181
Institute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size effects in integrable models: planar AdS/CFT Zolt´ an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, otv¨ os University, Budapest 1

research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Institute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo

Finite size effects in integrable models: planar AdS/CFTZoltan Bajnok,

Theoretical Physics Research Group of the Hungarian Academy of Sciences,

Eotvos University, Budapest

1

Page 2: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Institute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo

Finite size effects in integrable models: planar AdS/CFTZoltan Bajnok,

Theoretical Physics Research Group of the Hungarian Academy of Sciences,

Eotvos University, Budapest

IIB superstring on AdS5 × S5∑51 Y

2i = R2 −+ + +− = −R2

R2

α′∫dτdσ4π

(∂aXM∂aXM + ∂aY M∂aYM

)+ . . .

N = 4 D=4 SU(N) SYMAµ,Ψi,Ψi,Φa

2gYM

∫d4xTr

[−1

4F 2 − 1

2(DΦ)2 + iΨD/Ψ + V

]V (Φ,Ψ) = 1

4[Φ,Φ]2 + Ψ[Φ,Ψ]

gaugeinvariant ope: O = Tr(Φ2)

Couplings:√λ = R2

α′ , gs = λ

N → 0

QM for string: 2D field theoryString spectrum E(λ)

E(λ) = E(∞) + E1√λ

+ E2

λ+ . . .

strong↔weak⇓

λ = g2YMN , N →∞ planar

〈On(x)Om(0)〉 = δnm|x|2∆n(λ)

Anomalous dim ∆(λ)∆(λ) = ∆(0) + λ∆1 + λ2∆2+

AdS←→integrable model←→CFT

Page 3: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Institute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo

Finite size effects in integrable models: planar AdS/CFTZoltan Bajnok,

Theoretical Physics Research Group of the Hungarian Academy of Sciences,

Eotvos University, Budapest

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Finite J (volume) integrable models: (Lee-Yang, sinh-Gordon, sine-Gordon)←→AdS/CFT

Page 4: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

2

Page 5: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

g

J

Page 6: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

g

Classical string theory

J

Page 7: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

g

Classical string theory

Semiclassical string theory

J

Page 8: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

g

Classical string theory

Semiclassical string theory

J

+ string loop corrections

Quantum String theory

Page 9: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Quantum String theory

Page 10: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

+ gauge loop corrections

Page 11: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Page 12: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Page 13: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Need finite J (volume) solution of the spectral problem

Page 14: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk I: Finite size effects in integrable models

3

Page 15: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk I: Finite size effects in integrable models

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Page 16: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk I: Finite size effects in integrable models

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Page 17: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk I: Finite size effects in integrable models

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Lee-Yang, sinh-Gordon, sine-Gordon+−

Bn

B

B B

B

Page 18: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk I: Finite size effects in integrable models

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Lee-Yang, sinh-Gordon, sine-Gordon+−

Bn

B

B B

B

Finite volume: Asymptotic Bethe Ansatz:

p

2p

n

p1

Page 19: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk I: Finite size effects in integrable models

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Lee-Yang, sinh-Gordon, sine-Gordon+−

Bn

B

B B

B

Finite volume: Asymptotic Bethe Ansatz:

p

2p

n

p1

Luscher correction

Page 20: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk I: Finite size effects in integrable models

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Lee-Yang, sinh-Gordon, sine-Gordon+−

Bn

B

B B

B

Finite volume: Asymptotic Bethe Ansatz:

p

2p

n

p1

Luscher correction

Exact groundstate: TBA,

L

Re−H(R) L

L

e−H(L)R

R

Page 21: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrable models: sin(e/h)-Gordon theory

sine-Gordon0

V

2 πβ φ target 0

2πβ β ↔ ib sinh-Gordon

0

V

φ target οο

οο

L = 12(∂φ)2 − m2

β2 (1− cosβφ) L = 12(∂φ)2 − m2

b2(cosh bφ− 1)

4

Page 22: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrable models: sin(e/h)-Gordon theory

sine-Gordon0

V

2 πβ φ target 0

2πβ β ↔ ib sinh-Gordon

0

V

φ target οο

οο

L = 12(∂φ)2 − m2

β2 (1− cosβφ) L = 12(∂φ)2 − m2

b2(cosh bφ− 1)

Classicalfinite energy

solutions:

x

φ

x

φ

x

φ

sine-Gordon theory soliton anti-soliton breather

Page 23: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrable models: sin(e/h)-Gordon theory

sine-Gordon0

V

2 πβ φ target 0

2πβ β ↔ ib sinh-Gordon

0

V

φ target οο

οο

L = 12(∂φ)2 − m2

β2 (1− cosβφ) L = 12(∂φ)2 − m2

b2(cosh bφ− 1)

Classicalfinite energy

solutions:

x

φ

x

φ

x

φ

sine-Gordon theory soliton anti-soliton breather

Classical factorized scattering: time delays sums up ∆T1(v1, v2, . . . , vn) =∑i∆T1(v1, vi)

Τ vvv1 2 n> > ... >

.

v Τ1

v <2< ... <vn

Page 24: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

5

Page 25: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Page 26: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

p p1

pn2

∆(Q)

Page 27: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

Page 28: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

p p

S−matrix

1

21> >...>

p’p’m

< p’2

<...<

pn

Page 29: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

p p

S−matrix

1

21> >...>

p’p’m

< p’2

<...<

pn

(Q)∆

(Q)∆

Page 30: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

p p

S−matrix

1

21> >...>

p’p’m

< p’2

<...<

pn

(Q)∆

(Q)∆

Higher spin concerved charge

factorization + Yang-Baxter equation

S123 = S23S13S12 = S12S13S23

p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

S-matrix = scalar . Matrix

Page 31: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry:

p p21

> >...> pn

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

p p

S−matrix

1

21> >...>

p’p’m

< p’2

<...<

pn

(Q)∆

(Q)∆

Higher spin concerved charge

factorization + Yang-Baxter equation

S123 = S23S13S12 = S12S13S23p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

S-matrix = scalar . Matrix

Unitarity S12S21 = Id

Crossing symmetry S12 = S21Maximal analyticity: all poles have physical origin→ boundstates, anomalous thresholds

Page 32: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

6

Page 33: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1

Crossing symmetry S(θ) = S(iπ − θ)

Maximal analyticity: all poles have physical origin

Page 34: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1

Crossing symmetry S(θ) = S(iπ − θ)

Maximal analyticity: all poles have physical origin

Minimal solution: S(θ) = 1 Free boson

Page 35: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1

Crossing symmetry S(θ) = S(iπ − θ)

Maximal analyticity: all poles have physical origin

Minimal solution: S(θ) = 1 Free boson

CDD factor: S(θ) = sinh θ−i sin pπsinh θ+i sin pπ Sinh-Gordon

V ∼ cosh bφ↔ b2

8π+b2= p > 0

Page 36: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1

Crossing symmetry S(θ) = S(iπ − θ)

Maximal analyticity: all poles have physical origin

Minimal solution: S(θ) = 1 Free boson

CDD factor: S(θ) = sinh θ−i sin pπsinh θ+i sin pπ Sinh-Gordon

V ∼ cosh bφ↔ b2

8π+b2= p > 0

Maximal analyticity: S(θ) = sinh θ+i sin pπsinh θ−i sin pπ

pole at θ = ipπ →boundstate B2

bootstrap: S12(θ)=S11(θ − ipπ2

)S11(θ + ipπ2

)

new particle if p 6= 23 Lee-Yang

Page 37: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1Crossing symmetry S(θ) = S(iπ − θ)Maximal analyticity: all poles have physical origin

Minimal solution: S(θ) = 1 Free boson

CDD factor: S(θ) = sinh θ−i sin pπsinh θ+i sin pπ Sinh-Gordon

V ∼ cosh bφ↔ b2

8π+b2= p > 0

Maximal analyticity: S(θ) = sinh θ+i sin pπsinh θ−i sin pπ

pole at θ = ipπ →boundstate B2

bootstrap: S12(θ)=S11(θ − ipπ2

)S11(θ + ipπ2

)

new particle if p 6= 23 Lee-Yang

Maximal analyticity:

all poles have physical origin

→sine-Gordon solitons

θιπ

S11

ipπ

B2

θιπ

S

ipπ/23ipπ/2

12

B3. . .

