Informe LOM 2008_rev4

Embed Size (px)

Citation preview

  • Pgina 1

    !!

    "#$ % & !'(

    ) & * + , -! &!. &/ !$ , -/&+*--- !&+ / ! / - , / ! .+ . 0

    - 12/

    .1324

    - -

    //! & !- !- !*5

    51!6 & * 2 $ & !- & # ! 7

    8 +/ / 9: & !;

  • Pgina 2

    -& . $ 0 ;

    ."3% (7"%

    ; "/?//@92 >#

    !-/ !!&"$ !% - - & - / -* / --,-#/&-.#A5

    .!

    A9 ? -?

    .-!$A9?

    (

    . 1 32

    .+> +- @ 0 B - C!/ B / '7/'

  • Pgina 3

    !!/ + & 5* !- ! !.C( !-& - +$

    -9

    4 -/ - 5 1 ! 9 92 ; ! +-

    #/+-

    . / #$ /5

    9D; ;+5 E5/F =8@

  • Pgina 4

    9 9 D-.!

    G '( G ; ) = 9@@ 5. / /

    5+-8 85. ./ !$ 9 =98 5.

    +- / 0 / ) /)/,/4/!-&

  • Pgina 5

    !

    * ! > 5/ *- ///

    *-

    .! 1 $ H2/ / *-

    *- * 5 ! / 9 9=

    -*& 161010 **, !- 17/7/2/$/F/$/I ( J/ #.& &&* - $ ) / * !- 3 &++!-

    //*-

    "#

    -/

    / . , +$1H/H4/,2 )0

    ' (71'82/ @G' (

  • Pgina 6

    . - = )

    .3 ?=G/K*&

    - 9 A 8 !- ,>=G/A=G4 4/ ? A@>GI1 F#?2 //

    +4 1#2/

    ? 4 + 5

    .132/ * / 9 A>@G599->

    $

    ./&!-;7 7 # * / +- = &-.99&.,

    -+-K!4!

    $ . - 5 +-

    &/-

    -!/,1!9 9 A2

  • Pgina 7

    9 0$);!

    CandelariaInstalations

    Propiedad minera de explotacinPropiedad minera superficialServidumbre con terceros

    CandelariaInstalationsCandelariaInstalations

    Propiedad minera de explotacinPropiedad minera superficialServidumbre con terceros

  • Pgina 8

    9 A F-C

    (7B;

    )CI

  • Pgina 9

    %

    - 1 92/ 5 5- .! !/ 5/

    50192/127;/1A2I1827C! !''- 5 $ & +M K - &!

    9 ;--N) &'()*+&)(,-*-) - 5 !* & ! * !/

    &, *--

    -/ $+ - .! - 19='A= 2 & $

    /!$

  • Pgina 10

    M

    / & --/

    *5/5/ I/ 55*-51'=2/&!!$/&*!$/!!5 ! .M K5 *' 5 , /!

    5 !$' / *M 5 ! / $ !-+

  • Pgina 11

    1 K ! 2/ ! ./ 5$5 +M K -!N* 4 *N!$5*!$! /'()*+&)01-*-)1'9=-.2! -/! ! . *- 7;,I/ /! -/ ! ! 1!5.25!/

    *-1='9=G2

    I7 C!M/ 7;-$ 5 ! 1*/ / / / +/ !$2 -5 1/ / / */ 2/ !

    * / / M .$! '+&)*2(+) 1 2/

    !/ !

    -!

    . 5# /

    .!/5!*/

    +./ / ! . - .5!'*/&5

    -!/ K +. !$ ! -/K & N ! $'$/

    4 '+'12/!.

  • Pgina 12

    & 15!*2/4/

    . . 4 '+ . .-

    ! 33E 3A'8E/ ! .

