39
INJECTION MOLDED SILANE CROSSLINKABLE RICE STRAW/HIGH DENSITY POLYETHYLENE BIOCOMPOSITE NURNADIA BT ANDENAN UNIVERSITI TEKNOLOGI MALAYSIA

INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

  • Upload
    others

  • View
    25

  • Download
    0

Embed Size (px)

Citation preview

Page 1: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

INJECTION MOLDED SILANE CROSSLINKABLE RICE STRAW/HIGH

DENSITY POLYETHYLENE BIOCOMPOSITE

NURNADIA BT ANDENAN

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

INJECTION MOLDED SILANE CROSSLINKABLE RICE STRAW/HIGH

DENSITY POLYETHYLENE BIOCOMPOSITE

NURNADIA BT ANDENAN

A thesis submitted in fullfilment of the

requirements for the award of the degree of

Master of Engineering (Polymer)

Faculty of Chemical Engineering

Universiti Teknologi Malaysia

OCTOBER 2010

Page 3: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

iii

“Dedicated to my beloved husband Haritz Khan, parents, brothers and sister for all

their love, encouragement and support...”

Page 4: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

iv

ACKNOWLEDGEMENT

First and foremost, I would like to express my heartfelt appreciation and

gratitude to my supervisor, Associate Professor Dr Wan Aizan Bt Wan Abdul

Rahman for her continous encouragement and support throughout the course of this

thesis: I greatly appreciate the importance and positive contributions that she has

made to the career that I enjoy so much. She has been en excellent example to me.

The assistance and technical support from material processing to testing stage

at Laboratory Polymer Engineering Department, FKKKSA, UTM and are greatly

appreciated.

I also wish to thank all the lecturers, technicians and colleagues from the

Laboratory of Polymer Engineering at University Technology Malaysia for their

assistance. Thanks to all the assistance and services from the library and the

computer facilities in UTM.

I am grateful to FRGS Vote 78133 and School of Graduate Studies UTM for

the generous financial assistance.

Finally, I would to express my gratitude to my husband, parents, brothers,

sister and Biopolymer Research Group for their encouragement, understanding and

care as well as those who have directly and indirectly assisted me in the preparation

of this thesis. Thank You.

Page 5: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

v

ABSTRACT

A formulation was designed to produce silane crosslinked rice straw/High

Density Polyethylene (RSPE) compound suitable for injection molding process. The

formulation consist of HDPE as the base polymer, rice straw as the filler, processing

aids and a mixture of crosslink chemicals. Crosslink chemicals consist of

vinyltrimethoxysilane (VTMO) as crosslinking agent, dicumyl peroxide (DCP) as the

initiator and dibutyltin dilaurate (DBTL) as the condensation catalyst. The rice straw

was oven dried at 70ºC for 24 hours, grinded and followed by sieved. A counter

rotating twin shaft high speed mixer was utilized to mix the rice straw, HDPE and

the processing aids. The blends were then compounded on twin screw extruder. Test

specimens were prepared via injection molding process followed by oven cured at

90ºC. Fourier Transform Infra Red (FTIR) was used to determine the chemical

functional group involved in the crosslinking reaction. Degree of crosslinking in the

silane crosslinked compounds was measured by determining the gel content. Thermal

properties were analyzed on the Differential Scanning Calorimetry (DSC) for the

melt temperature whereas Thermogravimetry Analysis (TGA) for its thermal stability

behavior. The degree of crosslinking in RSPE increased with an increased in VTMO

and DCP concentration. The results from FTIR showed the presence of Si-O-Si bond

and Si-O-C indicative of crosslinks formation. Thermal stability of the compound

illustrated that the crosslinked RSPE was more stable than the uncrosslinked RSPE

while the melting point was unchanged. Tensile strength and flexural strength

improved after crosslinking and increased with the amount of VTMO and DCP,

whilst impact strength showed an optimum value with respect to crosslink chemicals

composition. The concentration of 3 phr VTMO, 0.5 PHR dcp AND 0.015 phr

DBTL was the optimum crosslinked chemical composition to produce the

crosslinked RSPE, significant properties enhancement.

Page 6: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

vi

ABSTRAK

Formulasi telah direkabentuk untuk menghasilkan sebatian silane terpaut

silang jerami padi/Polietilina berketumpatan tinggi (RSPE) yang sesuai untuk proses

pengacuan suntikan. Formulasi ini mengandungi HDPE sebagai polimer asas, pengisi

jerami padi, bahan bantu pemprosesan dan campuran kimia pemaut silang.

Campuran kimia pemaut silang terdiri daripada vinyltrimethoxysilane (VTMO)

sebagai agen pemaut silangan, dicumyl peroxide (DCP) sebagai bahan pemula dan

dibutyltin dilaurate (DBTL) sebagai pemangkin kondensasi. Jerami padi dikeringkan

pada suhu 70ºC selama 24 jam dan seterusnya dihancurkan dan diayak. Pencampur

berkelajuan tinggi digunakan untuk mencampurkan jerami padi, HDPE, bahan

penyuai dan bahan bantu pemprosesan. Campuran kemudian disebatikan

menggunakan penyemperitan skru berkembar. Spesimen-spesimen ujian disediakan

melalui proses pengacuan suntikan dan seterusnya dimasukkan ke dalam ketuhar

pada suhu 90ºC untuk diawet. Fourier Transform Infra Red (FTIR) digunakan untuk

mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut silangan.

Darjah pemaut silangan pada sebatian silane terpaut silang dapat diukur berdasarkan

kandungan gel. Sifat haba bagi sampel berangkai silang dianalisa menggunakan

Differential Scanning Calorimetry (DSC) untuk menguji takat lebur sebaliknya

Thermogravimetry Analysis (TGA) untuk kelakuan kestabilan haba. Darjah pemaut

silangan RSPE meningkat dengan pertambahan kepekatan VTMO, DBTL dan DCP.

Keputusan FTIR menunjukkan kehadiran ikatan Si-O-Si dan Si-O-C membuktikan

berlakunya pembentukan pemaut silang. Kestabilan sebatian menggambarkan terpaut

silang RSPE yang telah berangkai silang lebih stabil daripada tidak terpaut silang

RSPE manakala takat lebur tidak menunjukkan perubahan yang ketara. Kekuatan

regangan dan kekuatan lenturan menunjukkan peningkatan selepas pemaut silangan

dan semakin meningkat dengan pertambahan VTMO dan DCP manakala kekuatan

hentaman menunjukkan nilai optimum dengan pertambahan komposisi kimia pemaut

silang. Kepekatan yang bersesuaian, berdasarkan 100 bahagian polimer asas, untuk

VTMO ialah 3.0 phr , DCP ialah 0.5 dan DBTL 0.015 untuk menjadikan terpaut

silang RSPE mempunyai sifat yang baik.