θιπ

S1n

π/2ip(n+1)(n−1)ipπ/2

Bn

Page 38: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: sine-Gordon

Nondiagonal scattering: S-matrix = scalar . Matrix soliton doublet

(ss

)

Matrix:

global symmetry Uq(sl2)

2d evaluation reps

[S,∆(Q)] = 0S−matrix

(Q)∆

∆ (Q)

−1 0 0 0

0 − sinλπsinλ(π+iθ)

sin iλθsinλ(π+iθ) 0

0 sin iλθsinλ(π+iθ)

− sinλπsinλ(π+iθ) 0

0 0 0 −1

7

Page 39: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: sine-Gordon

Nondiagonal scattering: S-matrix = scalar . Matrix soliton doublet

(ss

)

Matrix:

global symmetry Uq(sl2)

2d evaluation reps

[S,∆(Q)] = 0S−matrix

(Q)∆

∆ (Q)

−1 0 0 0

0 − sinλπsinλ(π+iθ)

sin iλθsinλ(π+iθ) 0

0 sin iλθsinλ(π+iθ)

− sinλπsinλ(π+iθ) 0

0 0 0 −1

Unitarity

S(θ)S(−θ) = 1

Crossing symmetry

S(θ) = Sc1(iπ − θ)

∏∞l=1

[Γ(2(l−1)λ+λiθ

π )Γ(2lλ+1+λiθπ )

Γ((2l−1)λ+λiθπ )Γ((2l−1)λ+1+λiθ

π )/(θ → −θ)

]

Page 40: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: sine-Gordon

Nondiagonal scattering: S-matrix = scalar . Matrix soliton doublet

(ss

)

Matrix:

global symmetry Uq(sl2)2d evaluation reps

[S,∆(Q)] = 0

S−matrix

(Q)∆

∆ (Q)

−1 0 0 0

0 − sinλπsinλ(π+iθ)

sin iλθsinλ(π+iθ) 0

0 sin iλθsinλ(π+iθ)

− sinλπsinλ(π+iθ) 0

0 0 0 −1

Unitarity

S(θ)S(−θ) = 1

Crossing symmetry

S(θ) = Sc1(iπ − θ)

∏∞l=1

[Γ(2(l−1)λ+λiθ

π )Γ(2lλ+1+λiθπ )

Γ((2l−1)λ+λiθπ )Γ((2l−1)λ+1+λiθ

π )/(θ → −θ)

]

Maximal analyticity:

all poles have physical origin

either boundstates or

anomalous thresholds

p = λ−1+−

Bn

B

B B

B

Page 41: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: sine-Gordon

Nondiagonal scattering: S-matrix = scalar . Matrix soliton doublet

(ss

)

Matrix:

global symmetry Uq(sl2)2d evaluation reps

[S,∆(Q)] = 0

S−matrix

(Q)∆

∆ (Q)

−1 0 0 0

0 − sinλπsinλ(π+iθ)

sin iλθsinλ(π+iθ) 0

0 sin iλθsinλ(π+iθ)

− sinλπsinλ(π+iθ) 0

0 0 0 −1

Unitarity

S(θ)S(−θ) = 1Crossing symmetry

S(θ) = Sc1(iπ − θ)

∏∞l=1

[Γ(2(l−1)λ+λiθ

π )Γ(2lλ+1+λiθπ )

Γ((2l−1)λ+λiθπ )Γ((2l−1)λ+1+λiθ

π )/(θ → −θ)

]

Maximal analyticity:

all poles have physical origin

either boundstates or

anomalous thresholds

p = λ−1+−

Bn

B

B B

B

θιπ

S+−+−

(1−np)ιπ

...

...

Page 42: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

8

Page 43: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 44: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 45: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Page 46: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

Page 47: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Page 48: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Non-diagonal, sine-Gordon

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −Pn

1 2 j... ...p p p

p

Page 49: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Non-diagonal, sine-Gordon

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −Pn

1 2 j... ...p p p

p

Inhomogenous XXZ spin-chain spectral problem eiL sinh θjT (θj)S0(θj) = −1

Page 50: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Non-diagonal, sine-Gordon

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −Pn

1 2 j... ...p p p

p

Inhomogenous XXZ spin-chain spectral problem eiL sinh θjT (θj)S0(θj) = −1

T (θ)Q(θ) = Q(θ+iπ)T0(θ− iπ2 )+Q(θ−iπ)T0(θ+ iπ2 ) = Q++T−+Q−−T+

Page 51: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Non-diagonal, sine-Gordon

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −P

n

1 2 j... ...p p p

p

Inhomogenous XXZ spin-chain spectral problem eiL sinh θjT (θj)S0(θj) = −1

T (θ)Q(θ) = Q(θ+iπ)T0(θ− iπ2 )+Q(θ−iπ)T0(θ+ iπ2 ) = Q++T−+Q−−T+

Q(θ) =∏β sinh(λ(θ − wβ))

T0(θ) =∏j sinh(λ(θ − θj))

Bethe Ansatz:T0(wα−iπ2 )Q(wα+iπ)

T0(wα+iπ2 )Q(wα−iπ)

=T−0 Q

++

T+0 Q−−

|α = −1

Page 52: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

9

Page 53: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 54: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 55: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Luscher originally: O(e−mL) mass correction

m(L) =√

32 m(−iRes

θ=2iπ3S)e−

√3

2 mL

−∫ dθ

2π cosh θ(S(θ + iπ2 )− 1)e−mL cosh θ

Page 56: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Luscher originally: O(e−mL) mass correction

m(L) =√

32 m(−iRes

θ=2iπ3S)e−

√3

2 mL

−∫ dθ

2π cosh θ(S(θ + iπ2 )− 1)e−mL cosh θ

Multiparticle Luscher correction

BY: S(pj, p1) . . .S(pj, pn)Ψ = −e−ipjLΨ

T (p, p1, . . . , pn)Ψ = t(p, p1, . . . , pn,Ψ)Ψ

Page 57: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Luscher originally: O(e−mL) mass correction

m(L) =√

32 m(−iRes

θ=2iπ3S)e−

√3

2 mL

−∫ dθ

2π cosh θ(S(θ + iπ2 )− 1)e−mL cosh θ

Multiparticle Luscher correction

BY: S(pj, p1) . . .S(pj, pn)Ψ = −e−ipjLΨ

T (p, p1, . . . , pn)Ψ = t(p, p1, . . . , pn,Ψ)Ψ

Modified momenta:

pjL− i log t(pj, p1, . . . , pn,Ψ) = (2n+ 1)π + Φj

Φj =∫ dq

2πddpjt(q, p1, . . . , pn,Ψ)e−LE(q)

Page 58: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrumn

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Luscher originally: O(e−mL) mass correction

m(L) =√

32 m(−iRes

θ=2iπ3S)e−

√3

2 mL

−∫ dθ

2π cosh θ(S(θ + iπ2 )− 1)e−mL cosh θ

Multiparticle Luscher correction

BY: S(pj, p1) . . .S(pj, pn)Ψ = −e−ipjLΨT (p, p1, . . . , pn)Ψ = t(p, p1, . . . , pn,Ψ)Ψ

Modified momenta:

pjL− i log t(pj, p1, . . . , pn,Ψ) = (2n+ 1)π + Φj

Φj =∫ dq

2πddpjt(q, p1, . . . , pn,Ψ)e−LE(q)

Modified energy:

E(p1, . . . , pn) =∑kE(pk + δpk)−

∫ dq2πt(q, p1, . . . , pn,Ψ)e−LE(q)

Page 59: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

10

Page 60: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 61: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 62: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Page 63: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Page 64: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Dominant contribution: finite particle/hole density ρ, ρh:p2π

L

Page 65: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Dominant contribution: finite particle/hole density ρ, ρh:p2π