    -33-3S'8S C-

    **3AS>S'S I 19@>2 - .& 3; .+ 3; 39SE +- !

    ;T,*/!... / ! >=Q'=QE 5!:.M*.&5$/

    19'>2 ; / $

    $/ * /$*5 !/ $/

    ! - 5 . ! * * ! / 5 ! & 5 *&$!$ 7*/!& &/ ! 5* * & 1 2 -/5$/,*!$ &'3&&&-

    !/& / ! & * / & 3*A=59=;

    - .! *- 5

    ! ./,*/ =9*-1( /9@@=2

  • Pgina 13

    K

    */4$Q .'*40)5,60-&)-K7I

    7 9AQ - & $5! *

    ! !+AQM.!+ - 7/ + 33';;E */ - - . ) I

    7 *9Q'9=Q3/&*-/*3; /'!(&)/*7&8,*&/*9(:2*(*+*7&/*9(' !/ 5 7 C!/

    &/! 1 I2 & * 9 .

    19@@>2

    +( 19@@>2/ 5- & * * 5* !-K !*- . - $ -. !-$+N

    F5 !- $ 5 !!33E3E

    !%

    &'*)+-*.0/*9(*(-&*7&/*9(5+-&/*9( *- $! - -*1-.2*7C!17:2 - 1 2 4!$1- !,

    '.2 I 7

  • Pgina 14

    ; , - / / / 1-$2M -

    $!!/4'+''15$9917 >Q A ! -/ '1!A 82

    A 802

  • Pgina 37

    A =075$

    A >075$Z

    44 metros44 metros

    120m 120m 50m

    60m

    15m

    PERFORACIN TRONADOUna semana Una semana

    Acceso para perforadoras

    120m 120m 50m

    60m

    15m

    PERFORACIN TRONADOUna semana Una semana

    Acceso para perforadoras

  • Pgina 38

    ' =2*+)&-1*& $ . - 5 +-

    &/-

    -!/,1B$!3QA ?2

    A ?0$);!

    CandelariaInstalations

    Propiedad minera de explotacinPropiedad minera superficialServidumbre con terceros

    CandelariaInstalationsCandelariaInstalations

    Propiedad minera de explotacinPropiedad minera superficialServidumbre con terceros

  • Pgina 39

    "' (

  • Pgina 40

    H33

    ! !+ +- / ! ! +- !&-/!#!, !!++!- -!/&+*+- +-, ! - /

    !+-!. )#/-! ?= 1 .A >2 *.)!-,/

    -& 5 - !!K ? A#15&/!2 * . #/ & $/#& I - -/-#! -! 1$!2/7+CCC/! .! - & !-/&0

    &

    & * - 5 5/

    ,/4

    +-,

    2 Tpicos de Ingeniera de Minas a Rajo Abierto, P. N. Calder

  • Pgina 41

    ; & +- , )

    .

    +09G$-1*2..

    $- -#.

    !.- - - - & # /-

    H

    ,-&N+- / , -/. -/ ,/ *

    -- +,4 -/ / **- #-&K,

    -0

    *-#, I!$ B, $ +

    &&

  • Pgina 42

    .1!3QA @20

    ' +&- -+K . ,

    / ; # + ==

    / !+ ;K19>2

    ' +&- &(+/K D /

    ,#19>

    2 . ,

    ' +&-0-K,*-*

    / 9 + 7!

    "' 0--&(L0&BK-

    &

    !!&!& )

    'A@?

    ' +/M *(-& &A& 5K R * & .

    043/4;/434

    $' +&-C&A0-DK

    *+ &

    4N + !

    - ?+/ !5 5 A,

    ' +&-*L0K

    !-

    )

  • Pgina 43

    A @ F-

    (7B;

    )CI

  • Pgina 44

    3H

    ' 3&/+-)1(A&2*(+K !

    ;5AG(/ N[1

    @N[2 &+.9 A ' (401)K) .*A8A?Q$ )#- . A8Q - -5*9/=09 ' -2&)+&.**&KD & * -

    , / A 5 9> />8 I # 9>

    A59G "' (/;&21&5

    A* F 8 9 , 5.-

    ..# \")F#!-%M;79H9

  • Pgina 45

    " @

    " @

    - & /

    - - . 7. !- - &

    ..-0

    ).)-0

    3- (-K F(09 ??NA

    ).I,F#0

    I& - &./ )/ /..A5*

    9> - .