Page 7: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

vii

TABLE OF CONTENT CHAPTER TITLE PAGE TITLE PAGE

DECLARATION

DEDICATION

ACKNOWLEDGEMENT

ABSTRACT

ABSTRAK

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATION AND SYMBOLS

I INTRODUCTION

1.1 Introduction of study 1

1.2 Problem Statement 4

1.3 Objectives of study 6

1.4 Scopes of study 7

2 LITERATURE REVIEW

2.1 Biocomposite 9 2.2 PE/Natural Fiber Biocomposite 11

2.2.1 PE/Empty Fruit Bunch 11

2.2.2 PE/Wood Flour 12

Page 8: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

viii

2.2.3 PE/Kenaf Fiber 13

2.2.4 PE/Straw 14

2.3 Crosslinked HDPE/Natural Fiber 14

2.4 Polyethylene 18

2.4.1 The Chemistry of High Density 20

Polyethylene

2.5 Crosslinked Polyethylene

Technologies 21 2.5.1 Introduction 21 2.5.2 Method of Crosslinking 22

Polyethylene

2.5.2.1 Physical Crosslinking 23 2.5.2.2 Chemical Crosslinking 25 2.6 Natural Fiber 28 2.6.1 Properties of Natural Fibers 31 2.6.2 Application of Natural Fibers 33 2.6.3 Stalk Fibers (Rice Straw) 36 2.7 Market Survey 39

3 METHODOLOGY 3.1 Introduction 43

3.2 Raw Materials 43

3.2.1 Resin 43

3.2.2 Filler 44

3.2.3 Dispersing Agent 46

3.2.4 Binding Agent Compatibilizer 46

Page 9: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

ix

3.2.5 Organosilane Crosslinker 47

3.2.6 Dibutyl Dilaurate 47

3.2.7 Dicumyl Peroxide 48

3.2.8 Decayhydronapthlene 48 3.3 Formulation Development Process 49

3.3.1 Rice Straw/HDPE Biocomposite Formulations 49

3.3.2 Crosslinked Rice Straw/HDPE Biocomposite Formulations 51

3.3.3 Preparation of Silane Liquid Mixture 53

3.3.4 Compounding of RSPE Formulation 53

3.3.5 Compounding of Crosslinkable RSPE Formulation 53

3.3.6 Curing 54

3.4 Material and Product Characterization Testing 54

3.4.1 Fourier Transform Infra-Red 54 (FTIR)

3.4.2 Differential Scanning Calorimetry 55 (DSC)

3.4.3 Thermogravimetry Analysis (TGA) 55

3.4.4 Melt Flow Index (MFI) 55

3.4.5 Water Absorption Characteristic 56

3.4.6 Degree of Crosslinking-Gel 56 Content Test 3.4.7 Scanning Electron Microscopy (SEM) 58

3.5 Material and Product Performance Test 58

3.5.1 Impact Testing 58

Page 10: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

x

3.5.2 Flexural Test 59 3.5.3 Tensile Test 60 3.5.4 Experimental Procedures 61

4 RESULTS AND DISCUSSION

4.1 Introduction 62

4.2 Filler Characterization 62 4.2.1 Rice Straw Characteristic 62 4.2.2 Thermal Effect on Rice Straw (RS) 63 4.3 The RSPE Composite for Injection Molding 65 4.3.1 Effect of Filler Size 66 4.3.2 Effect of Filler Loading 67 4.4.1.1 Flowability 67 4.4.1.2 Tensile strength 68 4.4.1.3 Young’s Modulus 70 4.4.1.4 Flexural Strength 71 4.4.2 Thermal Characteristic 73 4.4.2.1 Differential Scanning Calorimetry (DSC) 73 4.4.2.2 Thermogravimetry Analysis (TGA) 75 4.4.2.3 Water Absorption Characteristic 77

4.4.3 Characteristic of RSPE Biocomposite 82

4.5 Introduction 83

4.6 Effect of VTMO Silane Crosslinker 85

4.6.1 Gel Content Test 85 4.6.2 Differential Scanning Calorimetric (DSC) 86

Page 11: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

xi

4.6.3 Thermogravimetry Analysis (TGA) 88 4.6.4 Water Absorption Analysis 90 4.6.5 Tensile Strength 92

4.6.6 Impact Strength 93 4.6.7 Flexural Strength 94

4.7 Effect of DCP initiator 96

4.7.1 Gel Content Test 96

4.7.2 Differential Scanning Calorimetric (DSC) 98

Analysis

4.7.3 Thermogravimetry Analysis (TGA) 99 4.7.4 Water Absorption Analysis 101 4.7.5 Tensile Strength 102 4.7.6 Impact Strength 103 4.7.7 Flexural Strength 105

4.8 Effect of DBTL Catalysts 106 4.8.1 Gel Content Test 106 4.8.2 Differential Scanning Calorimetric (DSC) 107 4.8.3 Thermogravimetry Analysis (TGA) 108 4.8.4 Water Absorption Analysis 109 4.8.5 Tensile Strength 111

4.8.6 Impact Strength 112

4.8.7 Flexural Strength 113

4.9 FTIR Analysis 115 4.9.1 Uncrosslinked RSPE 115 4.9.2 Crosslinked RSPE 115 4.10 Mechanism of Crosslinking 118

Page 12: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

xii

4.11 Scanning Electron Microscopy 122 5 CONCLUSSIONS AND RECOMMENDATION 5.1 Overall Conclussions 125 5.2 Future Work 127 REFFERENCES 129

PUBLICATION 141

Page 13: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

xiii

LIST OF TABLE

TABLE TITLE PAGE

2.1 Type of Polyethylene 18

2.2 Changes in properties of polyethylene after 22

crosslinking

2.3 Comparison of several crosslinking methods 28

2.4 Natural Fiber Properties and Comparison with E-glass 32

2.5 Mechanical properties of different types of potential 33

natural fibers for composite applications.

