40
Na#onal Ins#tute for Environmental Studies Integrated SMA/SSP: Research Experiments by the AIM group Mikiko Kainuma, Shinichiro Fujimori, Naota Hanasaki and Yasuaki Hijioka 1617 July 2011 CECO, Changwon, Korea Workshop to Explore the New SMA/SSP Approach

Integrated)SMA/SSP:) Research)Experiments)by)the) AIMgroup ) · Scenario’concepts SSP1 SSP2 Summary This’scenario’is’whatwe’call’business’ as’usual’scenario.’The’technology’and’

  • Upload
    dotuyen

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Na#onal  Ins#tute  for  Environmental  Studies  

Integrated  SMA/SSP:  Research  Experiments  by  the  

AIM  group  Mikiko  Kainuma,  Shinichiro  Fujimori,    Naota  Hanasaki  and  Yasuaki  Hijioka  

16-­‐17  July  2011  CECO,  Changwon,  Korea  

 Workshop  to  Explore  the  New  SMA/SSP  Approach    

Outline  of  the  presenta#on

•  Numerical  examina#on  of  AIM’s  SPA/SSPs  – 2  scenarios  for  SSPs  – Climate  mi#ga#on  according  to  RCP  radia#ve  forcing  

•  Global  water  resource  assessment  with  SPA/SSPs  

Purpose  of  Shared  Policy  Assump#ons  (SPAs)/    Shared  Socio-­‐economic  Pathways  (SSP)

•  Provide  useful  scenarios  to  IAV  community  by  linking  RCPs,  ESM  ensemble  calcula#ons    

•  The  IAV  community  needs  to  explore  the  implica#ons  of  climate  change  against  the  background  of  a  variety  of  different  circumstances  that  lead  to  greater  or  lesser  mi#ga#ve  and  adap#ve  capaci#es.  (Jae)  

•  Provide  regional  and  spa#al    informa#on  to  beZer  understand  the  mi#ga#on/adapta#on  strategies  

Socio-­‐economic  indicators  and  scenario  development

IAM

GDP

Popula#on

Technology

Resources

Climate  Policy

GHG GHG GHG GHG

Energy  use

Land  use

Preference Economy

Inputs Outputs

RCPs

SSPs

AIM’s  SSPs

•  Two  types  of  SSPs  are  prepared  – Standard  scenario  (SSP1)  – High  mi#ga#on  capacity  scenario  (SSP2)  

•  Dematerializa#on,  transport  demand  decrease,  high  technology    

•  4  climate  forcing  target  – RCP’s  2.6,  4.5,  6.0W/m2  – Addi#onally  3.7  W/m2  

Scenario  concepts SSP1 SSP2

Summary This  scenario  is  what  we  call  business  as  usual  scenario.  The  technology  and  economic  growth  are    just  extension  of  the  historical  trend.  The  decision  making  is  based  on  short-­‐term.  The  equity  would  not  improved.

Educa#onal  and  governance  level  is  high.  The  decision  making  is  based  on  long-­‐term  and  comprehensive.  As  a  results,  high  economic  growth  in  developing  countries  and  low  carbon  economy  are  achieved

Popula#on Medium Medium

Economy Medium Medium  in  OECD,  high  in  non-­‐OECD

Technology Medium High

Equity Not  so  improved Improved

Material  usage

Medium Low

Globaliza#on Medium High

Environment Medium High

Scenario  space

•  SSP1  is  the  reference  scenario  •  SSP2  has  high  mi#ga#on  capacity.  The  equity  improvement  contributes  to  the  adap#on  challenge.

AIM’s  SSP1

AIM’s  SSP2

Shared  Policy  Assump#ons  (SPAs)/    Shared  Socio-­‐economic  Pathways  (SSP)

•  Both  of  SSP1  and  SSP2  are  below  8.5  W/m2  (shown  later)  •  RCP  climate  forcing  target  and  addi#onally  3.7W/m2  are  

examined

Climate  forcing SSP1 SSP2

8.5  W/m2

Non  interven#on

6.0  W/m2

4.5  W/m2

3.7  W/m2

2.6  W/m2

Model  used  for  the  calcula#on

•  Exchange  informa#on  among  AIM  models  •  AIM/CGE  model  is  the  main  tool  for  SSP’s  

– Last  year  the  model  was  renewed  

AIM/CGE AIM/Enduse

AIM/Impact[policy]

