31
Zim´ anyi Winter School, Budapest, 3-7 December, 2012 Integrable aspects of AdS/CFT Z. Bajnok MTA-Lend¨ ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1

Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

Zimanyi Winter School, Budapest, 3-7 December, 2012

Integrable aspects of AdS/CFT

Z. BajnokMTA-Lendulet Holographic QFT Group

Wigner Research Centre for Physics, Budapest

1

Page 2: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

Zimanyi Winter School, Budapest, 3-7 December, 2012

Integrable aspects of AdS/CFT

Z. BajnokMTA-Lendulet Holographic QFT Group

Wigner Research Centre for Physics, Budapest

Minkowski space

Gauge theory

AdS space

string theory

gravity

AdS/CFT correspondencce ⊂ gauge/gravity duality

Page 3: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

Motivation: Organizing matter

2

Page 4: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

Motivation: Organizing matter

Electric interaction

(potential Φ(r) = kZqr )

Quantum mechanics (Schrodinger eq.)

HΨ = (−(~∇)2

2m + Φ(r))Ψ = EΨ

Page 5: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

Motivation: Organizing matter

Electric interaction

(potential Φ(r) = kZqr )

Quantum mechanics (Schrodinger eq.)

HΨ = (−(~∇)2

2m + Φ(r))Ψ = EΨ

Page 6: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

Heavy ion collision

Brookhaven: Relativistic heavy ion collider (gold ion)

3

Page 7: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

Heavy ion collision

Brookhaven: Relativistic heavy ion collider (gold ion)

Page 8: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

Heavy ion collision

Brookhaven: Relativistic heavy ion collider (gold ion)

Page 9: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

Heavy ion collision

Brookhaven: Relativistic heavy ion collider (gold ion)

Meson

spectrum

Page 10: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

Heavy ion collision

Brookhaven: Relativistic heavy ion collider (gold ion)Meson

spectrum

QCD= SU(3) gauge theory:G1..8µ gluon→ F1..8

µν , Ψ123kvark

L = −14F

2 + Ψ(i∂/−m)Ψ− gΨG/Ψ running coupl.: β(αs) = µ∂αs

∂µ< 0

non-perturbative: αs

4π= O(1) asymptotic freedom, confinement

= + ... +

...

Page 11: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

AdS/CFT correspondence: other explanation

Minimal surface

extra dimension

quark

spacetime

anti−quark

L

quark-antiquark potential

non-perturbative

...

4

Page 12: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

AdS/CFT correspondence: other explanation

Minimal surface

extra dimension

quark

spacetime

anti−quark

L

quark-antiquark potential

non-perturbative

...

growing black hole

extra dimension

spacetime

heavy ions

gro

ws

black hole

quar

k−

glu

on p

lasm

a

expan

ds,

cools ≡

Heavy ion collision: expansionheavy ioncollision

thermalization

isotropization

Expansion

Cooling

Hadronization

Page 13: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

QCD ∼ maximally supersymmetric gauge theory = CFT

Fundamental interactions

interaction particles gauge theory

electromagnetic photon+electron U(1)electroweak W±, Z µ,ν+Higgs SU(2)× U(1)

strong gluon+quarks SU(3)

only analytical tool: perturbation theory Energy

Coupling

U(1)

electroweak force

SU(3)

perturbative

non−perturbativeno analytical tool

SU(2)strong force

maximally supersymmetric (N=4) gauge theoryinteraction particles gauge theory

N = 4 supersymm. gluon+quarks+scalars SU(N)

all fields N2 − 1 component matrixΨ1,2,3,4

↗ ↘Aµ Φ1,2,3,4,5,6

↘ ↗Ψ1,2,3,4

L = 2g2YM

∫d4xTr

[−1

4F 2 − 1

2(DΦ)2 + iΨD/Ψ + V

]V (Φ,Ψ) = 1

4[Φ,Φ]2 + Ψ[Φ,Ψ]

no running β = 0→ CFTno confinementsupersymmetric

heavy ion collision:finite T→ SUSY is broken

quark-gluon plasma is not confined

5

Page 14: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

AdS/CFT correspondence (Maldacena 1998)

Minkowski space

Gauge theory

AdS space

string theory

gravity

6

Page 15: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

AdS: string theory on Anti de Sitter ⊃ gravitation

positively curved space

7

Page 16: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

AdS: string theory on Anti de Sitter ⊃ gravitation

positively curved space Anti de Sitter: negatively curved space

Page 17: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

AdS: string theory on Anti de Sitter ⊃ gravitation

positively curved space Anti de Sitter: negatively curved space

Page 18: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

AdS: string theory on Anti de Sitter ⊃ gravitation

positively curved space Anti de Sitter: negatively curved space

relativistic point particle: ds2 = −dx20 + dx2

1 + . . .

S ∝ worldline ∝∫ds =

∫ √x · xdτ x

x

x0

1

2

x( )τ

Page 19: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

AdS: string theory on Anti de Sitter ⊃ gravitation

positively curved space Anti de Sitter: negatively curved space

relativistic point particle: ds2 = −dx20 + dx2

1 + . . .

