42
Analog and Mixed-Signal Center, TAMU 607 Spring’12 1 Input 2 Input Output By Edgar Sánchez-Sinencio

Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Analog and Mixed-Signal Center, TAMU607 Spring’12

1Input

2Input

Output

By Edgar Sánchez-Sinencio

Page 2: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

multipliers.ppt

MultipliersWhat is a multiplier?

How do you obtain a multiplier?

.dimensionssuitableith constant w a isK andoutput theis Zsignals,input thearey and x

WhereKxyZ

x

y

Z

)t(v

)t(v)t(v

2

1

i)t(v)t(kvi 210

3i

2ii0

cv

bvavi

i.e.,Device

Nonlinear

scheme oncancellati

tyNonlineari

Fig. 1 Basic idea of multiplier

Page 3: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Transconductance-Mode Multiplier

1mG 1mG

1mG

2mG

1v 1v

1v

2v

1biasI1biasI

1biasI

2biasI2i 2i

0i 0i

122110 vkvvki

(a)(b)

(c)

1mG

2mG1v 2v 1biasI

2biasI

2i

1mG

1biasI

2110 vvki

1mG

2mG

1biasI

2biasI2i

1mG

2i

1biasI

2110 vvk2i

1v

2v

1v

(d) (e)

Fig. 2 Multiplication operation using programmable transconductor

Page 4: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

How Does It Work?

)t(v)t(vk2)t(i2(e). . Figin dillustrate as inputs

aldifferentifully are vand vand ,uctor transcondaldifferentifully a becomes )(Guctor transcond third when theachieved ison cancellatiBetter . 2(d) . Fig

in shown as eliminated becan component This . )t(vk ,component unwantedan and , )t( vand )t( vsignals twooftion multiplica therepresents )t(i , Thus

)t(vk)t(v)t(vk)t(ior

V2

)t(vIV2V2

)t(v)t(vI)t(vV2

IV2

)t(v)t(vG)t(i

)t(vV2

)t(vGIvG)t(i

V2

IG

becomes G or,ansconductbipolar tr aFor )I(GG

where vGi

2110

21

m2

12

210

122110

t1bias1

tt212bias

1t1bias

t212m

0

1t

22m1bias11m0

t1bias

m1

m1

1bias1m1m

11m0

(1)

(2a)

(2b)

(3a)

(3b)

(3c)

(4)

Page 5: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Basic Multiplier Architectures

x

x-

y-

y

y

xy

xy

xy-

xy-

xy4

-

+

(a) using single-quadrant multipliers

yx

yx-

22 yxy2x

xy8

-

+

yx

yx

( )2

( )2

( )2

( )2

22 yxy2x

22 yxy2x 22 yxy2x

(b) using square divices

xy4)yY)(xX()yY)(xX(

)yY)(xX()yY)(xX(

xy8)}yY()xX{()}yY()xX{(

)}yY()xX{()}yY()xX{(

or

22

22

Where capital ( low case) letters represent DC (time domain) signals.

Page 6: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

How the x and y Inputs can be Applied?

Consider a one transistor case first.

x

y

di

yx

di

x

y

di

di didi

diyx

xy

yxyx

(a) (b) (c) (d) (e) (f) (g)

Voltage signal injection methods

TgsdsTgs2TTgs

2gs

2Tgsd

TgsdsTgs

2ds

dsTdsgsdsds

Tgsd

VVV , VVfor VVV2V2KVV

2KI

VVV , VVfor 2

VVVVVKV

2VVVKI

:asexpressedismodelr transistoMOSsimple The

Results are summarized next.