Technology  informa#on

Climate  informa#on Climate  informa#on

Main  features  of  a  new  CGE  model New  model Previous  model

region 35  (Asian  countries;  14) 24  (Asian  countries;  8) Industry 38  (manufacture  sector  is  

disaggregated  in  detail) 20

Emissions CO2,  CH4,  N2O,  NH3,  SOx,  NOx,  BC,  OC

Ins#tu#on Household,  government,  Enterprise

Representa#ve  household

Dynamics Recursive  dynamic  (1  year  step)

Recursive  dynamic    (10  year  step)

Base  year 2005 2001

Base  data Original  energy  balance  and  SAM  (data  reconcilia#on  system,  Fujimori  et  al.,  2011)

GTAP  and  IEA  energy  balances

Program GAMS  /  MCP   GAMS  /  MPSGE

Model  Output  +  Assump#ons

•  Popula#on  •  GDP  

– GDP  share  by  industry  •  Energy  supply  •  Mi#ga#on  cost  (carbon  price)  

•  Under  prepara#on  –  Land  use  –  Crop  and  food  demand  and  supply  

SSP  without  climate  mi#ga#on  -­‐popula#on-­‐

•  Popula#on  is  from  UN  popula#on  prospects  medium  case  •  It  almost  corresponds  to  the  AR4’s  median  •  SSP1  and  SSP2  use  the  same  popula#on  scenario.

0

2000

4000

6000

8000

10000

12000

14000

16000

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

Popu

latio

n  (m

il)

AR4  range

AR4  Median

AIM_SSP

SSP  without  climate  mi#ga#on  -­‐GDP-­‐

•  SSP1;  almost  middle  of  the  AR4  range  •  SSP2;  a  liZle  bit  higher  than  SSP1.  This  is  driven  by    non-­‐OECD  country’s  high  growth.

0

100

200

300

400

500

600

700

800

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

GDP  (tril  USD

/year)

AR4  range

AR4  Median

SSP1

SSP2

Equity

•  Compare  GDP/cap  and  gap  between  OECD  and  non-­‐OECD    •  Both  expect  improvements  of  the  equity.  •  SSP2  has  much  higher  improvement  of  inequity.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Non

-­‐OEC

D/OEC

D

SSP1

SSP2 OECD    GDP  /cap

Non-­‐OECD    GDP  /cap

SSP  without  climate  mi#ga#on  -­‐energy  related  emissions-­‐

•  Around  the  median  of  AR4  range  •  SSP2  has  lower  emission  despite  of  high  economic  growth.  

–  Technology  is  high  and  material  demand  is  low.

0

5

10

15

20

25

30

35

40

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

CO2(GtC/year)

AR4  BaU  range

AR4  Median

SSP1

SSP2

SSP  without  climate  mi#ga#on  -­‐Primary  Energy-­‐

•  Energy  supply  is  similar.  –  The  trend  is  extension  of  the  historical  trend.  

•  SSP2  has  stronger  energy  intensity  improvement  (1.5  #mes).  

0

200

400

600

800

1000

1200

1400

1600

1800

2000

EJ/year

SSP1

SSP2

0

2

4

6

8

10

12

14

16

EJ/tril  US$

SSP1

SSP2

Energy  supply Energy  intensity

GHG  emissions  and  its  share

•  SSP1’s  GHG  emissions  •  CO2  increases  the  share  of  GHG  contribu#on.

0

20000

40000

60000

80000

100000

120000

1970

1975

1980

1985

1990

1995

2000

2005

2010

2015

2020

2025

2030

2035

2040

2045

2050

2055

2060

2065

2070

2075

2080

2085

2090

2095

2100

Mt C

O2-

eq/y

ear

BaU

N2O

CH4

CO2

_GHG emission share_WLD

Energy  related  CO2  emissions  by  sectors

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1970

1975

1980

1985

1990

1995

2000

2005

2010

2015

2020

2025

2030

2035

2040

2045

2050

2055

2060

2065

2070

2075

2080

2085

2090

2095

2100

Mtoe/year

BaU

OTH

OEN

PWR

IND

_CO2_WLD

refinery Power Industry

Transport,  Residen#al  and  Commercial

SSP  and  RCP  Radia#ve  Forcing

•  The  values  of  the  radia#ve  forcing  of  both  SSP’s  are  between  of  8.5  and  6.0  W/m2  in  2100  .  