    # )!-,;1FC2/7 ) ' & )/ 7+ 3 7+ ; . - 9>/ - ! &

    ?/!*?5+# F5)!. , ! & . $

    /0BCC ??8'?@ BCCC ?'=C ^ 8' ^ 9A'A

  • Pgina 46

    &- . - ; +$)0BCC/&! - / .99 :57# )BCCC/.? :)/9 :7+ 3A :7+ ; !5;99 )C /^. :)/9 :7+ 3A ?:7+ ; !539= ) /^.= :)/ :7+ 3? A:7+ ; !5*9

  • Pgina 47

    A 9 !-&

    C-397

    736

    Relaves Topografa al 31 de agosto 07.

    C-397

    MURO PRINCIPAL 65.000 Kton

    MURO Aux NORTE

    5.000 Kton

    MURO Aux SUR 14.000 Kton

    MUROS TRANQUE DE RELAVES Elev. 816

    816

    MINA

    Botadero

    724

    Garita principal

    Instalaciones

  • Pgina 48

    A 99 )-&

  • Pgina 49

    FNK-0//*9(&B)

    '=1(/ 32 '@;1;7

    2 F ) A #/ 8=

    ) *- & .. 3F3

    ;*!-.!A?

    ) . .

    &)

    ;.&! ..

    !.8

    3

    /9 ??NA $ - .

    !5.W ?G+5+

    = ! /

    8

    = ! /

    5 ! / / - + - $/!'A@?5/&

    *.F

    -

    )-/-!,

    & !$A?9>

    !5*

  • Pgina 50

    K

    . !

    &-.+ 99 / , & C7CC

    F

    -$.,

    ] M ]9 =/ ]9 = ]9 = * #/@/999/!- *]9 *.#9A17+C2 *,

    ]8=]? =* !- *"%

    IA A

    E?

    O-P>7 ]= ]8=&+&P>7 ]9 ]? =

    ,0

    - ,C

    ;9N/5.

    ;9N/&9G , 9 N

    !]= N*

    &+&

    , ).AN .9G

    !]/A=*7

    3 E; @]D;N

  • Pgina 57

    IA = '>* Candelaria Cost Estimation Budget 2008 and 10 K reserves - L6 Variation

    (Ton in Metric Unit and $ = Dolar)

    Mine Operation

    Scheduled bench 16 meter per year 10 bench

    Incremental Haulage 0.0113 $/ton/16 meter -0.007below 672 = Bench #14

    Base Mining Cost 0.771 Incremental Haulage Cost of $0.0113 added 0.045to Benches below Bench #14

    Sustaining Capital & Owner's Cost 0.199 0.227 -0.027

    Total 0.970 $/ton 0.018Ley Critica 0.227

    Costo de Remanejo en Stock de Baja Ley 0.482 $/ton 0.000

    Concentrator Processing Costs 3.2522346

    Treatment cost 3.142 $/ton 0.418Sustaining Capital 0.223 $/ton 3.941 0.153G&A 0.729 $/ton 0.125Total 4.094 $/ton 0.696

    4.576Downstream Costs

    Land Freight + Ocean Freight 0.087 $/Lb Cu 0.017

    Sales 0.004 $/Lb Cu -0.001Smelting 0.149 $/Lb Cu 0.137 0.144 0.020Refining 0.098 $/Lb Cu 0.105 0.100 -0.002

    Variacin del costo segn Precios: 1.200 0.95 1.00 0.150Precious Metal Credit (0.169)$ $/Lb Cu -0.022Total 0.169

    $/Lb Cu 0.164 0.167 0.012372.5812 $/ton 361.5956 367.3200 26.455

    2645.5471 2094.3915 2204.6226

    Gold and Silver Potential Credits

    Cu grade in Concentrate 31.0% 0.000Smelting/Refining Cu Rec % 96.3% 0.000Avg Au grade in Concentrate gms 6.40 0.572Deduct (gms) 0.32 5% 0.029Au Price $/oz - Ref. charge 450 6Avg Ag grade in Concentrate gms 106.1 12Deduct (gms) 30 0% -1.000Ag Price $/oz - Ref. Charge 7.15$ 1.45Credito por Magnetita 0.009 $/Lb CuCu Price 1.20$ 0.150Value Per lb Cu 0.169$ 0.022