S ∝ worldline ∝∫ds =

∫ √x · xdτ x

x

x0

1

2

x( )τ

relativistic string: ds2 = −dx20 + dx2

1 + . . .

S ∝ worldsheet ∝∫dA =

∫ √(x · x′)2 − x2x′2dτdσ

x

x

x0

1

2

x( )τ,σ

σ

τ

Page 20: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

AdS: string theory on Anti de Sitter ⊃ gravitation

positively curved space Anti de Sitter: negatively curved space

relativistic point particle: ds2 = −dx20 + dx2

1 + . . .

S ∝ worldline ∝∫ds =

∫ √x · xdτ x

x

x0

1

2

x( )τ

relativistic string: ds2 = −dx20 + dx2

1 + . . .

S ∝ worldsheet ∝∫dA =

∫ √(x · x′)2 − x2x′2dτdσ

x

x

x0

1

2

x( )τ,σ

σ

τ

S5

AdS5

S5 :Y 20 + Y 2

1 + Y 22 + Y 2

3 + Y 24 + Y 2

5 = R2

AdS5 :−X20 +X2

1 +X22 +X2

3 +X24 −X2

5 = −R2

S = R2

α′∫ dτdσ

(∂aXM∂aXM + ∂aYM∂aYM

)+ fermionok supercoset

PSU(2,2|4)SO(5)×SO(1,4)

Page 21: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

AdS/CFT correspondence (Maldacena 1998)

IIB superstring on AdS5 × S5

time

space

extra dimension

anti de Sitter

5D

space

5D sphere

4DMinkowski

space

∑61 Y

2i = R2 −+ + + +− = −R2

R2

α′∫dτdσ4π

(∂aXM∂aXM + ∂aY M∂aYM

)+ . . .

N = 4 D=4 SU(N) SYM

2g2YM

∫d4xTr

[−1

4F 2 − 1

2(DΦ)2 + iΨD/Ψ + V

]V (Φ,Ψ) = 1

4[Φ,Φ]2 + Ψ[Φ,Ψ]

β = 0 superconformalPSU(2,2|4)

SO(5)×SO(1,4)gaugeinvariants:O = Tr(Φ2), det( )

8

Page 22: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

AdS/CFT correspondence (Maldacena 1998)

IIB superstring on AdS5 × S5

time

space

extra dimension

anti de Sitter

5D

space

5D sphere

4DMinkowski

space

∑61 Y

2i = R2 −+ + + +− = −R2

R2

α′∫dτdσ4π

(∂aXM∂aXM + ∂aY M∂aYM

)+ . . .

N = 4 D=4 SU(N) SYM

2g2YM

∫d4xTr

[−1

4F 2 − 1

2(DΦ)2 + iΨD/Ψ + V

]V (Φ,Ψ) = 1

4[Φ,Φ]2 + Ψ[Φ,Ψ]

β = 0 superconformalPSU(2,2|4)

SO(5)×SO(1,4)gaugeinvariants:O = Tr(Φ2), det( )

Dictionary

Couplings:√λ = R2

α′ , gs = λ

N → 0

2D QFTString energy levels: E(λ)

E(λ) = E(∞) + E1√λ

+ E2

λ+ . . .

strong↔weak⇓

λ = g2YMN , N →∞ planar limit

〈On(x)Om(0)〉 = δnm|x|2∆n(λ)

Anomalous dim ∆(λ)∆(λ) = ∆(0) + λ∆1 + λ2∆2 + . . .

Page 23: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

AdS/CFT correspondence (Maldacena 1998)

IIB superstring on AdS5 × S5

time

space

extra dimension

anti de Sitter

5D

space

5D sphere

4DMinkowski

space

∑61 Y

2i = R2 −+ + + +− = −R2

R2

α′∫dτdσ4π

(∂aXM∂aXM + ∂aY M∂aYM

)+ . . .

N = 4 D=4 SU(N) SYM

2g2YM

∫d4xTr

[−1

4F 2 − 1

2(DΦ)2 + iΨD/Ψ + V

]V (Φ,Ψ) = 1

4[Φ,Φ]2 + Ψ[Φ,Ψ]

β = 0 superconformalPSU(2,2|4)

SO(5)×SO(1,4)gaugeinvariants:O = Tr(Φ2), det( )

DictionaryCouplings:

√λ = R2

α′ , gs = λ

N → 0

2D QFTString energy levels: E(λ)

E(λ) = E(∞) + E1√λ

+ E2

λ+ . . .

strong↔weak⇓

λ = g2YMN , N →∞ planar limit

〈On(x)Om(0)〉 = δnm|x|2∆n(λ)

Anomalous dim ∆(λ)∆(λ) = ∆(0) + λ∆1 + λ2∆2 + . . .