0

1

2

3

4

5

6

7

8

9Ra

diative  Forcing  (W

/m2) SSP1

SSP2

2.6W/m2

3.7W/m2

4.5W/m2

6.0W/m2

8.5W/m2

Emission  pathways  -­‐  SSP  with  SPA  -­‐

•  GHG  emissions  are  forced  to  achieve  climate  target  •  The  emission  pathways  follow  RCPs

-­‐20

0

20

40

60

80

100

120

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

GtCO

2-­‐eq

/  year

SSP1

SSP2

2.6W/m2

3.7W/m2

4.5W/m2

6.0W/m2

Climate  mi#ga#on  cost  -­‐SSP1-­‐

•  Tough  mi#ga#on  targets  require  high  carbon  prices  

0

200

400

600

800

1000

1200

1400

20002010202020302040205020602070208020902100

emission  price  (2005U

S$/t-­‐CO2)

2.6W/m2

3.7W/m2

4.5W/m2

6.0W/m2

Climate  mi#ga#on  cost  -­‐SSP2-­‐

•  The  carbon  prices  are  lower  than  SSP1  

0

100

200

300

400

500

600

700

800

20002010202020302040205020602070208020902100

emission  price  (2005U

S$/t-­‐CO2)

2.6W/m2

3.7W/m2

4.5W/m2

6.0W/m2

Mi#ga#on  cost  comparison  2100’s  carbon  price

•  SSP2’s  mi#ga#on  costs  are  lower  than  SSP1  

SSP2

SSP10200

400

600

800

1000

1200

1400

2.6W/m2 3.7W/m2 4.5W/m26.0W/m2

Emission  price  (2005U

S$/t-­‐CO2)

SSP2

SSP1

Further  steps  and  discussions

•  Food  and  land  related  indicators  will  be  prepared    

•  How  can  we  describe  adapta#on  capability  or  challenges?  –  Equity?  

•  Here  we  proposed  only  two  scenarios  and  they  are  not  so  extremely  different.  Impact  studies  could  require  us  much  different  scenarios.  

Storyline

•  Popula#ons  are  same  •  Equity  is  improved  in  SSP2.    

– The  economic  growth  in  developing  countries  is  rela#vely  high  

•  Technology  is  more  advanced  in  SSP2  

populaFon Economy Technology

Equity Environment

GlobalizaFon

SSP1   Middle Middle Middle Middle Middle Middle

SSP2 Middle High High High Middle High

U#lizing  SSPs:  From  the  view  point  of  global  water  resources  modeling

Naota  Hanasaki,  Shinichiro  Fujimori,    Toshihiko  Masui,  and  Mikiko  Kainuma  Na#onal  Ins#tute  for  Environmental  

Studies

26

Outline

•  Background  and  objec#ve  •  Review  of  water  resources  assessments  •  Methodology  of  AIM  •  Direc#ons  and  challenges  •  Scenarios    •  Results  

Outline

27

Background  and  objec#ve

•  SRES  based  climate  change  impact  assessment  – Big  success  –  Less  interac#on  between  IAM  and  IAV  communi#es  –  Less  linkage  between  adapta#on  and  mi#ga#on  studies  

•  Recent  advances  –  Shared  Socioeconomic  Pathways  (SSPs)  –  Improvements  in  IAV  model  

•  Ac#vity  of  AIM  team  –  Climate  change  impact  assessment  on  global  water  resources  u#lizing  SSPs  and  latest  water  resources  model  

–  Discussing  expected  advances  and  challenges  

Background

28

Review  of  water  resources  assessments

•  IPCC  AR4  (Fresh  water  chapter,  Kundzewicz  et  al.,  2006)  

–  Hydrologists  of  all  over  the  world  –  Emphasis  on  physical  aspects  of  climate  change  –  Limited  availability  of  socio  economic  scenarios  (i.e.  SRES  published  only  basic  variables  for  four  regions)  

Water resources Water stressed population

Review

29

Review  of  water  resources  assessments •  Millennium  Ecosystem  Assessment  (Alcamo  et  al.,  2005)  

–  IAM  specialists  (i.e.  authors  of  the  chapter)  –  Focusing  on  socio-­‐economic  comprehensiveness  (popula#on,  food,  trade,  land  use,  technology…)    

–  (possibly)  Limited  details  in  climate  change  and  hydrology.  

SSPs  would  bridge  AR4  type  and  MEA  type  assessments:  Comprehensiveness  both  in  physical  &  socio-­‐economic  aspects  

Areas under severe water stress Water withdrawal Water resources

Review

30

Global  water  resources  model  H08

Human    AcFvity  

Natural  Water  Cycle  

0.5°×0.5°  

• Characteris#cs  1.  Simulate  both  water  availability  (streamflow)  

and  water  use  at  sub-­‐annual  basis  2.  Deal  with  interac#on  between  natural  

hydrological  cycle  and  anthropogenic  ac#vi#es  

Hanasaki  et  al.,  2006,  J.  of  Hydrol.  Hanasaki  et  al.  ,2008a,b,  Hydrol.  Earth  Sys.  Sci.