L

En(R) =∑

iE(pi)→∫E(p)ρ(p)dp

pjR+∑

k1i

logS(pj, pk) = (2n+ 1)iπ −→ R+∫

(−idp logS(p, p′))ρ(p′)dp

′= 2π(ρ+ ρh)

Page 66: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Dominant contribution: finite particle/hole density ρ, ρh:p2π

L

En(R) =∑

iE(pi)→∫E(p)ρ(p)dp

pjR+∑

k1i

logS(pj, pk) = (2n+ 1)iπ −→ R+∫

(−idp logS(p, p′))ρ(p′)dp

′= 2π(ρ+ ρh)

Z(L,R) =∫d[ρ, ρh]e−LE(R)−

∫((ρ+ρh) ln(ρ+ρh)−ρ ln ρ−ρh ln ρh)dp

Page 67: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Dominant contribution: finite particle/hole density ρ, ρh:p2π

L

En(R) =∑

iE(pi)→∫E(p)ρ(p)dp

pjR+∑

k1i

logS(pj, pk) = (2n+ 1)iπ −→ R+∫

(−idp logS(p, p′))ρ(p′)dp

′= 2π(ρ+ ρh)

Z(L,R) =∫d[ρ, ρh]e−LE(R)−

∫((ρ+ρh) ln(ρ+ρh)−ρ ln ρ−ρh ln ρh)dp

Saddle point : ε(p) = ln ρh(p)ρ(p) ε(p) = E(p)L+

∫ dp2πidp logS(p′, p) log(1 + e−ε(p

′))

Ground state energy exactly: E0(L) = −∫ dp

2π log(1 + e−ε(p)) Lee-Yang, sinh-Gordon

Page 68: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk II: Planar AdS/CFT

11

Page 69: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk II: Planar AdS/CFT

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Page 70: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk II: Planar AdS/CFT

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Quantization of integrable models: sine-Gordon model: PCFT

Page 71: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk II: Planar AdS/CFT

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Quantization of integrable models: sine-Gordon model: PCFT

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Page 72: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk II: Planar AdS/CFT

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Quantization of integrable models: sine-Gordon model: PCFT

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Lee-Yang, sinh-Gordon, sine-Gordon↔ AdS σmodel+−

Bn

B

B B

B

Page 73: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk II: Planar AdS/CFT

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Quantization of integrable models: sine-Gordon model: PCFT

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Lee-Yang, sinh-Gordon, sine-Gordon↔ AdS σmodel+−

Bn

B

B B

B

Finite volume: Asymptotic Bethe Ansatz:

p

2p

n

p1

Page 74: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk II: Planar AdS/CFT

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Quantization of integrable models: sine-Gordon model: PCFT

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Lee-Yang, sinh-Gordon, sine-Gordon↔ AdS σmodel+−

Bn

B

B B

B

Finite volume: Asymptotic Bethe Ansatz:

p

2p

n

p1

Luscher correction

Page 75: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk II: Planar AdS/CFT

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Quantization of integrable models: sine-Gordon model: PCFT

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Lee-Yang, sinh-Gordon, sine-Gordon↔ AdS σmodel+−

Bn

B

B B

B

Finite volume: Asymptotic Bethe Ansatz:

p

2p

n

p1

Luscher correction

Exact: groundstate TBA,

L

Re−H(R) L

L

e−H(L)R

R

Page 76: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk II: Planar AdS/CFT

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Quantization of integrable models: sine-Gordon model: PCFT

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Lee-Yang, sinh-Gordon, sine-Gordon↔ AdS σmodel+−

Bn

B

B B

B

Finite volume: Asymptotic Bethe Ansatz:

p

2p

n

p1

Luscher correction

Exact: groundstate TBA,

L

Re−H(R) L

L

e−H(L)R

R

Excited TBA, Y-system, NLIE...

p

p+1

Page 77: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrable models: sin(e/h)-Gordon theory

sine-Gordon0

V

2 πβ φ target 0

2πβ β ↔ ib sinh-Gordon

0

V

φ target οο

οο

L = 12(∂φ)2 − m2

β2 (1− cosβφ) L = 12(∂φ)2 − m2

b2(cosh bφ− 1)

12

Page 78: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrable models: sin(e/h)-Gordon theory

sine-Gordon0

V

2 πβ φ target 0

2πβ β ↔ ib sinh-Gordon

0

V

φ target οο

οο

L = 12(∂φ)2 − m2

β2 (1− cosβφ) L = 12(∂φ)2 − m2

b2(cosh bφ− 1)

Classicalfinite energy

solutions:

x

φ

x

φ

x

φ

sine-Gordon theory soliton anti-soliton breather

Page 79: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrable models: sin(e/h)-Gordon theory

sine-Gordon0

V

2 πβ φ target 0

2πβ β ↔ ib sinh-Gordon

0

V

φ target οο

οο

L = 12(∂φ)2 − m2

β2 (1− cosβφ) L = 12(∂φ)2 − m2

b2(cosh bφ− 1)

Classicalfinite energy

solutions:

x

φ

x

φ

x

φ

sine-Gordon theory soliton anti-soliton breather

Integrability: ∂xAt − ∂tAx + [Ax, At] = 0↔ T (λ) = TrP exp∮A(x)µdxµ

Ax(µ) = i2

(2µ β∂+ϕ

−β∂+ϕ −2µ

)At(µ) = 1

4iµ

(cosβϕ −i sinβϕi sinβϕ − cosβϕ

)T

gTg−1

Page 80: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrable models: sin(e/h)-Gordon theory

sine-Gordon0

V

2 πβ φ target 0

2πβ β ↔ ib sinh-Gordon

0

V

φ target οο

οο

L = 12(∂φ)2 − m2

β2 (1− cosβφ) L = 12(∂φ)2 − m2

b2(cosh bφ− 1)

Classicalfinite energy

solutions:

x

φ

x

φ

x

φ

sine-Gordon theory soliton anti-soliton breather

Integrability: ∂xAt − ∂tAx + [Ax, At] = 0↔ T (λ) = TrP exp∮A(x)µdxµ

Ax(µ) = i2

(2µ β∂+ϕ

−β∂+ϕ −2µ

)At(µ) = 1

4iµ

(cosβϕ −i sinβϕi sinβϕ − cosβϕ

)T

gTg−1

conserved Q±1[ϕ] = E[ϕ]± P [ϕ] =∫ {1

2(∂±ϕ)2 + m2

β2 (1− cosβϕ)}dx

charges: Q±3[ϕ] =∫ {1

2(∂2±ϕ)2 − 1

8(∂±ϕ)4 + m2

β2 (∂±ϕ)2(1− cosβϕ)}

Page 81: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrable models: sin(e/h)-Gordon theory

sine-Gordon0

V

2 πβ φ target 0

2πβ β ↔ ib sinh-Gordon

0

V

φ target οο

οο

L = 12(∂φ)2 − m2

β2 (1− cosβφ) L = 12(∂φ)2 − m2

b2(cosh bφ− 1)

Classicalfinite energy

solutions:

x

φ

x

φ

x

φ

sine-Gordon theory soliton anti-soliton breather

Integrability: ∂xAt − ∂tAx + [Ax, At] = 0↔ T (λ) = TrP exp∮A(x)µdxµ

Ax(µ) = i2

(2µ β∂+ϕ

−β∂+ϕ −2µ

)At(µ) = 1

4iµ

(cosβϕ −i sinβϕi sinβϕ − cosβϕ

)T

gTg−1

Classical factorized scattering: time delays sums up ∆T1(v1, v2, . . . , vn) =∑i∆T1(v1, vi)

Τ vvv1 2 n> > ... >

.

v Τ1

v <2< ... <vn

Page 82: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrability: AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

AdS σ modelτ

σ target

AdS5

S5

L = R2

α′(∂aXM∂aXM + ∂aYM∂aYM

)+ fermions

13

Page 83: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrability: AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

AdS σ modelτ

σ target

AdS5

S5

L = R2

α′(∂aXM∂aXM + ∂aYM∂aYM

)+ fermions

Classical solutions are found, for example magnon:

S5

p

−p

J

Page 84: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrability: AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

AdS σ modelτ

σ target

AdS5

S5

L = R2

α′(∂aXM∂aXM + ∂aYM∂aYM

)+ fermions

Classical solutions are found, for example magnon:

S5

p

−p

J

Coset NLσ model: g ∈ PSU(2,2|4)SO(4,1)×SO(5) J = g−1dg = J||+ J⊥

Z4 graded structure:

J⊥ → J0, J1, J2, J3 L ∝ STr(J2 ∧ ∗J2)− STr(J1 ∧ J3)

Page 85: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrability: AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

AdS σ modelτ

σ target

AdS5

S5

L = R2

α′(∂aXM∂aXM + ∂aYM∂aYM

)+ fermions

Classical solutions are found, for example magnon:

S5

p

−p

J

Coset NLσ model: g ∈ PSU(2,2|4)SO(4,1)×SO(5) J = g−1dg = J||+ J⊥

Z4 graded structure:

J⊥ → J0, J1, J2, J3L ∝ STr(J2 ∧ ∗J2)− STr(J1 ∧ J3)

Integrability from flat connection: dA−A ∧A = 0

A(µ) = J0 + µ−1J1 + (µ2 + µ−2)J2/2 + (µ2 + µ−2)J2/2 + µJ3

Conserved charges from the trace of the monodromy matrix

T (µ) = P exp∮A(x)µdxµ

T

gTg−1

Page 86: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Quantum integrability: sine-Gordon L = 12(∂φ)2 − m2

β2 (1− cosβφ)

Perturbed Conformal Field Theory Lagrangian perturbation theory

LCFT + λLpert = 12(∂φ)2 + λ(Vβ + V−β) L0 + Vpert = 1

2(∂φ)2 − m2

2 φ2 − β2U

hβ = β2 definite scaling Vβ =: eiβφ : semiclassical=free

14

Page 87: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Quantum integrability: sine-Gordon L = 12(∂φ)2 − m2

β2 (1− cosβφ)

Perturbed Conformal Field Theory Lagrangian perturbation theory

LCFT + λLpert = 12(∂φ)2 + λ(Vβ + V−β) L0 + Vpert = 1

2(∂φ)2 − m2

2 φ2 − β2U

hβ = β2 definite scaling Vβ =: eiβφ : semiclassical=free

Quantum conservation laws∂−Λ4 = 0→ ∂−Λ4 = λ∂+Θ2

[λ] = 2− hβ, [Λ4] = 4,

Nonlocal symmetries Uq(sl2)

Correlators=∑loops Feynmandiagrams

Asymptotic states E(p) =√p2 +m2

S-matrix↔correlators LSZunitarity, crossing symmetry, analyticity

Bootstrap scheme

Quantum integrability: AdS no proof !

Page 88: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

15

Page 89: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Page 90: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

p p1

pn2

∆(Q)

Page 91: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

Page 92: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

p p

S−matrix

1

21> >...>

p’p’m

< p’2

<...<

pn

Page 93: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

p p

S−matrix

1

21> >...>

p’p’m

< p’2

<...<

pn

(Q)∆

(Q)∆

Page 94: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

p p

S−matrix

1

21> >...>

p’p’m

< p’2

<...<

pn

(Q)∆

(Q)∆

Higher spin concerved charge

factorization + Yang-Baxter equation

S123 = S23S13S12 = S12S13S23

p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

S-matrix = scalar . Matrix

Page 95: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry:

p p21

> >...> pn

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

p p

S−matrix

1

21> >...>

p’p’m

< p’2

<...<

pn

(Q)∆

(Q)∆

Higher spin concerved charge

factorization + Yang-Baxter equation

S123 = S23S13S12 = S12S13S23p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

S-matrix = scalar . Matrix

Unitarity S12S21 = Id

Crossing symmetry S12 = S21Maximal analyticity: all poles have physical origin→ boundstates, anomalous thresholds

Page 96: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

16

Page 97: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1

Crossing symmetry S(θ) = S(iπ − θ)

Maximal analyticity: all poles have physical origin

Page 98: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1

Crossing symmetry S(θ) = S(iπ − θ)

Maximal analyticity: all poles have physical origin

Minimal solution: S(θ) = 1 Free boson

Page 99: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1

Crossing symmetry S(θ) = S(iπ − θ)

Maximal analyticity: all poles have physical origin

Minimal solution: S(θ) = 1 Free boson

CDD factor: S(θ) = sinh θ−i sin pπsinh θ+i sin pπ Sinh-Gordon

V ∼ cosh bφ↔ b2

8π+b2= p > 0

Page 100: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1

Crossing symmetry S(θ) = S(iπ − θ)

Maximal analyticity: all poles have physical origin

Minimal solution: S(θ) = 1 Free boson

CDD factor: S(θ) = sinh θ−i sin pπsinh θ+i sin pπ Sinh-Gordon

V ∼ cosh bφ↔ b2

8π+b2= p > 0

Maximal analyticity: S(θ) = sinh θ+i sin pπsinh θ−i sin pπ

pole at θ = ipπ →boundstate B2

bootstrap: S12(θ)=S11(θ − ipπ2

)S11(θ + ipπ2

)

new particle if p 6= 23 Lee-Yang

Page 101: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1Crossing symmetry S(θ) = S(iπ − θ)Maximal analyticity: all poles have physical origin

Minimal solution: S(θ) = 1 Free boson

CDD factor: S(θ) = sinh θ−i sin pπsinh θ+i sin pπ Sinh-Gordon

V ∼ cosh bφ↔ b2

8π+b2= p > 0

Maximal analyticity: S(θ) = sinh θ+i sin pπsinh θ−i sin pπ

pole at θ = ipπ →boundstate B2

bootstrap: S12(θ)=S11(θ − ipπ2

)S11(θ + ipπ2

)

new particle if p 6= 23 Lee-Yang

Maximal analyticity:

all poles have physical origin

→sine-Gordon solitons

θιπ

S11

ipπ

B2

θιπ

S

ipπ/23ipπ/2

12

B3. . .

θιπ

S1n

π/2ip(n+1)(n−1)ipπ/2

Bn

Page 102: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: sine-Gordon

Nondiagonal scattering: S-matrix = scalar . Matrix soliton doublet

(ss

)

Matrix:

global symmetry Uq(sl2)

2d evaluation reps

[S,∆(Q)] = 0S−matrix

(Q)∆

∆ (Q)

−1 0 0 0

0 − sinλπsinλ(π+iθ)

sin iλθsinλ(π+iθ) 0

0 sin iλθsinλ(π+iθ)

− sinλπsinλ(π+iθ) 0

0 0 0 −1

17

Page 103: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: sine-Gordon

Nondiagonal scattering: S-matrix = scalar . Matrix soliton doublet

(ss

)

Matrix:

global symmetry Uq(sl2)

2d evaluation reps

[S,∆(Q)] = 0S−matrix

(Q)∆

∆ (Q)

−1 0 0 0

0 − sinλπsinλ(π+iθ)

sin iλθsinλ(π+iθ) 0

0 sin iλθsinλ(π+iθ)

− sinλπsinλ(π+iθ) 0

0 0 0 −1

Unitarity

S(θ)S(−θ) = 1

Crossing symmetry

S(θ) = Sc1(iπ − θ)

∏∞l=1

[Γ(2(l−1)λ+λiθ

π )Γ(2lλ+1+λiθπ )

Γ((2l−1)λ+λiθπ )Γ((2l−1)λ+1+λiθ

π )/(θ → −θ)

]

Page 104: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: sine-Gordon

Nondiagonal scattering: S-matrix = scalar . Matrix soliton doublet

(ss

)

Matrix:

global symmetry Uq(sl2)2d evaluation reps

[S,∆(Q)] = 0

S−matrix

(Q)∆

∆ (Q)

−1 0 0 0

0 − sinλπsinλ(π+iθ)

sin iλθsinλ(π+iθ) 0

0 sin iλθsinλ(π+iθ)