2.6 The ranges of the chemical constituent in cell wall 38

3.1 Physical properties of HDPE grade HD6070UA 44

3.2 Particle of Rice Straw 45

3.3 Physical properties of the dispersing agent and binding 46

agent

3.4 Specification for Dynasylan® VTMO 47

3.5 Specification for Dibutylin Dilaurate 48

3.6 Properties of Decayhydronapthlene 49

3.7 Formulation for the effect of rice straw particle 50

3.8 Formulations for the effect of rice straw composition 50

3.9 Selection of optimal Vinyltrimethoxysilane 51

(VTMO) composition

3.10 Selection of optimal Dibutyltin Dilaurate 52

(DBTL) composition

3.11 Selection of optimal Dicumyl Peroxide 52

(DCP) composition

4.1 Summary of RSPE biocomposites thermal degradation 77

at various rice straw content.

Page 14: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

xiv

4.2 Water absorption test result of RSPE biocomposite 80

4.3 Percentage of water absorbed of RSPE biocomposite 81

compared to commercial wood.

4.4 Summary properties of RSPE biocomposite. 83

Page 15: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

xv

LIST OF FIGURES

FIGURE NO. TITLE PAGE 2.1 Bonding between a silane coupling agent, cellulose, 17

and polymeric resin

2.2 Polyethylene chain and molecule 19

2.3 Schematic representation of the different classes of 20

Polyethylene

2.4 Beta irradiation crosslinking technique 24

2.5 Peroxide crosslinking technique 26

2.6 Silane crosslinking technique 27

2.7 Various type and sources for biofibers 29

2.8 Schematic representation of reinforcing 30

natural/biofibers classification

2.9 Schematic drawing of cellulose molecules including the 31

intramolecular and intermolecular hydrogen bonds

2.10 Top of the range automotive vehicles incorporate 35

many components made from natural fibers for the

Mercedes “E"

2.11 Small house developed from rice husk/polyethylene build 36

at MTDC, UTM

2.12 Malaysia Rice, Milled Production by year 1960-2009 37.

2.13 Total consumption of natural fiber composites in 41

North America

2.14 Total consumption of wood fiber composites in North 42

America

3.1 Gel content testing apparatus 57

Page 16: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

xvi

3.2 Izod Impact Tester 59

3.3 Tensile Tester 60

3.4 The flow of research work 61

4.1 SEM micrograph of the rice straw surface at Mag x 500 63

and Mag x 1000

4.2 Thermograms and derivative thermograms of rice straw 64

4.3 The tensile strength of RSPE biocomposites with 66

different filler size

4.4 Effect of rice straw loading on the MFI of RSPE 67

Biocomposite

4.5 Effect of rice straw loading on the tensile 69

strength of RSPE biocomposite.

4.6 Effect of rice straw loading on the Young’s Modulus 71

of RSPE biocomposite

4.7 Effect of rice straw loading on the Flexural Modulus 72

of RSPE biocomposite

4.8 Effect of rice straw loading on the Flexural Strength 73

of RSPE biocomposite

4.9 Effect of rice straw loading on the melting point 74

of RSPE biocomposite

4.10 TGA curves of RSPE biocomposites 76

4.11 Change in weight of RSPE biocomposite after 79

water absorption test

4.12 Percentage of Water Absorbed by RSPE biocomposite 80

4.13 Percentage of water absorbed of RSPE biocomposite 81

compared to commercial wood.

4.14 The Effect of the VTMO concentration on gel content 86

of RSPE biocomposite.

4.15 DSC thermogram of of crosslinked RSPE at various 88

VTMO concentration (S0) 2.0phr, (S2) 1.5phr, (S3) 2.5phr,

(S4) 3.0 phr

4.16 TGA thermogram of decomposition temperature of 90

crosslinked RSPE biocomposite at various VTMO

concentration (S0) 2.0phr, (S4) 3.0 phr.

Page 17: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

xvii

4.17 The Effect of the VTMO concentration on percentage 91

of water absorbed by RSPE biocomposite.

4.18 Effect of VTMO concentration on tensile strength 93

of RSPE biocomposite.

4.19 Effect of VTMO concentration on impact strength 94

of RSPE biocomposite.

4.20 Effect of VTMO concentration on flexural strength 96

of RSPE biocomposite

4.21 The Effect of the DCP concentration on gel content 97

of RSPE biocomposite.

4.22 DSC thermogram of of crosslinked RSPE at various DCP 99

concentration (S10) 0.4phr, (S11) 0.5phr.

4.23 TGA thermogram of decomposition temperature 100

of crosslinked RSPE at various DCP concentration.

(S0) 0.2phr, (S8) 0.1phr, (S) 0.3phr.

4.24 The Effect of the DCP concentration on percentage water 102

absorbed by RSPE biocomposite.

4.25 Effect of DCP concentration on tensile strength 103

of RSPE biocomposite.

4.26 Effect of DCP concentration on impact strength 104

of RSPE biocomposite.

4.27 Effect of DCP concentration on flexural strength 105

of RSPE biocomposite.

4.28 The Effect of the DBTL concentration on gel content 106

of RSPE biocomposite.

4.29 DSC thermogram of of crosslinked RSPE at 108

various DBTL concentration, (S5) 0.005phr, (S6)

0.015phr, (S0) 0.01phr.

4.30 TGA thermogram of decomposition temperature of 109

crosslinked RSPE at various DBTL concentration.

(S5) 0.005phr, (S0) 0.01phr, (S) 0.015phr.

4.31 The Effect of the DBTL concentration on water 110

absorption rate of RSPE biocomposite.

Page 18: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

xviii

4.32 Effect of DBTL concentration on tensile strength 111

of RSPE biocomposite.

4.33 Effect of DBTL concentration on impact strength 113

of RSPE biocomposite.

4.34 Effect of DBTL concentration on flexural strength 114

of RSPE biocomposite.

4.35 FTIR spectra of uncrosslinked and crosslinked RSPE 117

containing 3.0phr VTMO, 0.4 phr DCP and

0.015phr DBTL.

4.36 (a) The reaction mechanism during peroxide induced melt 119

grafting of vinyltrimethoxysilane onto polyethylene

4.36(b) Radical induced crosslinking of polyethylene 119

4.37 The hydrolysis step (1) and condensation step (2) during 120

silane crosslinking

4.38 Bonding between silane, fiber and polyethylene. 121

4.39 SEM analysis of the fracture surface of the uncrosslinked 123

RSPE biocomposite at Mag x 100.

4.40 SEM analysis of the fracture surface of the crosslinked 123

RSPE (at 2.0 phr VTMO) biocomposite at Mag x 100

4.41 SEM analysis of the fracture surface of the crosslinked 124

RSPE (at 0.2 phr DCP) biocomposite at Mag x 100.

