIT Workshop, November 14-16, 2012

Slide 23

Conformality Studies using EDS EDS  Scan  at  the  bo7om  of  200  um  thick  electrode  

0 20 40 60 80 1006

7

8

9

10

11

12

Ato

mic

Wei

ght %

Electrode Thickness (depth) (µm)

Al O

ALD conformality as a function of electrode depth

2nd GIT Workshop, November 14-16, 2012

Slide 24

Cross-section of sintered bottom electrode showing ALD alumina layer

105 nm

§  700 cycles of ALD alumina (~ 100 nm)

§  FESEM showed 105 nm thick Alumina film on copper particle necks

Conformal Dielectric on Porous Electrodes

2nd GIT Workshop, November 14-16, 2012

Slide 25

Key Challenge: To access the high surface area by using a conformal top electrode Approach : Use of a liquid conducting polymer– polyethylene dioxythiophene (PEDT) Polymerization: EDT+ oxidizer+ inhibitor – 1:25 (in-situ)

§  Conductivity ~ 100 S/cm §  Fluid nature with low viscosity for

easy infiltration of particulate electrode

§  Low temperature processability ( 50o C)

§  Self-healing characteristics

Conformal Top Electrode

2nd GIT Workshop, November 14-16, 2012

Slide 26

Demonstration of Nanoelectrode Capacitors

Device Thickness   Area

Enhancement  

Capacitance

Density  

Planar (0.6mm x 0.6mm)   --   0.12µF/cm2  

<5 µm   10X   1.1 µF/cm2  

10 µm   25 X   3.9 µF/cm2  

25 µm   150-200X   30 µF/cm2  

>75 µm   400-500X   55-60 µF/cm2  

2nd GIT Workshop, November 14-16, 2012

Slide 27

Particulate electrodes using PEDT show very high leakage as compared to planar capacitors. Two possible reasons identified: (I) PEDT/ Al2O3 interaction (II)  Inherent Defects in Al2O3 film

Nanoelectrode Capacitors : Leakage Current

1.00E-­‐09  

1.00E-­‐08  

1.00E-­‐07  

1.00E-­‐06  

1.00E-­‐05  

1.00E-­‐04  

1.00E-­‐03  

1.00E-­‐02  

1.00E-­‐01  

1.00E+00  

0   0.2   0.4   0.6   0.8   1   1.2   1.4   1.6   1.8   2  

Leakage  Cu

rren

t  (A/

uF)  

Voltage  (V)  

I-­‐V  plot  of  planar  and  par9culate  electrode  capacitor  

Par3culate  Capacitor  with  PEDT  

Planar  Capacitor  with  PEDT  

Planar  Capacitor  with  Au  

2nd GIT Workshop, November 14-16, 2012

Slide 28

GT PRC: HDCAP Vs State-of-the-Art

28  

Permittivity X    Electrode  Area  Enhancement

Capacitance    Volum

etric    D

ensity     µF/cm

2

1

100

100 1,000

Si  Trench

PRC’s  Si    and  Glass  IPD

10

10,000

Thin  Film  Capacitors

Conformal  dielectric  on  a  nanoporous electrode

2nd GIT Workshop, November 14-16, 2012

Slide 29

Conclusions

Slide 29

•  3D IPAC shown as a compelling new technology for active and passive component integration in ultrathin functional modules

•  Better miniaturization •  Lower cost •  Higher performance

•  Novel silicon or glass-compatible high-density capacitor technologies investigated to meet 3D IPAC goals