31

Methods

Provision  of  clear  storylines  helps  IAV  community    to  prepare  their  own  scenario  by  themselves  

Input  data  requirement  of  H08

Geographical  (0.5°×0.5°) Popula#on   SSPs    provide  Agricultural  water  

Irrigated    area  

SSPs  provide?  If  not,  refer  to  published  reports  that  is  consistent  with  storylines.  

Crop    intensity  

Irriga#on    efficiency  

Industrial  water Domes#c  water Reservoirs   Crop  type

Meteorological  (0.5°×0.5°,  daily) Temperature   Climate  model  

community  provides  

Rela#ve  humidity  Air  pressure  Wind  speed  Short-­‐wave  radia#on  Long-­‐wave  radia#on  Precipita#on  

32

Methods

SSPs  of  AIM  group  and  scenarios  used  for  this  analysis

•  SSPs  proposed  by  AIM  

Methods

33

Climate  forcing SSP1 SSP2

8.5  W/m2

Non  interven#on

6.0  W/m2

4.5  W/m2

3.7  W/m2

2.6  W/m2

reference

mi#ga#on

1.  IAM  assists  IAV:  Regional/Sector-­‐wise  details

•  Dras#c  difference  in  power  genera#on  

•  Advanced  research  topics  for  water  resources  modeling  –  Cooling  water  demand  and  technology  change  

(So  far,  hydrologists  es#mated  industrial  water  by  GDP  and  electricity  consump#on,  e.g.  Alcamo  et  al.,  2003;  Shen  et  al.,  2008)  

– Manufacturing  water  demand  and  technology  change  

0

1000

2000

3000

4000

5000

6000

7000

8000

2005

2010

2015

2020

2025

2030

2035

2040

2045

2050

2055

2060

2065

2070

2075

2080

2085

2090

2095

2100

Mto

e/ye

ar

other renewable

biomass with CCS

biomass wo CCS

nuclear

hydro

Gas with CCS

Oil with CCS

Coal with CCS

Gas wo CCS

Oil wo CCS

Coal wo CCS0

1000

2000

3000

4000

5000

6000

7000

8000

2005

2010

2015

2020

2025

2030

2035

2040

2045

2050

2055

2060

2065

2070

2075

2080

2085

2090

2095

2100

Mto

e/ye

ar

other renewable

biomass with CCS

biomass wo CCS

nuclear

hydro

Gas with CCS

Oil with CCS

Coal with CCS

Gas wo CCS

Oil wo CCS

Coal wo CCS

Reference 550ppm

Research direction

34

2.  IAV  assists  IAM:  Advanced  water  availability  info

•  Water  availability  considering  seasonality  

年単位(従来型)  Required    water

Sustainably  available  water  (stream  flow)

Jan Dec

Deficit

Available  water

Apr Aug

Concept of seasonal water deficit Availability of water (percentage of green part in the left figure)

Hanasaki et al., 2008

Research direction

35

50% 100% 80% 90% 0%

2.  IAV  assists  IAM:  Advanced  water  availability  info

•  Irrigated  cropland  produce  40%  of  all  crops  in  the  world  

•  Source  of  irriga#on  water  –  Precipita#on  (green  water)  –  Irriga#on  (blue  water)  

•  River  •  Stored  water  •  Non  sustainable  water    (ground  water  overuse)  

•  Different  in  –  Opportunity  cost  –  Sustainability  

Source of irrigation water

Hanasaki et al., 2010

Outline

36

3.  Integrated  study:  Detailed  analysis  on  hydropower

•  Change  in  hydropower  poten#al  –  IAV  provides  hydro  power  poten#al  –  IAM  provides  hydro  power  demand  

•  Addi#onal  reservoir  capacity?  – Reservoirs  benefit  both  water  availability  and  power  genera#on.  Reservoirs  play  an  important  role  for  projected  increase  in  precipitaFon  variaFon.

Pokhrel, 2008 Hanasaki et al., 2006

Research direction

37

Challenges

–  Fill  the  gaps  of  #me  and  space  between  IAM  and  H08  models  

•  AIM/CGE  :  Regional  and  annual  basis  •  H08:  Grid  and  daily  basis  (0.5deg)  •  e.g.  Northern  and  southern  China  (or  eastern  and  western  USA)  

show  quite  different    hydrological  condi#on  –  Collect  cost  and  technology  data  in  water  sector  

•  Poor  in  quality  and  spa#al  coverage  •  Time  series  data  hardly  available  

–  Link  IAM  and  IAV  communi#es  •  Discussion  and  mutual  understanding  

Discussion

38

Not to be too ambitious. Feasible research plans and steady research efforts are needed.