Page 19: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

xix

LIST OF ABBREVIATIONS AND SYMBOLS

NFRC - Natural Fiber Reinforce Composite

WPC Wood/Natural Fiber Plastic Composites

HDPE - High Density Polyethylene

VTMO - Vinyltrimethoxysilane

DCP - Dicumyl Peroxide

DBTL - Dibutyltin Dilaurate

PE - Polyethylene

PP - Polypropylene

ASTM - American Standard Testing Method

RSPE - Rice Straw Polyethylene

phr - Parts per hundred

DSC - Differential Scanning Calorimetry

MFI - Melt Flow Index

TGA - Thermogravimetry Analysis

FTIR - Fourier Transform Infra-Red

ρ - Density

m - Mass

Page 20: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

CHAPTER 1

INTRODUCTION

1.1 Introduction of study

Polymer composite have been subjected to increasing interest, study, and

utilization for some decades. The depletion of petroleum resources coupled with

increasing environmental regulations are acting synergistically to provide the impetus

for new materials and products that are compatible with the environment and

independent of fossil fuels. Waste minimization is one of the problems that we need

to overcome. All these issues have induced to look for alternatives. Recent advances

in genetic engineering, natural fiber development, and composite science offer

significant opportunities for new, improved materials from renewable resources,

which can biodegradable and recyclable but also obtained from sustainable sources at

the same time as reported by Amar et al., (2005) and Hoi-Yan Cheung et al., (2009).

Composite materials are attractive because they combine material properties in ways

not found in nature.

Recently, natural fibers have been investigated as filler materials capable of

serving as localized tensile reinforcement and volume fillers within several types of

polymer matrices. Current conventional fillers include wood flour, talc, calcium

Page 21: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

2

carbonate, fiberglass and nylon. Natural fillers have several advantages over

conventional fillers in improving the general characteristics of plastics for example

polyethylene. Natural fillers- plastic composite have several advantages include

reduce processing temperatures thereby which is less than 200°C thus reducing

energy costs during production. In comparison to other mineral filled plastics, natural

filler have a lower specific gravity resulting in both material savings during

production and shipping costs after production and increased life span of the molds

and extruder due to abrasion by the filler as report by Johnson et al., (1997). A

number of natural fillers have been under continued investigation for use in natural

filler reinforced polymer composites (NFRC); including wood fiber, jute, sisal,

kenaf, flax, wheat straw and bamboo. These natural fillers are especially being

sought since the production of composites using natural substances as reinforcing

fillers is not only inexpensive but also able to minimize the environmental pollution

caused by the characteristic biodegradability, enabling these composites to play an

important role in resolving future environmental problems (Hang-Seung Yang et al.,

2004a). More than that, these fillers often contribute greatly to the structural

performance when used in plastic composites.

Increased technical innovations, identifications of new applications,

continuing political and environmental pressures, and government investment in new

methods for fiber harvesting and processing are leading to projections of continued

growth in the use of natural fillers in composite. One of the largest areas of recent

growth in natural filler composites is the automotive industry, where natural fillers

are advantageously used as a result of their low density and increasing environmental

pressures. Most of the composites currently made with natural fillers are press

molded, although a wide range of processes have been investigated (Craig and

Danial, 2005). The automobile industry has begun to apply NFRC in a variety of

exterior and interior panel applications. The significant weight savings and the ease

and low cost of the raw constituent materials have made NFRC an attractive

alternative material compare to glass and carbon fiber reinforced polymer

composites. However, further research needs to address significant material and

production obstacles before commercially available NFRC are widely used in

architectural and civil works.

Page 22: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

3

An increasing amount of interest has developed over the past few years for

NFRC because of their ease of production, subsequent increase in productivity, cost

reduction, lower density and weight, enhanced biodegradability, combustibility, ease

of recyclability, non toxic and use of renewable resources. Composite materials (or

composites for short) are engineered materials made from two or more constituent

materials with significantly different physical or chemical properties and which

remain separate and distinct on a macroscopic level within the finished structure.

Recently, these natural fillers especially plant fibers have been coupled in a matrix

primarily composed of two commodity thermoplastic matrix materials such as

polyethylene (PE) and polypropylene (PP) which melt or soften relatively at low

temperatures (Prachayawarakorn and Yaembunying, 2005). Natural fillers have

gained their importance especially for load bearing application while specific

mechanical properties of natural fillers vary according to the particular filler, the

overall performance of natural fillers lies within a relatively tight range as a result of

similar molecular composition. These advantages place the natural fillers composites

among high performance composites having economical and environmental

advantages, with good physical properties (Mehta and Parsania, 2006). Wood-plastic

composites are currently one of the dominating natural filler composite markets in

North America, as these composite materials are being accepted widely in to the

building and construction industry (Suhara and Mohini, 2007). The composite

industry always looks into alternative low cost lignocellulosic sources, which can

decrease overall manufacturing costs and increase stiffness of the materials.

Page 23: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

4

1.2 Problem Statement

Industries are developing and manufacturing “greener” materials; government

is encouraging biobased product research while the academicians are searching for

eco-friendly materials; and the public is coming to value the benefit of environment

friendly products and processes, but at affordable prices. Previously, most

researchers have used wheat straw, wood flour, rice husk and empty fruit bunch as

reinforcement in the various polymers such as polyethylene, polyvinyl chloride and

polypropylene for making a new type of environmentally-friendly composites (Bakar

et al., 2005; Nak et al., 2006; Cheng et al., 2009; Ming Zhu et al., 2009). The use of

natural fillers in polymer matrix is highly beneficial because the strength and

toughness of resulting composites are greater than those of unreinforced materials.

Even though a very large quantity of work has been published on various

natural fillers and its composites, an effort has been made in the present work to

introduce new filler which is rice straw in the development of new composite

materials for lightweight structures. Some studies were already reported on the

exploration and extraction of rice straw which is also comparable with established

filler as reported by Kiran et al., (2000), Mohammad et al., (2004) and Fei et al.,

(2008). Previous work on rice husk polyolefin biocomposite has been done and

shows that these filler posses good mechanical properties that make them suitable to

compound with plastics (Naurah, 2005; Han-Seung Yang et al., 2004b). Nowadays,

rice straw is abundantly available and renewable in nature. As open-field burning of

rice straw is being phased out in Malaysia, rice growers and government agencies are

looking for new rice straw uses. This economical source compared to other natural

sources is still underutilized and not yet established especially in Malaysia.