Page 7: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Table 1. Summary of multiplier operating modes

x

y

di

yx

di

x

y

di

di

di

di

di

yx

xy

yx

yx

di

xy

Operatingregion

Input signalinjection method

Linear

Saturation

Activeterm

Cancellation method Type Comment

single-quadrant

single-quadrant

square device

square device

square device

square device

square device

Gilbert cell(single-quadrant)

I

II

III

IV

V

VI

VII

VIII

Notpractical

Notpractical

Notpractical

Notpractical

dsgsVV

2dsV

dsgsVV

2gsV

2gsV

2gbV

2gsV

2gsV

Page 8: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Let us describe multipliers as functions of their mode of operationsLinear Mode

yY

xX

0i

(a)

sM

1M

yY

xX

0i

(b)

2Q

1M

yY

xX

0i

(c)

sM

1M

A

(d)

BI BI

1MaV2M 3M

1bV 2bV

SSV

Programmable transconductor in ohmic operation

I) Type(VV Using dsgs

xX

xX

y

1I

2I

fZ

fZ

f210 ZIIV

(a)

yY

xX xX

yY

1I 2I

(b)Four-quadrants multipliers with two transistors operating in linear region

Page 9: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Multiplier Implementations Using VgsVds (Type I)

1I

2I

3I

4I

yY

xX

yY

xX

xX

01I02I

fZ

0V

yY

xX

yY

xX

xX

01I

02ISM

bV1fR 2fR

ddV

0V

0V

7(a) 7(b)

01I 02I

yY

xX SM

1M 1M

yY

xX

1I2I 3I

4I

xX

Fig. 7 Fully-differential four-quadrant multipliers using VgsVds term (Type I)7(c)

xX xX

yY 1MSM SM

1M

yY yY

01I 02I

7(d)

3V3V

3M 5M 4M

1DA 3DA 2DA3DI 4DIDDV

T2143

SSV)V,Vmin()V,Vmax(

V

1BI 3BI 2BI

1V 2V1M 2M1DI 2DI

7(e)

4V

Page 10: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Example of a Complete Implementation of Multiplier VgsVds Type I.{From Fig. 7(e)}

gy technolom2tagessupply vol V3

1M 2M

3M

4M5M6M 7M8M 9M10M

11M12M

13M

14M15M

1MB2MB

3MB

SSV

DDV

K1 K1

1V 2V3V

4V

3DI 4DI

2M1M 5M3M 10M6M 15M11M 3MB1MB Transistors

mL/mW 50/10 5/100 10/10 5/50 10/10

(3) VVVVK2IIIII : as written becan then Icurrent output The .III and KKKlet Now,

VV and VV Thus voltages.source anddrain same thehave M2 and M1at evident th isIt

(2) V21VVVK2IIII

and

(1) V21VVVK2IIII

43212D1D4D3Dout

outB2BB121

2TT12DSDS1

22DS2DS2T2GS22B2D2B4D

21DS1DS1T1GS11B1D1B3D

8V

Page 11: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Low voltage multiplier working with transistors in linear region. (Coban & Allen)

461

21110

DS111ba

K/KKK with

uctors. transcondfollowing theof tworequires vKv'III VvKI range.linear in M1 and M1

supply 1.5V single One

1:1in outDDV DDV

aI bI

1BV1BV

a1M b1M

a2Ma3M

a4M

a5M a6Mb2M

b4M

b3M

b5Mb6M

2vVV 2

2C2B

1DSV

1DSV

SSV2vV 1

1C 2vV 1

1C

circuit. cascode regulated on the Based r.transistocomposite Use

rs.transistosingle asdrawn rstransistocompositeth circuit wi complete The

DDV

SSV

1M 2M '1M '2M

aM bM 'Ma'Mb 2vV 1

1C 2vV 1

1C

2vV 2

2C 2

vV 22C

2BV 2BV

1I 'I1outI

Low voltage transconductor block

Proposed low voltage four quadrant multiplier

Page 12: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Multiplier Using a Transistor in the Linear RangeG

S D1M

DSDS

TDSGSPD

DSDS

TGSPD

V2

VVVVLWKI

V2

VVVLWKI

region(OHMIC)linear in theOperating 1M

0~I , IVVLWKI

:Becomes I , VVFor

DDDSGSPD

DGSDS

node?sameat theageinput volt theprovidetimesameat theilecurrent whdrain thesense toHow

DDV

SSV

inV

BI BkI0i3M

5M 7M

ini

LWk

LW

2VVVV

GBWf

5T5GS3T3GSnd

3m3mbV3

in0

g/g11A

i.e. follower, voltagea as acts 3Mkii

shifter. levelawith boosted be toneeded isit thereforeM7, of connection

feedbackthetoduelimitedisrangeageinput volt 3M

MultTransLR.ppt

Page 13: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

A possible implementation follows:

BI BkI3D

3M

5M

inv0i

MR

mnI

7M

3D

LSRLSC

Version 1 of a complete multiplier (mixer)

1M

2M 3M

4M 5M 7M

8M 9M

11M11M

12M 13M14M 15M

1CS2CS4CS 3CS

6CS 5CSLFCLFC

OUT OUT

BB BB

LO

LSC LSCLSR LSR

REFV REFV

The differential linear up-conversion mixer; the single ended carrier signal is applied at the LO terminal and the differential baseband signal is appliedat the BB terminals. The baseband modulation feedthrough in the output signal is suppressed through the output circuits (thin lines) which act as active coils

Page 14: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Version 2: Multiplier Using Cascode Current Source.

DDV

SSV

1M5M4M 7M6M

MR MR

2M 3M

8M 9M10M 11M

12M 13M 14M 15MCMV

mpV

mnV

1BI 1BI 2BI2BI

BI BI

1DI0I0I ib

2/Vi2/Vi

MbMb

Switching Modulator Based on Linear MOS

2VbV

)L/W()L/W()L/W(KI

2VbV

)L/W()L/W()L/W(KI

then, CM asact M7 , M5 and M6 , M4

)L/W(KI :yieldsit , I Neglecting

V2V

2VV

2/V- V and 2/VVfor Thus

)L/W(KIVVV

)L/W(KIVVV

M3M2For

iii

57

1p0

iii

46

1p0

1pD1

D

iii

1DS

i-1i1

3p1B

0T1D1

2p1B

0T1S1

iiii

5,4

7,6

1pd0

2iii

5,4

7,6

1p

00d0

bVfor bV)L/W()L/W(

LWKI

VbV2)L/W()L/W(

LWK

2III

Page 15: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Linear Operation using V2ds (Type II)

01I 02I

xX xX

yY yYSM

1MDDV

Fig. 8 Multiplier using V2ds (Type II)

KxyIII 02010

x

y

xy

A possible summer implementation

Page 16: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Dual Gate in Linear Range (Type III)

yx,C and VVVVC and

IIfor KI

V WhereRegion.Linear in M2& M1

region saturationin MM

polTScom

poldd

polpol

2d1d

dI polI

2dM 1dM

1M

2MpolV

SV

bI

xVcom

yVcom

xVcom

xVcomyVcom yVcom

polI

bI

01I 02I

9(a) 9(b)Fig. 9 Four quadrant multiplier using dual gate (Type III)

xyc

KVI

))yx(c4)()yx(c4(c2yxcxyKV8III

pol0

2222

222pol02010

Page 17: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

MOS Multipliers Operation in Saturation Region

01I 02I

xX xX

yY yY

Kxy4III rearchitectu4xy on the Based

V) (Type term.V using

multiplierFETs coupled crossFour

02010

2gs

01I 02I

xX xX

yY yYSM

1M

SM

IV) (Type connection diode with V using Multiplier 10 Fig. 2gs

Page 18: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Alternative Signal Injection Implementations using V2GS

01I 02I

xX

xX

yY

RR

Y

yY yY

xX xX

01I 02I

SSV

12(a) Using OP Amp 12(b) Using a linear differential amp

xX

yY SM

1M 1M

01I 02I

xX

yY

ddVddV

SM

02I01I

ddVxX

SM SM SM SM

yY xX yY

12(c) Using source followers 12(d) A separate follower for each cross-coupled transistor

Fig. 12 Source signal injection methods for multiplier using V2gs term (Type V)

Page 19: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Bulk-Driven Transistor Using V2gs (Type VI)

yY yY

01I 02I

xX S

xX

ysY2for xysY2

K4I

xsY22

ysY2ysY2

K4III

2V2VV

FF

0

3

FF

F01020

FbsF0TT

Fig. 13 Using substate signal injection (Type VI)

Page 20: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Voltage Adder (Type VII) using V2gs

01I 02I

xX xX

yY yY

01I 02I

xX xX

yY yY

GND

14(a) with tail current 14(b) without the tail current

Fig. 14 Multipliers using voltage adder (Type VII)

adders. active (iii)or ,capacitors (ii) resistors, (i) with dimplemente becan Summers scheme.on cancellati ) ( on the based istion implementa This 2