Concluding  remarks

•  Request  to  SSPs  ac#vity  from  IAV  modeling  – Comprehensiveness  both  in  physical  &  socio-­‐economic  aspects  

– Provision  of  clear  storylines  helps  IAV  community  to  prepare  their  own  scenario  by  themselves  

•  Advances  and  challenges  of  modeling  – More  interac#on  between  IAM  and  IAV  communi#es  

– Not  to  be  too  ambi#ous.  Feasible  research  plans  and  steady  research  efforts  are  needed  

39

Conclusion

References  cited  in  the  presenta#on  for  global  water  resource  assessment  part

1.  Alcamo,  J.,  Döll,  P.,  Henrichs,  T.,  Kaspar,  F.,  Lehner,  B.,  Rosch,  T.  and  Siebert,  S.,  (2003)  Development  and  tes#ng  of  the  WaterGAP  2  global  model  of  water  use  and  availability,  Hydrolog.  Sci.  J.  48,  317-­‐337.  

2.  Alcamo,  J.,  et  al.(2005)  Changes  in  Ecosystem  Services  and  Their  Drivers  across  the  Scenarios.  In  Ecosystems  and  Human  Well-­‐being:  Scenarios  (The  Millennium  Ecosystem  Assessment).  Hassan,  R.,  Scholes,  R.  and  Ash,  N.  (eds).  Washington,  DC:  Island  Press,  pp.  299-­‐373  

3.  Hanasaki,  N.,  Kanae,  S.  and  Oki,  T.,  (2006)  A  reservoir  opera#on  scheme  for  global  river  rou#ng  models,  J.  Hydrol.  327,  22-­‐41.  

4.  Hanasaki,  N.,  Kanae,  S.,  Oki,  T.,  Masuda,  K.,  Motoya,  K.,  Shirakawa,  N.,  Shen,  Y.  and  Tanaka,  K.,  (2008)  An  integrated  model  for  the  assessment  of  global  water  resources  -­‐  Part  1:  Model  descrip#on  and  input  meteorological  forcing,  Hydrol.  Earth  Syst.  Sci.  12,  1007-­‐1025.  

5.  Hanasaki,  N.,  Kanae,  S.,  Oki,  T.,  Masuda,  K.,  Motoya,  K.,  Shirakawa,  N.,  Shen,  Y.  and  Tanaka,  K.,  (2008)  An  integrated  model  for  the  assessment  of  global  water  resources  -­‐  Part  2:  Applica#ons  and  assessments,  Hydrol.  Earth  Syst.  Sci.  12,  1027-­‐1037.  

6.  Hanasaki,  N.,  Inuzuka,  T.,  Kanae,  S.  and  Oki,  T.,  (2010)  An  es#ma#on  of  global  virtual  water  flow  and  sources  of  water  withdrawal  for  major  crops  and  livestock  products  using  a  global  hydrological  model,  J.  Hydrol.  384,  232-­‐244.  

7.  Kundzewicz,  Z.W.,  et  al.,  (2007)  Freshwater  resources  and  their  management.  In  Climate  Change  2007:  Impacts,  Adapta#on  and  Vulnerability.  Contribu#on  of  Working  Group  II  to  the  Fourth  Assessment  Report  of  the  Intergovernmental  Panel  on  Climate  Change.  Parry,  M.L.,  Canziani,  O.F.,  Palu#kof,  J.P.,  van  der  Linden,  P.J.  and  Hanson,  C.E.  (eds).  Cambridge,  UK:  Cambridge  University  Press,  pp.  173-­‐210.  

8.  Oki,  T.  and  Kanae,  S.,  (2006)  Global  hydrological  cycles  and  world  water  resources,  Science  313,  1068-­‐1072.  9.  Pokhrel,  Y.,  (2008)  Global  Hydropower  Poten#al:  Assessment  and  Analysis  of  the  Impact  of  Climate  Change.  Master’s  

thesis,  Faculty  of  Engineering,  The  University  of  Tokyo.  10.  Shen,  Y.,  Oki,  T.,  Utsumi,  N.,  Kanae,  S.  and  Hanasaki,  N.,  (2008)  Projec#on  of  future  world  water  resources  under  SRES  

scenarios:  Water  withdrawal,  Hydrolog.  Sci.  J.,  11-­‐33.  

References

40