Page 24: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

5

In spite of all the advantages mentioned about natural filler, there are also

drawbacks in using natural filler as reinforcement in thermoplastics. One difficulty

that has prevented the use of natural filler is the lack of good adhesion between the

hydrophilic filler and the hydrophobic polymer (Magnus and Kristina, 2006). The

adhesion between the reinforcement fillers and the composite and the matrix in

composite plays an important role in the final mechanical properties since the stress

transfer between matrix and fillers determines reinforcement efficiency (Ahmad et

al., 2009). It is well known that chemical treatments applied onto filler surface may

affect the mechanical properties of the final material as reported by Kostic et al.,

(2008) who did chemical treatment on hemp fibers. The surface of fillers is usually

modified using various types of chemical modification and has been carried out

previously by using maleic anhydride, maleated polypropylene and titanate

treatments in order to improve the filler surface wettability with the matrix and to

create a strong bond at the filler-matrix interface (Han-Seung Yang et al., 2007;

Byung Dae et al., 2004; Ferran et al., 2007). Poor adhesion leads to composites with

rather poor durability and toughness.

This is the main reason of using silane technology in crosslinking

polyethylene-rice straw composites. Silane was used as coupling agents to adhere

fillers to a polymer matrix, stabilizing the composite material. In general, the use of

this coupling agent significantly improves the mechanical properties of the

composites (Soo Jin et al., 2009). Previous research by Magnus and Kristina (2005)

has succesfully produced silane crosslinked polyethylene/wood flour composites in a

one step process via extrusion. The crosslinked biocomposites showed significantly

higher impact strength compared to uncrosslinked. This study was carried out to

develop an optimum formulation for the silane crosslinkable rice straw/HDPE

compound grade for injection molding. By doing so, the production of the

biocomposites is more economical and also believed to be more industrially friendly.

Page 25: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

6

List of problems statement:

(i) Which size of rice straw is suitable for the rice straw/HDPE

biocomposite manufacturing on injection molding process?

ii) What is the optimum composition of rice straw as filler for the HDPE

biocomposite with respect to strength and processability for injection

molding?

iii) Is silane able to crosslink HDPE with rice straw biocomposite for

properties improvement and still processable by injection moulding

technique?

1.3 Objectives of the Study

The main objective of this study is to develop crosslinkable rice straw/HDPE

compound formulation that are processable by injection molding technique. This

main objective is further subdivided into:

i) To categorize the appropriate size of rice straw suitable as a filler in

HDPE with respect to tensile strength.

ii) To study the effect of rice straw composition based on mechanical

properties and flowability of uncrosslinked rice straw/HDPE

biocomposite on the injection molding process.

iii) To investigate the potential of silane as crosslinker in injection

molded rice straw/HDPE biocomposite.

Page 26: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

7

iv) To determine the characteristics and properties of crosslinkable rice

straw/HDPE biocomposite and analyze its suitability for injection

molding process.

1.4 Scope of the study

The scope of study involved the following stages:

(i) Filler preparation.

• Rice straw used as filler undergoes preparatory stages prior to

compounding. The rice straw was grinded and sieved into three

ranges of sizes. The rice straw powder was dried before

compounding.

ii) Formulation development of unrosslinked rice straw/HDPE biocomposite.

• HDPE resin was used as base polymer fill with grinded rice straw as

filler. Compounding of rice straw with HDPE and standard additive

on twin screw extruder. Injection molding process was used to

prepared the test specimen

• Tensile test was used as the basic test for following investigations:

a) Effect of rice straw particle size on uncrosslinked rice

straw/HDPE.

b) Effect of rice straw composition uncrosslinked rice

straw/HDPE.

c) Crosslinking of rice straw/HDPE biocomposite with silane

chemicals.

• Silane chemicals formulation

Page 27: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

8

a) Premixing of silane chemicals with rice straw/HDPE

biocomposite in the high speed mixer for preparing the

crosslinked rice straw/HDPE.

b) Injection molding processability study.

c) Curing

(iii) Rice Straw/HDPE characterizations.

d) FTIR, to analyze the crosslink.

e) Thermal analysis for thermal properties determination.

f) Water absorption test

g) MFI, to determine its injection molding processability.

h) Gel content test to determine the degree of crosslinking.

(iv) Mechanical properties determination

i) Flexural Test

j) Izod Impact Test

Page 28: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

128

REFERENCES

Abdel M, Boufi S, Belgacem MN, Duarte AP, Salah AB, Gandini A. (2004).

Modification of Cellulosic Fibres with Functionalized Silanes:Development

of Surface Properties. Int J Adhes Adhes. 24(1):43-54.

Abdelmouleh M., Boufi S., Belgacem M.N., Duarte A.P., Ben Salah A., and Gandini

A. (2004). Modification of Cellulosic Fibers with Functionalised

Silanes:Development of Surface Properties. International Journal of

Adhesion & Adhesives. 24:43-54.

Abdel-Mohdy F.A, Abdel Halim E.S, Abu Ayana Y.M and El Sawy S.M. (2009).

Rice Straw as A New Resource for Some Beneficial Uses. Carbohydrate

Polymers.75:44-51.

Amanda Jacob. (2008).Growing the natural fiber market. Reinforced Plastics.

Volume 52, Issue 4 :Page 1

Ahmad A., Ahmad M.Ahmad and Khalifa Al-Kaabi. (2009). Characterization of

Treated Date Palm Tree Fiber as Composite Reinforcement. Composites:

Part B 40:601-606.

Alireza Ashori. (2008). Wood Plastic Composites as Promising Green Composites

for Automotive Industries. Bioresource Technology. 99:4661-4667.

Page 29: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

129

Amar K.Mohanty, Manjusri Misra and Lawrence T.Drzal. (2005). Natural Fibers,

Biopolymers, and Biocomposites. Taylor & Francais Group Publisher.

Andrew J. Peacock ( 2000). Handbook of Polyethylene – Structures, Properties, and

Applications. New York : Marcel Dekker Inc.

Andrzej K. Bledzki and Omar F. (2004). Creep and Impact Properties of Wood

Fibre-Polypropylene Composites:Influence of Temperature and Moisture

Content. Composites Science and Technology.64:693-700.

Anke S., Frank L., Steven A., Paul S., Glenn T. and Michael W. (2006). Production

and Characterization of Natural Fiber Reinforced Thermoplastic Composites

Using Wheat Straw Modified with the Fungus Pleurotus Ostreatus. Journal of

Applied Polymer Science. Vol.102:5191-5201.

Araujo J.R., Waldman W.R and De Paoli M.A. (2008). Thermal Properties of High

Density Polyethylene Composites with Natural Fibers:Coupling Agent effect.

Polymer Degradation and Stability. 93:1770-1775.