Page 21: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Floating Voltage Source (Type VII) Using V2gs

01I 02I

yY

xX

Fig. 15 Multiplier using floating voltage source (Type VII)

Page 22: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

MOS Gilbert Cell (Type VIII)Analysis:

signalcurrent a is )y(I and signal voltagea is x followsIn what

IKx1xKI2III yieldspair aldifferenti MOS One

y

21

s

2s02010d

01I 02I

xX

xX

1yI2yI

Current steering circuit

signals. voltagearey andboth x HereKK2xy2III

Thus

K2yII

Thus next.shown

aspair aldifferenti thirdaby generated is II that Note

IIxK2III

:obtainwepairs,aldifferenti twoFor the

302010

32y1y

2y1y

2y1y02010

Page 23: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

01I 02I

xX

xX

1yI 2yI

01I 02I

xX

xX

MOS Gilbert Multiplier Implementations

yY yY 3M

SI

1yI 2yIyY yY

GND

17(a) with tail current 17(b) without tail current

Fig. 17 MOS Gilbert multipliers (Type VIII)

supplies.power lowfor suitable benot might structure This s.attenuator activeor resarchitectu folded pairs,

aldifferentitheofion linearizatinvolvecellthisoft Improvemen

Page 24: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Comparisons

next. discussed are simulationthrough andequalitativlimitedA dependent.n applicatioiscomparison specificA

Table 2. Summary of general qualitative comparison of 15 multiplier topologies.

NO. Type Circuit Diagram Figure Worse than Remark

1

2

3

4

5

6

78

I

I

II,III,IV

V

V

VI

VII

VIII

7(a), 7(b)

7(c),7(d)

8, 9, 10

12(a)

12(b), (c), (d)

13

14, 15

17

2

2

2

5

5

5

Require additional circuitry.

Require additional circuitry.

Require additional circuitry.Poor linearity.

Require OP Amp

Poor linearity

High power supply voltage.Poor linearity.

Page 25: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

0

0.5

1

1.5

2

2.5

0.5 1 1.5 2

2y[volt]

THD

[%]

fig.8(C)fig. 8(d)fig. 13(b)fig. 13(c)fig.13(d)

0

0.5

1

1.5

2

2.5

0.5 1 1.5 2

2x[volt]

THD

[%]

fig. 7(C)fig. 7(d)fig. 12(b)fig. 12(c)fig. 12(d)

Simulated Total Harmonic Distortion(THD) for W/L= 10m/10m for all transistors.

0.00

0.05

0.10

0.15

1 2 3

W/L ratio of source follower

THD[

%]

fig. 7(c)fig. 12(c)fig. 7(c)fig. 12(c)2y = 0.5V

2x = 0.5Vp-p

2x = 0.5V2y = 0.5Vp-p

Effect of source follower's W/L ratio on THD

THD Comparisons

Page 26: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Linearity Comparison

0 10

0.5

1

1.5x 10-5

0 1-20

-15

-10

-5

0

0 10

0.5

1

1.5x 10-5

0 0.5 1-20

-10

0

10

20

Iout[A]

Iout[A]

y [V] y [V]

x [V] x [V]

x = 1V

y = 1V

Fig. 7(d)Fig. 7(c)Fig. 12(c)

Linearityerror[%]

Linearityerror[%]

(a) Output current for fixed x (b) Linearity error for fixed x

x = 1V

y = 1V

0.5

0.5 0.5Fig. 7(d)

Fig. 7(c)

Fig. 12(c)

Fig. 7(d)Fig. 7(c)Fig. 12(c)

Fig. 7(d)

Fig. 7(c)

Fig. 12(c)

(a) Output current for fixed y (b) Linearity error for fixed y

Measurement results for W/Lm1 = 5µm/17µm and W/Lsource follower = 50µm/10µm.

y. technologCMOS m22Vy x,n,consumptioW 360 ,V/A10gm

Page 27: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Input Range and Minimum Power Supply

dV

yY

xX

saturation

linear

1V

saturation

dV

yY xX

ddV

current Tail1V

(a) Circuit Fig. 7(c) (b) Circuit Fig. 12(c)

Fig. 24 Bias conditions

dT

T

TT1

T

VVyYyYV

VxXVyYVxXV

:7(c) Fig. For

DDV

DV

0V

TVDDV

0V

DVTV

TV

y2

y2x2

x2

X

X

Y

Y

TV

tail;dssatVGND

(a) Circuit Fig. 7(c) (b) Circuit Fig. 12(c)

Fig. 25 Input range and power supply voltage

DT

T1

T1 tailsat; ds

VVxXxXyYVV

VyYVV12(c)Fig.For

Page 28: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Table 3. Summary of a comparative multiplier study for equal size transistors.