− sinλπsinλ(π+iθ) 0

0 0 0 −1

Unitarity

S(θ)S(−θ) = 1

Crossing symmetry

S(θ) = Sc1(iπ − θ)

∏∞l=1

[Γ(2(l−1)λ+λiθ

π )Γ(2lλ+1+λiθπ )

Γ((2l−1)λ+λiθπ )Γ((2l−1)λ+1+λiθ

π )/(θ → −θ)

]

Maximal analyticity:

all poles have physical origin

either boundstates or

anomalous thresholds

p = λ−1+−

Bn

B

B B

B

Page 105: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: sine-Gordon

Nondiagonal scattering: S-matrix = scalar . Matrix soliton doublet

(ss

)

Matrix:

global symmetry Uq(sl2)2d evaluation reps

[S,∆(Q)] = 0

S−matrix

(Q)∆

∆ (Q)

−1 0 0 0

0 − sinλπsinλ(π+iθ)

sin iλθsinλ(π+iθ) 0

0 sin iλθsinλ(π+iθ)

− sinλπsinλ(π+iθ) 0

0 0 0 −1

Unitarity

S(θ)S(−θ) = 1Crossing symmetry

S(θ) = Sc1(iπ − θ)

∏∞l=1

[Γ(2(l−1)λ+λiθ

π )Γ(2lλ+1+λiθπ )

Γ((2l−1)λ+λiθπ )Γ((2l−1)λ+1+λiθ

π )/(θ → −θ)

]

Maximal analyticity:

all poles have physical origin

either boundstates or

anomalous thresholds

p = λ−1+−

Bn

B

B B

B

θιπ

S+−+−

(1−np)ιπ

...

...

Page 106: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Nondiagonal scattering: S-matrix = scalar . Matrix

18

Page 107: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Nondiagonal scattering: S-matrix = scalar . Matrix

Matrix:

global symmetry PSU(2|2)2

Q = 1 reps

b1

b2

f3

f4

⊗ b1

b2f3f4

[S,∆(Q)] = 0S−matrix

(Q)∆

∆ (Q)

Page 108: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Nondiagonal scattering: S-matrix = scalar . Matrix

Matrix:

global symmetry PSU(2|2)2

Q = 1 reps

b1

b2

f3

f4

⊗ b1

b2f3f4

[S,∆(Q)] = 0S−matrix

(Q)∆

∆ (Q)

1 . . . . . . . . . . . . . . .. A . . −b . . . . . . −c . . c .. . d . . . . . e . . . . . . .. −b . .d . . . . . . . . e . . .. . . . A . . . . . . c . . −c .. . . . . 1 . . . . . . . . . .. . . . . . d . .e . . . . . . .. . . . . . . d . . . . . e . .. . f . . . . . g . . . . . . .. . . . . . f . . g . . . . . .. . . . . . . . . . a . . . . .. −h . . h . . . . . . B . . −i .. . . f . . . . . . . . g . . .. . . . . . . f . . . . . g . .. h . . −h . . . . . . −i . . B .. . . . . . . . . . . . . . . a

Page 109: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Nondiagonal scattering: S-matrix = scalar . Matrix

Matrix:

global symmetry PSU(2|2)2

Q = 1 reps

b1

b2

f3

f4

⊗ b1

b2f3f4

[S,∆(Q)] = 0S−matrix

(Q)∆

∆ (Q)

1 . . . . . . . . . . . . . . .. A . . −b . . . . . . −c . . c .. . d . . . . . e . . . . . . .. −b . .d . . . . . . . . e . . .. . . . A . . . . . . c . . −c .. . . . . 1 . . . . . . . . . .. . . . . . d . .e . . . . . . .. . . . . . . d . . . . . e . .. . f . . . . . g . . . . . . .. . . . . . f . . g . . . . . .. . . . . . . . . . a . . . . .. −h . . h . . . . . . B . . −i .. . . f . . . . . . . . g . . .. . . . . . . f . . . . . g . .. h . . −h . . . . . . −i . . B .. . . . . . . . . . . . . . . a

Unitarity

S(z1, z2)S(z2, z1) = 1

Crossing symmetry

S(z1, z2) = Sc1(z2, z1 + ω2)

S1111 = u1−u2−i

u1−u2+iei2θ(z1,z2)

u = 12

cot p2E(p)

p = 2 am(z)

Page 110: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Nondiagonal scattering: S-matrix = scalar . Matrix

Matrix:

global symmetry PSU(2|2)2

Q = 1 reps

b1

b2

f3

f4

⊗ b1

b2f3f4

[S,∆(Q)] = 0S−matrix

(Q)∆

∆ (Q)

1 . . . . . . . . . . . . . . .. A . . −b . . . . . . −c . . c .. . d . . . . . e . . . . . . .. −b . .d . . . . . . . . e . . .. . . . A . . . . . . c . . −c .. . . . . 1 . . . . . . . . . .. . . . . . d . .e . . . . . . .. . . . . . . d . . . . . e . .. . f . . . . . g . . . . . . .. . . . . . f . . g . . . . . .. . . . . . . . . . a . . . . .. −h . . h . . . . . . B . . −i .. . . f . . . . . . . . g . . .. . . . . . . f . . . . . g . .. h . . −h . . . . . . −i . . B .. . . . . . . . . . . . . . . a

Unitarity

S(z1, z2)S(z2, z1) = 1

Crossing symmetry

S(z1, z2) = Sc1(z2, z1 + ω2)

S1111 = u1−u2−i

u1−u2+iei2θ(z1,z2)

u = 12

cot p2E(p)

p = 2 am(z)

Maximal analyticity:

boundstates atyp symrep: Q ∈ N

anomalous thresholds Physical domain?1 Q

Q 1

1Q ω /2

−ω /2 ω /2

ω2

2

1 1

Page 111: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

19

Page 112: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 113: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 114: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Page 115: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

Page 116: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Page 117: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Non-diagonal, sine-Gordon

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −Pn

1 2 j... ...p p p

p

Page 118: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Non-diagonal, sine-Gordon

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −Pn

1 2 j... ...p p p

p

Inhomogenous XXZ spin-chain spectral problem eiL sinh θjT (θj)S0(θj) = −1

Page 119: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Non-diagonal, sine-Gordon

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −Pn

1 2 j... ...p p p

p

Inhomogenous XXZ spin-chain spectral problem eiL sinh θjT (θj)S0(θj) = −1

T (θ)Q(θ) = Q(θ+iπ)T0(θ− iπ2 )+Q(θ−iπ)T0(θ+ iπ2 ) = Q++T−+Q−−T+

Page 120: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Non-diagonal, sine-Gordon

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −P

n

1 2 j... ...p p p

p

Inhomogenous XXZ spin-chain spectral problem eiL sinh θjT (θj)S0(θj) = −1

T (θ)Q(θ) = Q(θ+iπ)T0(θ− iπ2 )+Q(θ−iπ)T0(θ+ iπ2 ) = Q++T−+Q−−T+

Q(θ) =∏β sinh(λ(θ − wβ))

T0(θ) =∏j sinh(λ(θ − θj))

Bethe Ansatz:T0(wα−iπ2 )Q(wα+iπ)

T0(wα+iπ2 )Q(wα−iπ)

=T−0 Q

++

T+0 Q−−

|α = −1

Page 121: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bethe-Yang=Asymptotic Bethe Ansatz

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Finite volume spectrump

2p

n

p1

20

Page 122: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bethe-Yang=Asymptotic Bethe Ansatz

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Finite volume spectrump

2p

n

p1

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) E(p) =

√1 + (4g sin p

2)2 pi ∈ [−π, π]

Page 123: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bethe-Yang=Asymptotic Bethe Ansatz

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tionFinite volume spectrum

p

2p

n

p1

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) E(p) =

√1 + (4g sin p

2)2 pi ∈ [−π, π]

Polynomial volume corrections:

Asymptotic Bethe Ansatz; pi quantized, .