Ariel,S., Michael, S.S., Shifi, K., Asher, S. and Moshe, N. (2001).Novel semi-IPN

through Vinyl Silane Polymerization and Crosslinking within PVC films.

Journal of Polymer Science: Part A: Polymer Chemistry. Vol. 39:8-22.

Bakar A., A., Hassan, A. and Mohd Yusof, A.F. (2005). Mechanical and Thermal

Degradation of Oil Palm Empty Fruit Bunch (EFB) - Filled PVC-U

Composite. Polymer and Polymer Composite. 6(13).607-618.

Barun S.Gupta, Isabela R. and Marie Pierre G.L. (2007). Surface Properties and

Adhesion of Wood Fiber Reinforced Thermoplastic Composites. Colloids and

Surfaces A. 302:388-395.

Bledzki A.K. and Gassan J. (1999).Composites Reinforced with Cellulose Based

Fibers. Progress in Polymer Science.24:221-274.

Page 30: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

130

Brahkumar M., Pavithran C. and Pillai R.M (2005). Coconut Fiber Reinforced

Polyethylene Composites: Effect of Natural Waxy Surface Layer of The Fiber

on Fiber/Matrix Interfacial Bonding and Strength of Composites. Composites

Science and Technology. 65:563-569.

Byung-Dae P., Seung G. W., Kwang H. L., Adya P.S., Tae-H. Y. and Yoon S. K.

(2004). X-ray Photoelectron Spectroscopy of Rice Husk Surface Modified

with Maleated Polypropylene and Silane. Biomass and Bioenergy.27: 353-

363.

Celina, M. and George, G.A. (1995). Characterization and Degradation Studies of

Peroxides and Silane Crosslinked Polyethylene. Polymer Degradation

Stability. Vol.48:297-312

Cheng X., Rongrong Q. and Yanlin W. (2009). Wood Thermoplastic Composites

from Wood Flour and High Density Polyethylene. Journal of Applied

Polymer Science. Vol.114:1160-1168.

Chen Chan Hoong, (2006). Formulation of Silane Crosslinkable Rotational Molding

Polyethylene Compound. Master Thesis.Universiti Teknologi Malaysia.

Chow W.S. and Neoh S.S. (2009). Dynamic Mechanical Thermal and Morphological

Properties of Silane Treated Montmorillonite Reinforced Polycarbonate

Nanocomposites. Journal of Applied Polymer Science. Vol.114:3967-3975.

Clemons, C.M. (2002). Wood Plastic Composites in United States: The Interfacing of

Two Industries. Forest Product Journal.10-18.

Costa, H.M.D., Visconte, L.L.Y., Nunes, R.C.R. Furtado and C.R.G. (2000). The

Effect of Coupling Agent and Chemical Treatment on Rice Husk Ash Filled

Natural Rubber Composites. Journal Applied Polymer Science.76:1010-1027.

Craig M. Clemons and Daniel F. Caufield. (2005).Functional Fillers for Plastic.

WILEY-VCH.

Page 31: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

131

Deus de J.F., Monteiro S.N, Almeida d J.R.M. (2005). Effect of Drying, Molding

Pressure, and Strain Rate on The Flexural Mechanical Behavior of Piassava

(Attalea Funifera Mart) Fiber-Polyester Composites. Polymer Testing, 24.

750-755.

Drzal L.T., Mohanty A.K., Burgueno R. and Misra M. (2000).Biobased Structural

Composite Materials for Housing and Infrastructure Applications:

Opportunities and Challenges.

Fei Y., Qinglin W., Yong L. and Yanjun X. (2008). Rice Straw Fiber Reinforced

High Density Polyethylene Composite:Effect of Fiber Type and Loading.

Industrial Crops and Products. 28:63-73.

Ferran M.F., Francisco V., Amparo R.G., Adolfo B.B and Concha S.B. (2007). Flour

Rice Husk as Filler in Block Copolymer Polypropylene: Effect of Different

Coupling Agents. Journal of Applied Polymer Science. Vol.99:1823-1831.

Fiber reinforced plastic market to grow 15% by 2007 (2002).

Additives for Polymers. Volume 2002, Issue 9, page 10-11.

Fibersit, S.B. (2003). Fibersit Sdn Bhd.Ipoh. (Malaysia):Trade Brochure.

Forsyth J.C., Baker W.E., Russell K.E. and Whitney R.A. (1997). Peroxide Initiated

Vinylsilane Grafting: Structural Studies on a Hydrocarbon Substrate. Journal

of Polymer Science: Part A. Vol 35:3517-3525.

Frederick T., and Wallenberger, and Norman E.Weston. (2004). Natural Fibers,

Plastics and Composites. Bonston :Kluwer Academic Publishers.

Fuad M.Y.A., Ismail Z., Ishak Z.A.M and Omar A.K.M. (1995). Application of Rice

Husk Ash as Fillers in Polypropylene: Effect of Titanate, Zirconate and

Silane Coupling Agents. European Polymer Journal. Vol 31, No 9, pp 885-

893.

Page 32: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

132

Geeta M., Amar K. M., Kelby T., Manjusri M. and Lawrence T.D. (2005). Novel

Biocomposite Sheet Molding Compounds for Low Cost Housing Panel

Applications. Journal of Polymers and Environment. Vol 13: No.2.

Girones J., Pimenta M.T.B, Vilaseca F., A.J.F. de Carvalho, Mutje P. and Curvelo

A.A.S. (2007). Blocked Isocyanates as Coupling Agents for Cellulose-Based

Composites.Carbohydrate Polymers. 68:537-543.

Han-Seung Y., Hyun-Joong K., Jungil S., Hee-Jun P., Bum-Jae L. and Taek-Sung H.

(2007). Effect of Compatibilizing Agents on Rice Husk Flour Reinforced

Polypropylene Composites. Composites Structures. 77: 45-55.

Han-Seung Y., Michael P.W., Hee-Soo K., Sumin K. and Hyun-Joong K. (2006a).

Properties of Lignocellulosic Material Filled Polypropylene Bio-composites

Made with Different Manufacturing Process. Polymer Testing. 25: 668-676.

Han-Seung Y., Hyun-Joong K., Hee-Jun P., Bum-Jae L. and Taek-Sung H. (2006b).

Water Absorption Behavior and Mechanical Properties of Lignocellulosic

Filler-Polyolefin Biocomposites.Composite Structure. 72:429-437

Hang-Seung Y., Hyun-Joong K., Jungil S., Hee-Jun P., Bum-Jae L. and Taek-Sung

H. (2004a). Rice Husk Flour Filled Polypropylene Composites; Mechanical

and Morphological Study. Composites Structures. 63: 305-312.