2D integrable QFT

spectrum: Q = 1,2, . . . ,∞ dispersion: εQ(p) =√Q2 + λ

π2 sin2 p2

Exact scattering matrix: SQ1Q2(p1, p2, λ)

Page 24: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

AdS/CFT correspondence: confirmation

supersymmetric BPS operators

V (Φ,Ψ) = 14[Φ,Φ]2 + Ψ[Φ,Ψ]

Z = Φ1 + iΦ2, X = Φ3 + iΦ4OBPS = Tr(ZJ)↔ | ↑↑ . . . ↑〉

∆BPS = J

weak↔strong

BPS string configurationS

5

J

EBPS(λ) = J

9

Page 25: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

AdS/CFT correspondence: confirmation

supersymmetric BPS operators

V (Φ,Ψ) = 14[Φ,Φ]2 + Ψ[Φ,Ψ]

Z = Φ1 + iΦ2, X = Φ3 + iΦ4OBPS = Tr(ZJ)↔ | ↑↑ . . . ↑〉

∆BPS = J

weak↔strong

BPS string configurationS

5

J

EBPS(λ) = J

2D integrable QFTsupersymmetric groundstate E0(J) = ∆(λ)− J = 0

Page 26: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

AdS/CFT correspondence: confirmation

supersymmetric BPS operators

V (Φ,Ψ) = 14[Φ,Φ]2 + Ψ[Φ,Ψ]

Z = Φ1 + iΦ2, X = Φ3 + iΦ4OBPS = Tr(ZJ)↔ | ↑↑ . . . ↑〉

∆BPS = J

weak↔strong

BPS string configurationS

5

J

EBPS(λ) = J

2D integrable QFTsupersymmetric groundstate E0(J) = ∆(λ)− J = 0

Nontrivial anomalous dimension

supersymmetric theory: Excited stateOK = Tr(ZXZX + ...)↔ | ↑↓↑↓〉+ .

Page 27: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

Confirmation: excited state - Konishi operator

nonsupersymmetric operator: KonishiOK = Tr(ZXZX + ...)↔ | ↑↓↑↓〉+ .

operator mixing

∆(λ) = ∆(0) + λ∆1 + . . .+ λ4∆4+

[Fiamberti ..’08]

∆4 = −2496 + 576ζ3 − 1440ζ5

string configurationS

5

p

−p

J

moving bumps (sine-Gordon) [Hofman .. ’07]

string action=saddle point+loop corr.E(λ) = E(∞) + E1√

λ+ E2

λ+ . . .

10

Page 28: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

Confirmation: excited state - Konishi operator

nonsupersymmetric operator: KonishiOK = Tr(ZXZX + ...)↔ | ↑↓↑↓〉+ .

operator mixing

∆(λ) = ∆(0) + λ∆1 + . . .+ λ4∆4+

[Fiamberti ..’08]

∆4 = −2496 + 576ζ3 − 1440ζ5

string configurationS

5

p

−p

J

moving bumps (sine-Gordon) [Hofman .. ’07]

string action=saddle point+loop corr.E(λ) = E(∞) + E1√

λ+ E2

λ+ . . .

two particle state

E = EBA + EFSCBethe Ansatz: eipJS(p,−p) = 1

EBA = 2E(p, λ) = 2√

1 + λπ2(sin p

2)2

EFSC =∑Q∫ dq

2πSQ1(q, p)SQ1(q,−p)e−εQL

E4 = ∆4 = −2496 + 576ζ3 − 1440ζ5 [Z.B., R. Janik ’09]

Page 29: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

AdS/CFT correspondence: applications

Minimal surface

extra dimension

quark

spacetime

anti−quark

L

exact for strong coupling λ→∞

quark-antiquark potential

Wilson loop: 〈∮C Aµdx

µ〉non-perturbative

V (r) = −4π2√

2λΓ(1

4)41r

11

Page 30: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

AdS/CFT correspondence: applicationsMinimal surface

extra dimension

quark

spacetime

anti−quark

L

exact for strong coupling λ→∞

quark-antiquark potential

Wilson loop: 〈∮C Aµdx

µ〉non-perturbative

V (r) = −4π2√

2λΓ(1

4)41r

growing black hole

extra dimension

spacetime

heavy ions

gro

ws

black hole

quar

k−

glu

on p

lasm

a

expan

ds,

cools

metric δg(x,0) ∝ 〈Tµν〉ds2 = 1

z2 (g(x, z)µνdxµdxν + dz2)

Einstein equationRab − 1

2gabR− 6gab = 0

growing black holegtt = − (1−z4/z4

0)2

(1+z4/z40)2 ; gxx = 1 + z4

z40

Heavy ion collision: expansionheavy ioncollision

thermalization

isotropization

Expansion

Cooling

Hadronization

〈Tµν〉 matter distributionrelativistic hydrodynamics∂µTµν = 0 and T

µµ = 0

viscous quark-gluon plasma

expansion in time: perfect fluid + ηs = 1

4π +...

Page 31: Integrable aspects of AdS/CFT Z. Bajnokbajnok/Zimanyi12.pdf · Z. Bajnok MTA-Lend ulet Holographic QFT Group Wigner Research Centre for Physics, Budapest 1. Zim anyi Winter School,

Conclusion= Trust the AdS/CFT correspondence!

Minkowski space

Gauge theory

AdS space

string theory

gravity

extra dimension

spacetime

heavy ions

gro

ws

black hole

quar

k−

glu

on p

lasm

a

expan

ds,

cools

12