Table 4. Summary of comparison between circuit Fig. 7(c), Fig. 7(d), and Fig. 12(c)

CircuitMax Gm[µA/V]

PowerConsumption[mW]

MismatchSensitivity

Linearityx

Linearityy

Fig. 7(c)Fig. 7(d)Fig. 12(b)Fig. 12(c)Fig. 12(d)

204.65

4025

238270200295480

Good

Good

GoodGoodGoodBadBadBad

BadBadBadWorst

Worst WorstBest Best

Circuit Linearity Minimum PowerSupply

Noise

Good

Good

Bad Bad

Bad

Bad

Bad

Good GoodFig. 7(c)

Fig. 7(d)

Fig. 12(c)

Page 29: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

outp

ut n

oise

[nV

2 ]

(W/L)1

1 5 9910

915

920

925

(W/L)2=10

(W/L)2=20

inpu

t noi

se [m

V2 ]

(W/L)1

1 5 92

4

6

8

10

(W/L)2=20

(W/L)2=10

Noise Consideration for Fig. 7(c).

(a) (b)

Fig. 26 Noise dependency on (W/L)1 for (X+Y)/2 = 4 volt and X-Y = 2 volt.

Page 30: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

A Low Voltage Low Power CMOS Analog Multiplier by Amir H. Miremadi*, Ahmad Ayatollah, Adib Abrishamifar (lUST)E-mail: [email protected]@wtiau.ac.ir

Page 31: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd
Page 32: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd
Page 33: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

VRF

VLO

S1

RL

VIF VRF

RL

VIF

VLO

M1

Simple switch used as a mixer

Implementation of switch with an NMOS device

MIXERS

Page 34: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

R1

M2

R2

M3

VDD

VLO

VLO M1

VIF

Active Mixer

Page 35: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Vin

RLS

+

-LO LO

IF

SignalBand

ImageBand

ThermalNoise

Spectrum at X

Spectrum at Y

Folding RF and image noise into the IF band

XY

Page 36: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Vin

RLS

+

-LO LO

0

SignalBand

ThermalNoise

Spectrum at X

Spectrum at Y

Downconversion of an AM Signal

XY

Page 37: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

R1

M2

R2

M3

VDD

VLO

VLO M1

VIF

Single-balanced mixer Double-balanced mixer

R1 R2

M4

VDD

VLO

VLO M1

VIF

M3

M5 M6

Page 38: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

RD

M2

RD

M3

VDD

VLO

VbM1

Sections of a mixer

RD

AVRF

IFSection

Time-VariantSection

RFSection

M2

RD

M3

VDD

VLO

Modeling the noise in the RF section

In,RD

VIF

IRF Iim IIF

M2

RD

M3

VDD

VLO

Modeling the noise in the time-variant section

VIF

- +

Vn2

Page 39: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Simple mixer with differential outputs

R R

VCC

Vout

IRF

-1

+1

IRFx

t

Simple mixer with single-ended output

R R

VCC

Vout

IRF

+1

IRFx

t

Page 40: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

L1

M1

L2

M2

VDD

C1

Conversion of differential currents to single-ended outputs

• Most mixers need to be single-ended because the IF SAW filters are single ended devices.

Io

Page 41: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

References

[1] G. Han and E. Sánchez-Sinencio, “CMOS Transconductance Multipliers: A Tutorial”, IEEE Trans.on Circuits and Systems II, vol. 45, No. 12, pp. 1550-1563, December 1998.

[2] F.N. Trofimenkoff and R.E. Smallwood, “Four Quadrant JFET Multipliers”, IEEE J. Solid-State Circuits, pp. 316-319, June 1977.