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −Pn

1 2 j... ...p p p

p

Page 124: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bethe-Yang=Asymptotic Bethe Ansatz

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Finite volume spectrump

2p

n

p1

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) E(p) =

√1 + (4g sin p

2)2 pi ∈ [−π, π]

Polynomial volume corrections:

Asymptotic Bethe Ansatz; pi quantized, .

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −Pn

1 2 j... ...p p p

p

Inhomogenous Hubbard2 spin-chain: eiLpjS20(uj)

Q++4 (uj)

Q−−4 (uj)T (uj)T (uj) = −1

Page 125: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bethe-Yang=Asymptotic Bethe Ansatz

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tionFinite volume spectrum

p

2p

n

p1

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) E(p) =

√1 + (4g sin p

2)2 pi ∈ [−π, π]

Polynomial volume corrections:

Asymptotic Bethe Ansatz; pi quantized, .

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −Pn

1 2 j... ...p p p

p

Inhomogenous Hubbard2 spin-chain: eiLpjS20(uj)

Q++4 (uj)

Q−−4 (uj)T (uj)T (uj) = −1

T (u) =B−1 B

+3 R−(+)4

B+1 B−3 R−(−)4

[Q−−2 Q+

3Q2Q

−3− R

−(−)4 Q+

3

R−(+)4 Q−3

+Q++

2 Q−1Q2Q

+1

− B+(+)4 Q−1

B+(−)4 Q+

1

]

Qj(u) = −Rj(u)Bj(u) and R(±)j =

∏k

x(u)−x∓j,k√x∓j,k

B(±)j =

∏k

1

x(u)−x∓j,k√x∓j,k

Page 126: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bethe-Yang=Asymptotic Bethe Ansatz

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tionFinite volume spectrum

p

2p

n

p1

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) E(p) =

√1 + (4g sin p

2)2 pi ∈ [−π, π]

Polynomial volume corrections:

Asymptotic Bethe Ansatz; pi quantized, .

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −P

n

1 2 j... ...p p p

p

Inhomogenous Hubbard2 spin-chain: eiLpjS20(uj)

Q++4 (uj)

Q−−4 (uj)T (uj)T (uj) = −1

T (u) =B−1 B

+3 R−(+)4

B+1 B−3 R−(−)4

[Q−−2 Q+

3Q2Q

−3− R

−(−)4 Q+

3

R−(+)4 Q−3

+Q++

2 Q−1Q2Q

+1

− B+(+)4 Q−1

B+(−)4 Q+

1

]

Qj(u) = −Rj(u)Bj(u) and R(±)j =

∏k

x(u)−x∓j,k√x∓j,k

B(±)j =

∏k

1

x(u)−x∓j,k√x∓j,k

Bethe Ansatz:Q+

2 B(−)4

Q−2B(+)4

|1 = 1Q−−2 Q+

1 Q+3

Q++2 Q−1Q

−3

|2 = −1Q+

2 R(−)4

Q−2R(+)4

|3 = 1

Page 127: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

21

Page 128: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 129: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 130: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Luscher originally: O(e−mL) mass correction

m(L) =√

32 m(−iRes

θ=2iπ3S)e−

√3

2 mL

−∫ dθ

2π cosh θ(S(θ + iπ2 )− 1)e−mL cosh θ

Page 131: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Luscher originally: O(e−mL) mass correction

m(L) =√

32 m(−iRes

θ=2iπ3S)e−

√3

2 mL

−∫ dθ

2π cosh θ(S(θ + iπ2 )− 1)e−mL cosh θ

Multiparticle Luscher correction

BY: S(pj, p1) . . .S(pj, pn)Ψ = −e−ipjLΨ

T (p, p1, . . . , pn)Ψ = t(p, p1, . . . , pn,Ψ)Ψ

Page 132: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Luscher originally: O(e−mL) mass correction

m(L) =√

32 m(−iRes

θ=2iπ3S)e−

√3

2 mL

−∫ dθ

2π cosh θ(S(θ + iπ2 )− 1)e−mL cosh θ

Multiparticle Luscher correction

BY: S(pj, p1) . . .S(pj, pn)Ψ = −e−ipjLΨ

T (p, p1, . . . , pn)Ψ = t(p, p1, . . . , pn,Ψ)Ψ

Modified momenta:

pjL− i log t(pj, p1, . . . , pn,Ψ) = (2n+ 1)π + Φj

Φj =∫ dq

2πddpjt(q, p1, . . . , pn,Ψ)e−LE(q)

Page 133: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrumn

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Luscher originally: O(e−mL) mass correction

m(L) =√

32 m(−iRes

θ=2iπ3S)e−

√3

2 mL

−∫ dθ

2π cosh θ(S(θ + iπ2 )− 1)e−mL cosh θ

Multiparticle Luscher correction

BY: S(pj, p1) . . .S(pj, pn)Ψ = −e−ipjLΨT (p, p1, . . . , pn)Ψ = t(p, p1, . . . , pn,Ψ)Ψ

Modified momenta:

pjL− i log t(pj, p1, . . . , pn,Ψ) = (2n+ 1)π + Φj

Φj =∫ dq

2πddpjt(q, p1, . . . , pn,Ψ)e−LE(q)

Modified energy:

E(p1, . . . , pn) =∑kE(pk + δpk)−

∫ dq2πt(q, p1, . . . , pn,Ψ)e−LE(q)

Page 134: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher/wrapping correction in AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Finite volume spectrum n

1 2 j... ...p p p

p

22

Page 135: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher/wrapping correction in AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Finite volume spectrum n

1 2 j... ...p p p

p

One particle correction:

∆(L) =(1− E′(p)E

′(p0)

)(−iResp=p0

∑b S)e−E(p)L

-∑b∫∞−∞

dp2π

(1− E′(p)E

′(p)

)(Sbaba(p, p)− 1)e−E(p)L

Page 136: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher/wrapping correction in AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Finite volume spectrum n

1 2 j... ...p p p

p

One particle correction:

∆(L) =(1− E′(p)E

′(p0)

)(−iResp=p0

∑b S)e−E(p)L

-∑b∫∞−∞

dp2π

(1− E′(p)E

′(p)

)(Sbaba(p, p)− 1)e−E(p)L

Two particle Luscher correction (Konishi)

BY: j = 1,2 S(pj, p1)S(pj, p2)Ψ = −e−ipjLΨ

T (p, p1, p2)Ψ = t(p, p1, p2,Ψ)Ψ

Page 137: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher/wrapping correction in AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Finite volume spectrum n

1 2 j... ...p p p

p

One particle correction:

∆(L) =(1− E′(p)E

′(p0)

)(−iResp=p0

∑b S)e−E(p)L

-∑b∫∞−∞

dp2π

(1− E′(p)E

′(p)

)(Sbaba(p, p)− 1)e−E(p)L

Two particle Luscher correction (Konishi)

BY: j = 1,2 S(pj, p1)S(pj, p2)Ψ = −e−ipjLΨ

T (p, p1, p2)Ψ = t(p, p1, p2,Ψ)Ψ

Modified momenta:

pjL− i log t(pj, p1, p2,Ψ) = (2n+ 1)π + Φj∫ dp2π

ddp1

t(p, p1, p2,Ψ)e−LE(p) 6= Φ1 = −∫ dp

2π( ddpS(p, p1))S(p, p2)e−LE(p)

Page 138: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher/wrapping correction in AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Finite volume spectrumn

1 2 j... ...p p p

p

One particle correction:

∆(L) =(1− E′(p)E

′(p0)

)(−iResp=p0

∑b S)e−E(p)L

-∑b∫∞−∞

dp2π

(1− E′(p)E

′(p)

)(Sbaba(p, p)− 1)e−E(p)L

Two particle Luscher correction (Konishi)

BY: j = 1,2 S(pj, p1)S(pj, p2)Ψ = −e−ipjLΨT (p, p1, p2)Ψ = t(p, p1, p2,Ψ)Ψ

Modified momenta:

pjL− i log t(pj, p1, p2,Ψ) = (2n+ 1)π + Φj∫ dp2π

ddp1

t(p, p1, p2,Ψ)e−LE(p) 6= Φ1 = −∫ dp

2π( ddpS(p, p1))S(p, p2)e−LE(p)