Hang Seung Y., Dae Jun K., Young Kyu L., Hyun Joong K., Jin Yong J. and Chun

Won K.(2004b). Possibility of Using Waste Tire Composites Reinforced with

Rice Straw as Construction Materials. Bioresource Technology.95:61-64.

Hang Seung Y., Dae Jun K. and Hyun Joong K. (2003). Rice Straw-Wood Particle

Composite for Sound Absorbing Wooden Construction Materials.

Bioresource Technology. 86:117-121.

Page 33: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

133

Herrera Franco P.J and Valadez Gonzalez A. (2004). Mechanical Properties of

Continous Natural Fiber Reinforced Polymer Composites. Composite Part A.

35:339-345.

Herrera., P., Valadez G., A. And Cerventes-Uc, M., (1997). Development and

Characterization of a HDPE-Sand-Natural Fiber Composite. Composite Part

B. 28B. 331-343.

Hong Yan C., Menghe M., and Xin D. (2009). Influence of Moisture Absorption on

the Interfacial Strength of Bamboo Vinyl Ester Composites. Composites: Part

A.

Hoi-yan C., Mei-po H., Kin-tak L., Francisco C. and David H. (2009). Natural Fibre

Reinforced Composites for Bioengineering and Environmental Engineering

Applications. Composites: Part B. 40:655-663.

Hollaway L.C. and Head P.R. (2001). Advanced Polymer Composites and Polymers in the Civil Infrastructure. Oxford : Elsevier.

Hsin-L.C. and Roger S. P. (1994). Composite of Polyethylene and Kenaf, a Natural

Cellulose Fiber. Journal of Applied Polymer Science.Vol 54:1781-1783.

Jianying X., Ryo S., Ragil W., Guangping H and Shuici K. (2004). Manufacture and

Properties of Low Density Binderless Particleboard from Kenaf Core.

Journal Wood Science. 50:62-67.

Johnson D.A., Maclean W.D., and Jacobsan R. (1997). Agro-Plastic Composite:

Replacing Polypropylene and Polyethylene with Wheat Straw. Making a

Business From Biomass in Energy, Environment, Chemicals, Fibers, and

Materials, pp 925-932.

Kostic, M., Pejic, B.,and Skundric, P. (2008). Quality of Chemically Modified Hemp

Fibers. Bioresource Technology.99:94-99.

Page 34: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

134

Kiran L., Kadam, Loyd H.F. and Alan Jacobson W. (2000). Rice Straw as a

Lignocellulosic Resource:Collection Processing, Transportation and

Environmental Aspects. Biomass and Bioenergy.18:369-389.

Krupa.I and A.S.Luyt. (2001). Mechanical Properties of Uncrosslinked and

Crosslinked Linear Low Density Polyethylene/Wax Blends. Journal of

Applied Polymer Science.Vol(81):973-980.

Magnus Bengston and Kristina Oksman (2005). The Use of Silane Technology in

Crosslinking Polyethylene/Wood Flour Composites. Composites Part A.

Vol.37: 52-765.

Magnus Bengston, and Kristina Oksman. (2006). Profile Extrusion and Mechanical

Properties of Crosslinked Wood-Thermoplastic Composites. Polymer

Composite. 27(2):184-194.

Magnus B, Nicole M.S, Kristina O. (2007) Durability and Mechanical Properties of

Silane Crosslinked Wood Thermoplastic Composites. Composites Science

and Technology . 67:2728-2738.

Magnus P and Thomas H, (1999) Catalysis of The Crosslinking Reactions of

Ethylene Vinyl Silane Copolymers Using Carboxylic Acids and DBTDL.

Journal of Applied Polymer Science.Vol (72).521-528.

Mansaray K.G., and Ghaly A.E. (1998). Thermal Degradation of rice husks in

nitrogen atmosphere. Bioresource Technology. 65: 13-20.

Matinlinna J.P., Lassila L.V.J and Vallittu P.K. (2006). The Effect of Three Silane

Coupling Agents and Their Blends with a Crosslinker Silane on Bonding a

bis-GMA Resin to Silicatized Titanium (A Novel Silane System). Journal of

Dentistry. 34:740-746.

Markets Growing for Speciality Additives in Natural/Wood Polymer Composites.

Additives for Polymers, Volume 2002, Issue 5, 2002, page 9-10.

Page 35: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

135

Mehta, N.M. and Parsania, P.H., (2006). Fabrication some evaluation Mechanical

and Electrical Properties of Jute-Biomass Based Hybryd Composites. Journal

Polymer Science. 100:1754-1758.

Ming-Zhu.P., Ding-Guo.Z., James.D. and Zhang S.Y. (2009). Preparation and

Properties of Wheat Straw Fiber-Polypropylene Composites. I. Investigation

of Surface Treatment on the Wheat Straw Fiber. Journal of Applied

Science.Vol.114:3049-3056.

Mohd Ishak Z.A., Aminullah A, Ismail H. and Rozman H.D. (1997). Effect of Silane

Based Coupling Agents and Acrylic Acid Based Compatibilizers on

Mechanical Properties of Oil Palm Empty Fruit Bunch Filled High Density

Polyethylene. Journal of Applied Polymer Science. Vol 68:2189-2203

Mohammad P., Jamshid Mohammadi-R., and Shahram Navae-A. (2004).

Bleachability of Rice Straw Organosolv Pulps. Iranian Polymer Journal.

13(4): 275-280.

Murali Mohan Rao K., Mohana Rao K., and Prasad R. (2010).Fabrication and

Testing of Natural Fibre Composites:Vakka, Sisal, Bamboo and Banana.

Materials and Design. 31:508-513.

Nak-Woon C., Ippei M., Yoshihiko O., (2006). Development of Rice Husks-Plastics

Composites for Building Materials. Waste Management. 26: 189-194.

Natural Fiber producers explore new markets.

Reinforced Plastics. Volume 48, Issue 4, Page 17

Naurah Mat Isa, (2005). Injection Moulding Process Parameters and Performance

Analysis of Column En Cap Based on RHPE Composite. Master Thesis.

Universiti Teknologi Malaysia.

Page 36: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

136

Panthapulakkal S., Zereshkian A., and Sain M. (2006). Preparation and

Characterization of Wheat Straw Fibers for Reinforcing Application in

Injection Molded Thermoplastic Composites. Bioresource Technology. 97:

265-272.