[3] Z. Czarnul and S. Takagi, “Design of Linerar Tunable CMOS Differential Transconductor Cells”,Elctron. Lett., vol. 26, pp. 1809-1811, 1992.

[4] Z. Czarnul, “Modification of Banu-Tsividis Continuous-Time Integrator Structure”, IEEE Trans. onCircuits and Systems, vol. CAS-33, No. 7, pp. 714-716, July 1986.

[5] J-H Tsag et al, “CMOS Four-Quadrant Multiplier Using Triode Transistors Based on Regulated Cascode Structure”, Electron Lett., vol. 31, pp. 962-963, June 1995.

[6] B. Razavi, “RF Microelectronics”, Prentice Hall, 1998.

Page 42: Input 1 Output - Texas A&M University multipliers... · 2020. 10. 30. · ds (Type I) I1 I2 I3 I4 Y y X x Y y X x X x I01 I02 Zf V0 Y y X x Y y X x X x I01 I02 MS Vb Rf1 Rf 2 Vdd

Zhuo Zou, Mendoza, D.S., Peng Wang, Qin Zhou, Jia Mao, Jonsson, F., Tenhunen, H., Li-Rong Zheng, "A Low-Power and Flexible Energy Detection IR-UWB Receiver for RFID and Wireless Sensor Networks", Circuits and Systems I: Regular Papers, IEEE Transactions on, On page(s): 1470 - 1482 Volume: 58, Issue: 7, July 2011 2. Weiwei Shan, Yuan Ma, Newcomb, R.W., Dongming Jin, "Analog Circuit Implementation of a Variable Universe Adaptive Fuzzy Logic Controller", Circuits and Systems II: Express Briefs, IEEE Transactions on, On page(s): 976 - 980 Volume: 55, Issue: 10, Oct. 2008 3. Sigit Yuwono, Sok-Kyun Han, Sang-Gug Lee, "A 900-mV Area-Efficient Source-Degenerated CMOS Four-Quadrant Multiplier with 10.6-GHz Bandwidth", Wireless Communications, Networking and Mobile Computing, 2009. WiCom '09. 5th International Conference on, On page(s): 1 - 4 4. Mokarram, M., Khoei, A., Hadidi, Kh., Gheysari, K., "Implementation of centroid defuzzifier block using CMOS circuits", Intelligent Systems, 2008. IS '08. 4th International IEEE Conference, On page(s): 2-26 - 2-29 Volume: 1, 6-8 Sept. 2008 5. Wei Wu, Xiaoya Fan, Tingcun Wei, Charlesy, C.T., "A low-voltage low-power self-mixer for 3.1#x2013;5GHz non-coherent UWB receiver", Electron Devices and Solid-State Circuits, 2009. EDSSC 2009. IEEE International Conference of, On page(s): 24 - 27 6. Mahmoud, S.A., "CMOS fully differential CMOS Four-quadrant analog multiplier", Microelectronics, 2008. ICM 2008. International Conference on, On page(s): 27 - 30 7. Dei, M., Nizza, N., Bruschi, P., Piotto, M., "A four quadrant CMOS analog multiplier based on the non ideal MOSFET I–V characteristics", Research in Microelectronics and Electronics, 2008. PRIME 2008. Ph.D., On page(s): 33 - 36 8. Oliveira, V.J.S., Oki, N., "Low voltage four-quadrant current multiplier: An improved topology for n-well CMOS process", Design & Technology of Integrated Systems in Nanoscale Era, 2007. DTIS. International Conference on, On page(s): 52 - 55 9. Diwakar, K., Senthilpari, C., Singh, A.K., Soong, L.W., "Analog Multiplier with High Accuracy", Computational Intelligence, Communication Systems and Networks, 2009. CICSYN '09. First International Conference on, On page(s): 62 - 66 10. Lehne, M., Raman, S., "A 0.13- 1-GS/s CMOS Discrete-Time FFT Processor for Ultra-Wideband OFDM Wireless Receivers", Microwave Theory and Techniques, IEEE Transactions on, On page(s): 1639 - 1650 Volume: 59, Issue: 6, June 2011

Recent References on Multipliers