Modified energy:

E(p1, p2) =∑kE(pk + δpk)−

∫ dq2πt(q, p1, p2,Ψ)e−LE(q)

Page 139: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

23

Page 140: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 141: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 142: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Page 143: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Page 144: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Dominant contribution: finite particle/hole density ρ, ρh:p2π

L

Page 145: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Dominant contribution: finite particle/hole density ρ, ρh:p2π

L

En(R) =∑

iE(pi)→∫E(p)ρ(p)dp

pjR+∑

k1i

logS(pj, pk) = (2n+ 1)iπ −→ R+∫

(−idp logS(p, p′))ρ(p′)dp

′= 2π(ρ+ ρh)

Page 146: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Dominant contribution: finite particle/hole density ρ, ρh:p2π

L

En(R) =∑

iE(pi)→∫E(p)ρ(p)dp

pjR+∑

k1i

logS(pj, pk) = (2n+ 1)iπ −→ R+∫

(−idp logS(p, p′))ρ(p′)dp

′= 2π(ρ+ ρh)

Z(L,R) =∫d[ρ, ρh]e−LE(R)−

∫((ρ+ρh) ln(ρ+ρh)−ρ ln ρ−ρh ln ρh)dp

Page 147: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Dominant contribution: finite particle/hole density ρ, ρh:p2π

L

En(R) =∑

iE(pi)→∫E(p)ρ(p)dp

pjR+∑

k1i

logS(pj, pk) = (2n+ 1)iπ −→ R+∫

(−idp logS(p, p′))ρ(p′)dp

′= 2π(ρ+ ρh)

Z(L,R) =∫d[ρ, ρh]e−LE(R)−

∫((ρ+ρh) ln(ρ+ρh)−ρ ln ρ−ρh ln ρh)dp

Saddle point : ε(p) = ln ρh(p)ρ(p) ε(p) = E(p)L+

∫ dp2πidp logS(p′, p) log(1 + e−ε(p

′))

Ground state energy exactly: E0(L) = −∫ dp

2π log(1 + e−ε(p)) Lee-Yang, sinh-Gordon

Page 148: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: non-diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

24

Page 149: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: non-diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Finite particle/hole + Bethe root density ρ0, ρ0h, ρ

i, ρih:

eiLpT S0|j = −1,T−0 Q

++

T+0 Q−−

|α = −1

p2πL

ιπ2

ιπp

periodicity ιπ /p

Page 150: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: non-diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Finite particle/hole + Bethe root density ρ0, ρ0h, ρ

i, ρih:

eiLpT S0|j = −1,T−0 Q

++

T+0 Q−−

|α = −1

p2πL

ιπ2

ιπp

periodicity ιπ /p

En(R) =∑

iE(pi)→∫E(p)ρ0(p)dp

Rδm0 +∫Kmn (p, p′)ρn(p

′)dp

′= 2π(ρm + ρmh )

Page 151: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: non-diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Finite particle/hole + Bethe root density ρ0, ρ0h, ρ

i, ρih:

eiLpT S0|j = −1,T−0 Q

++

T+0 Q−−

|α = −1

p2πL

ιπ2

ιπp

periodicity ιπ /p

En(R) =∑

iE(pi)→∫E(p)ρ0(p)dp

Rδm0 +∫Kmn (p, p′)ρn(p

′)dp

′= 2π(ρm + ρmh )

Z(L,R) =∫d[ρi, ρih]e−LE(R)−

∑i

∫((ρi+ρih) ln(ρi+ρih)−ρi ln ρi−ρih ln ρih)dp

Page 152: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: non-diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Finite particle/hole + Bethe root density ρ0, ρ0h, ρ

i, ρih:

eiLpT S0|j = −1,T−0 Q

++

T+0 Q−−

|α = −1

p2πL

ιπ2

ιπp

periodicity ιπ /p

En(R) =∑

iE(pi)→∫E(p)ρ0(p)dp

Rδm0 +∫Kmn (p, p′)ρn(p

′)dp

′= 2π(ρm + ρmh )

Z(L,R) =∫d[ρi, ρih]e−LE(R)−

∑i

∫((ρi+ρih) ln(ρi+ρih)−ρi ln ρi−ρih ln ρih)dp

Saddle point : εi(θ) = − ln ρi(p)ρih(p) εj(θ) = δ

j0E(p)L−

∫Kji (p′, p) log(1 + e−ε

i(p′))dp′

Ground state energy exactly: E0(L) = −∫ dp

2π log(1 + e−ε0(θ))dθ

Page 153: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Ground-state energy exactly L

Euclidien E2 + (4g sin p2)2 = 1 partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

25

Page 154: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Ground-state energy exactly L

Euclidien E2 + (4g sin p2)2 = 1 partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Finite particle/hole + Bethe root density ρQ, ρQh , ρ

i, ρih: i

no periodicity

Page 155: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Ground-state energy exactly L

Euclidien E2 + (4g sin p2)2 = 1 partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Finite particle/hole + Bethe root density ρQ, ρQh , ρ

i, ρih: i

no periodicity

En(R) =∑

i,Q EQ(pi)→∑

Q

∫EQ(p)ρQ(p)dp

eiLpS20Q++

4

Q−−4

T T |4 = −1 Q+2 B

(−)4

Q−2B(+)4

|1 = 1 Q−−2 Q+1 Q

+3

Q++2 Q−1Q

−3

|2 = −1 Q+2 R

(−)4

Q−2R(+)4

|3 = 1

∫Kmn (p, p′)ρn(p

′)dp

′= 2π(ρm + ρmh )

Page 156: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Ground-state energy exactly L

Euclidien E2 + (4g sin p2)2 = 1 partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Finite particle/hole + Bethe root density ρQ, ρQh , ρ

i, ρih: i

no periodicity

En(R) =∑

i,Q EQ(pi)→∑

Q

∫EQ(p)ρQ(p)dp

eiLpS20Q++

4

Q−−4

T T |4 = −1 Q+2 B

(−)4

Q−2B(+)4

|1 = 1 Q−−2 Q+1 Q

+3

Q++2 Q−1Q

−3

|2 = −1 Q+2 R

(−)4

Q−2R(+)4

|3 = 1

∫Kmn (p, p′)ρn(p

′)dp

′= 2π(ρm + ρmh )

Z(L,R) =∫d[ρi, ρih]e−LE(R)−

∑i

∫((ρi+ρih) ln(ρi+ρih)−ρi ln ρi−ρih ln ρih)dp

Page 157: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Ground-state energy exactly L

Euclidien E2 + (4g sin p2)2 = 1 partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Finite particle/hole + Bethe root density ρQ, ρQh , ρ

i, ρih: i

no periodicity

En(R) =∑

i,Q EQ(pi)→∑

Q

∫EQ(p)ρQ(p)dp

eiLpS20Q++

4

Q−−4

T T |4 = −1 Q+2 B

(−)4

Q−2B(+)4

|1 = 1 Q−−2 Q+1 Q

+3

Q++2 Q−1Q

−3

|2 = −1 Q+2 R

(−)4

Q−2R(+)4

|3 = 1∫Kmn (p, p′)ρn(p

′)dp

′= 2π(ρm + ρmh )

Z(L,R) =∫d[ρi, ρih]e−LE(R)−

∑i

∫((ρi+ρih) ln(ρi+ρih)−ρi ln ρi−ρih ln ρih)dp

Saddle point : εi(p) = − ln ρi(p)ρih(p) εj(θ) = δ

jQEQ(p)L−

∫Kji (p, p′) log(1 + e−ε

i(p′))dp′

Ground state energy exactly: E0(L) = −∑Q∫ dp

2π log(1 + e−εQ(p))dp

Page 158: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: diagonal

Excited states exactlyp

2p

n

p1

26

Page 159: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: diagonal

Excited states exactlyp

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 160: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: diagonal

Excited states exactlyp

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

By lattice regularization: sinh-Gordon

i π/2

ε(θ) = mL cosh θ +∫dθ′

2πidθ logS(θ−θ

′) log(1+e−ε(θ

′))