Patricia M.A., Munoz P, Marcio D. Vargas, Moises M. Werlang, Valeria P. Yoshida,

Raquel S.Mauler.(2001). High Density Polyethylene Modified by

Polydimethylsiloxane. Journal of Applied Polymer Science. Vol 82: 3460-

3467.

Paul M.S. and Michael P.W. (2006). Opportunities for Wood/ Natural-Fiber-Plastic

Composites. Forest Product Journal. Vol 56, No. 3.

Peng L., Daolong L., Huawei Z., Ping F. and Wen X.(2009). Structure and Properties

of Closed-Cell Foam Prepared from Irradiation Crosslinked Silicone Rubber.

Journal of Applied Polymer Science. Vol.113:3590-3595.

Peng Z., Hangou X. and Shangwen T. (2008). Natural Weathering of Rape Straw

Flour (RSF)/HDPE composites.Carbohydrate Polymers. 73:378-383.

Prachayawarakorn, J. and Yaembunying, N. (2005).Effect of Recycling on Properties

Rice Husk-Fill-Propylene. Songklanakrin Journal Science Tech. 27(2): 343-

352.

Rigoberto B., Mario J. Quagliata, Geeta M. M., Amar K. M., Manjusri M., and

Lawrence T. D. (2005). Sustainable Cellular Biocomposites from Natural

Fibers and Unsaturated Polyester Resin for Housing Panel Applications.

Journal of Polymers and the Environment . Vol 13. No 2.

Rozman, H.D., Ismail H., Jafri R.M., Aminullah A. and Mohd Ishak Z.A. (1998).

Mechanical Properties of Polyethylene-Oil Palm Empty Fruit Bunch

Composites. Polymer Plastic Technology Engineering. 37(4):495-507.

Page 37: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

137

Rozman, H.D., Tay G.S., Kumar R.N., Abusamah A., Ismail H. and Mohd Ishak

Z.A. (2001). Polypropylene-Oil Palm Empty Fruit Bunch Glass Fibre Hybrid

Composites: A Preliminary Study on the Flexural and Tensile Properties.

European Polymer Journal. 37:1283-1291.

Sanadi, A., Caulfield, D.F. and Rowell, R.M. (1998). Lignocellulosic/Plastic

Composites. Spring 1998 Newsletter. 8-12.

Sang Kyoo L., Tae Won S., Dong Won L., Bong Kuk P., Kyu Min C. (2001). Novel

Regenerated Cellulose Fibers from Rice Straw. Journal Applied Polymer

Science.82.1705-1708.

Shanks R.A. (2004). Alternative Solutions : Recyclable Synthetic Fiber-

Thermoplastic Composites. Edited by: Caroline Baillie. Green Composites –

Polymer Composites and the Environment. England : Woodhead Publishing

Ltd. Page 100-119.

Sonia M.B. Nachtigall, Graziela S. Cerveira, Simone M.L Rosa. (2007). New

Polymeric-Coupling Agent for Polypropylene/Wood Flour Composites.

Polymer Testing.Vol 26:619-628.

Soo Jin P., Joo K., Dong II S., Kyong Yop R., and Yi Yeol L. (2009). Effects of a

Silane Treatment on the Mechanical Properties of Montmorillonite/Epoxy

Nanocomposites. Material Science and Engineering A. 526:74-78.

Suhara P. and Mohini S. (2007). Agro-residue Reinforced High Density Polyethylene

Composites: Fiber Characterization and Analysis of Composite Properties.

Composites Part A .38:1445-1454.

Suresh K. and Pandya M.V. (1997). Thermally Recoverable Crosslinked

Polyethylene. Journal of Applied Polymer Science. Vol(64): 823-829.

Tae K.K. and Chang S.H. (2000). Effect of Processing Variables on The Crosslinking

of HDPE by Peroxide.Polymer Testing.Vol(19):773-783.

Page 38: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

138

Tangram Technology Ltd (2002). Wood Plastic Composites.Hitchin (U.K.): Trade

Brochure.

Theodore O. J. Kresser (1957). Reinhold Plastics Applications Series – Polyethylene. London : Chapman & Hall.

Toh Show Chong, (2005). Design and Formulating Silane Crosslinkable Extrusion

Blow Molded High Density Polyethylene Compound. Master Thesis.

Universiti Teknologi Malaysia.

Valadez-G.A., Cervantes-Uc JM, Olayo R, Herrera-Franco P.J. (1999) Chemical

Modification of Henequen Fibers with an Organosilane Coupling Agent.

Compos Part B-Eng. 30(3):321-31

Valadez G.A., J.M. Cervantes Uc, Olayo R. and Herrera Franco P.J. (1999).

Chemical Modification of Henequen Fibers with an Organosilane Coupling

Agent. Composites Part B: Engineering. 30:321-331.

Van Soest P.J. (2006). Rice Straw, The Role of Silica and Treatments to improve

quality. Animal Feed Science and Technology. 130:137-171.

White, N.M., Ansell, M.P., (1993). Straw Reinforced Polyester Composites. Journal

Material Science. 18: 1549-1556.

Yan C., Liangfeng S., Ovidiu C., Ioan N., Val Y., and Mary W. (2005). Kenaf/Ramie

Composite for Automative Headliner. Journal of Polymers and the

Environment. Vol 13:No.2

Yeong T.S., Jia, S.L. and Tzung, K.C. (2000). An investigation of water Crosslinking

reactions of silane grafted LDPE. Journal of Applied Polymer Science. Vol

81:186-196.

Page 39: INJECTION MOLDED SILANE CROSSLINKABLE RICE …eprints.utm.my/id/eprint/32806/5/NadiaAndenanMFKK2010.pdf · mengenal pasti kumpulan berfungsi yang terlibat dalam tindakbalas pemaut

139

Yeong T.S., Huh-Chun C., Chih-Ming L. (2001). Water Crosslinking Reactions of

Silane Grafted Polyolefin Blends. Journal of Applied Polymer Science.

Vol(81): 1799-1807.

Yeong T.S. and Huh C.C. (2001). DSC and DMA Studies on Silane Grafted and

Water Crosslinked LDPE/LLDPE Blends. Journal of Applied Polymer

Science. Vol (81): 1808-1816.

Yeong T.S. and Kuo-I Hsiao. (1998). Thermal properties of Silane Grafted Water

Crosslinked Polyethylene. Journal of Applied Polymer Science.Vol

(70):1075-1082.

Zhiling W., Enju W., Shuxiang Z., Zheng W., and Yiping R. (2009). Effect of

Crosslinking on Mechanical Properties of Agricultural Residues/Recycled

Thermoplastics Composites. Industrial Crop and Products.29:133-138