E{nj}(L) = −m∫dθ

2πcosh θ log(1+e−ε(θ))

Page 161: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: diagonal

Excited states exactlyp

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

By lattice regularization: sinh-Gordon

i π/2

ε(θ) = mL cosh θ+∑

logS(θ − θj)+∫dθ′

2πidθ logS(θ−θ

′) log(1+e−ε(θ

′))

E{nj}(L) = −m∫dθ

2πcosh θ log(1+e−ε(θ))

Page 162: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: diagonal

Excited states exactlyp

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

By lattice regularization: sinh-Gordon

i π/2

ε(θ) = mL cosh θ+∑

logS(θ − θj)+∫dθ′

2πidθ logS(θ−θ

′) log(1+e−ε(θ

′))

E{nj}(L) =m

i

∑sinh θj−m

∫dθ

2πcosh θ log(1+e−ε(θ))

Page 163: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: diagonal

Excited states exactlyp

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

By lattice regularization: sinh-Gordon

i π/2

ε(θ) = mL cosh θ+∑

logS(θ − θj)+∫dθ′

2πidθ logS(θ−θ

′) log(1+e−ε(θ

′))

E{nj}(L) =m

i

∑sinh θj−m

∫dθ

2πcosh θ log(1+e−ε(θ)) ; Y (θj) = eε(θj) = −1

Page 164: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: diagonal

Excited states exactlyp

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

By lattice regularization: sinh-Gordon

i π/2

ε(θ) = mL cosh θ+∑

logS(θ − θj)+∫dθ′

2πidθ logS(θ−θ

′) log(1+e−ε(θ

′))

E{nj}(L) =m

i

∑sinh θj−m

∫dθ

2πcosh θ log(1+e−ε(θ)) ; Y (θj) = eε(θj) = −1

By analytical continuation: Lee-Yang

i π/6

π/6−i

ε(θ) = mL cosh θ −∫ ∞−∞

dθ′

2πφ(θ − θ

′) log(1 + e−ε(θ

′))

E{nj}(L) = −m∫ ∞−∞

2πcosh θ log(1 + e−ε(θ))

Luscher corrections: differ by µ term

Page 165: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: diagonal

Excited states exactlyp

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

By lattice regularization: sinh-Gordon

i π/2

ε(θ) = mL cosh θ+∑

logS(θ − θj)+∫dθ′

2πidθ logS(θ−θ

′) log(1+e−ε(θ

′))

E{nj}(L) =m

i

∑sinh θj−m

∫dθ

2πcosh θ log(1+e−ε(θ)) ; Y (θj) = eε(θj) = −1

By analytical continuation: Lee-Yang

i π/6

π/6−i

ε(θ) = mL cosh θ+N∑j=1

logS(θ − θj)S(θ − θ∗j)

−∫ ∞−∞

dθ′

2πφ(θ − θ

′) log(1 + e−ε(θ

′))

E{nj}(L) = −m∫ ∞−∞

2πcosh θ log(1 + e−ε(θ))

Luscher corrections: differ by µ term

Page 166: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: diagonal

Excited states exactlyp

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

By lattice regularization: sinh-Gordon

i π/2

ε(θ) = mL cosh θ+∑

logS(θ − θj)+∫dθ′

2πidθ logS(θ−θ

′) log(1+e−ε(θ

′))

E{nj}(L) =m

i

∑sinh θj−m

∫dθ

2πcosh θ log(1+e−ε(θ)) ; Y (θj) = eε(θj) = −1

By analytical continuation: Lee-Yang

i π/6

π/6−i

ε(θ) = mL cosh θ+N∑j=1

logS(θ − θj)S(θ − θ∗j)

−∫ ∞−∞

dθ′

2πφ(θ − θ

′) log(1 + e−ε(θ

′))

E{nj}(L) = −im∑

(sinh θj − sinh θ∗j)−m∫ ∞−∞

2πcosh θ log(1 + e−ε(θ))

Luscher corrections: differ by µ term

S(θ − iπ3 )S(θ + iπ

3 ) = S(θ)→ Y (θ + iπ3 )Y (θ − iπ

3 ) = 1 + Y (θ)

Y-system+analyticity=TBA <-> scalar . Matrix

Page 167: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: Non-diagonal

Excited states exactlyn

1 2 j... ...p p p

p

27

Page 168: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: Non-diagonal

Excited states exactlyn

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 169: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: Non-diagonal

Excited states exactlyn

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 170: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: Non-diagonal

Excited states exactlyn

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Y-system: sine-Gordon p2πL

ιπ2

ιπp

periodicity ιπ /p

Ys(θ + iπp2 )Ys(θ − iπp

2 ) = (1 + Ys−1)(1 + Ys+1)

(eiπp2 ∂ + e−

iπp2 ∂) logYs =

∑r Isr log(1 + Yr)

...

p

p+1

Page 171: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: Non-diagonal

Excited states exactlyn

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Y-system: sine-Gordon p2πL

ιπ2

ιπp

periodicity ιπ /p

Ys(θ + iπp2 )Ys(θ − iπp

2 ) = (1 + Ys−1)(1 + Ys+1)

(eiπp2 ∂ + e−

iπp2 ∂) logYs =

∑r Isr log(1 + Yr)

...

p

p+1

Excited states: analyticity from Luscher

Lattice regularization:Λ

ΛΛ

Λ

ΛΛ

ΛΛ

−Λ−Λ

−Λ−Λ

−Λ−Λ

−Λ−Λ

sG

Page 172: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: Non-diagonal

Excited states exactlyn

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Y-system: sine-Gordon p2πL

ιπ2

ιπp

periodicity ιπ /p

Ys(θ + iπp2 )Ys(θ − iπp

2 ) = (1 + Ys−1)(1 + Ys+1)

(eiπp2 ∂ + e−

iπp2 ∂) logYs =

∑r Isr log(1 + Yr)

...

p

p+1

Excited states: analyticity from Luscher

Lattice regularization:Λ

ΛΛ

Λ

ΛΛ

ΛΛ

−Λ−Λ

−Λ−Λ

−Λ−Λ

−Λ−Λ

sG

Z(θ) = ML sinh θ+source(θ|{θk})+2=m∫dxG(θ−x−iε) log

[1− (−1)δeiZ(x+iε)

]source(θ|{θk}) =

∑k sgnk(−i) logS++

++(θ−θk) kernel: G(θ) = −i∂θ logS++++(θ)

Energy: E = M∑k sgnk cosh θk−2M=m

∫dxG(θ+iε) log

[1− (−1)δeiZ(x+iε)

]Bethe-Yang eiZ(θk) = −1

Page 173: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Excited states exactlyn

1 2 j... ...p p p

p

28

Page 174: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Excited states exactlyn

1 2 j... ...p p p

p

Y-system: AdS

i

no periodicity

Ya,s(θ+ i2)Ya,s(θ− i

2)Ya+1,sYa−1,s

=(1+Ya,s−1)(1+Ya,s+1)(1+Ya+1,s)(1+Ya−1,s)

Page 175: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Excited states exactlyn

1 2 j... ...p p p

p

Y-system: AdS

i

no periodicity

Ya,s(θ+ i2)Ya,s(θ− i

2)Ya+1,sYa−1,s

=(1+Ya,s−1)(1+Ya,s+1)(1+Ya+1,s)(1+Ya−1,s)

Excited states: analyticity from Luscher

Lattice regularization: ?

Page 176: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Conclusion

29

Page 177: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Conclusion

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Page 178: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Conclusion

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Page 179: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Conclusion

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

S-matrix = scalar . Matrix

physical sheet, explanation of all the poles

Page 180: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Conclusion

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

S-matrix = scalar . Matrix

physical sheet, explanation of all the poles

Excited states = analiticity . Y-system

Analytical structure of all excited states

Page 181: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Conclusion

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

S-matrix = scalar . Matrix

physical sheet, explanation of all the poles

Excited states = analiticity . Y-system

Analytical structure of all excited states

lattice?