    Price and Metallurgical Recovery

    Price MillSmelting/R

    efining OverallCopper 1.20$ 95.500% 96.307% 91.973%Gold 450$ 82.500% 95.000% 78.375%Silver 7.5$ 85.000% 100.00% 85.000%

    Discount flow rate 12%

    Stockpile Processing

    Mill recovery 86.40% ConversionsRate processing daily 80,000 Ton/Da 2204.6226 lb/Tm Metric TonsConcentrate Grade 31.00% 31.1037 g/oz troy Precious Metals

    ConversionsMetric tonnes 2204.6226 lb/tmPrecious Metals 31.1037 g/oz troy

    !"

    #

    $

    "

    %

    "

  • Pgina 58

    " @

    / $ * ! !

    )*

    /9> )$

    &4*! R$9> A >&-

  • Pgina 59

    (*& &-/& &1&/*&2*(&9 F1:2 >= 9I ?@AA

    (*& &-/& * A9

    (*& &-/& &1&/*& 8 8 >?8 8 8 >?9 : EF'>'9 8 >?

    (*& &-/& (/;GA& 9> 8 ? 9>R 8 ?

    (*& &-/& &1&/*&9 @@ 99 =A9 @@8 9A9 : E7'>'9 = 8A

    (*& &-/& &1&/*&8 ??A< =A ??AF =A

    (*& &-/& &1&/*&9 : )'8' 9 A

    A*.)

    +-6/&B&-&)

    -,-&-&)

    &2*()

    &&)

    07-

    R7-

    +(*B&-&)

    &-4&-)3-(+&)

    IA > &

  • Pgina 60

    " %!@

    F /

    *-&/&- -/ --

    " 8&&)SG' & $ - )R 1 A 2 - & *

    !$.- -!A ?/)R9/89

    2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025P&H 4100Disponibilidad 82.20% 79.90% 78.60% 78.80% 78.80% 80.10% 80.90% 82.70% 83.00% 79.00% 82.20% 78.90% 86.80% 83.00% 87.10% 82.20% 87.00% 0.00%

    Utilizacin 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 0.00%P&H 2800Disponibilidad 81.30% 78.10% 81.00% 79.20% 79.10% 79.10% 80.00% 86.80% 84.20% 82.70% 87.40% 82.20% 76.30% 83.40% 85.90% 79.10% 85.10% 87.20%Utilizacin 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.37%

    P&H 2100Disponibilidad 85.00% 85.00% 85.00% 85.00% 85.00% 85.00% 85.00%Utilizacin 30.00% 30.00% 30.00% 30.00% 30.00% 30.00% 30.00%

    IA ? F/

    &/ *- - . $ $ 12

    5=/>?1A 2

    TPD Datos Reales TPD Util. 85%P10 41,235 45,051P11 36,456 41,428P12 39,510 42,511P20 54,216 55,820P21 54,852 56,408P22 53,975 55,441

    280,244 296,658

    IA (5-/=/>?

  • Pgina 61

    )&$/ *!-/ !*1! A @2 A @J

    . $ * *!- /

    09 ')- 08= 1)R2 ')- 0=> =1)R892A ')* 08 =1)R28 ')+ 0A >1)R2

  • Pgina 62

    " @ A /!& 7&!. .+&!$.* & !'- * - , !-50'- 0 A?'-F 0 9 A 9 !

    IA 9 D*-

  • Pgina 63

    "F

    "

    "

    . *- # .$+-,&*-&

  • Pgina 64

    " ANGULOS GLOBALES DE PARED

    #.!5 +/ 35/ + . 5 !3Q8 9

    3Q8 9 7

    "" ?

    .&

    / / + ! #!

  • Pgina 65

    8 0!.' R & !- & . +-!!/&5&.*/*$

    # 1 2/ *

    !-$#significar no tronar en apertura pegado a las patas lo cual debe tenerse presente al aceptar incrementar el ngulo de talud.

    "

    ! ,&, ! 5/&!& $

    #/!$ F!.#$&/!

    54/+

  • Pgina 66

    I8 907/5&*/0

    / F&! I 1'.&!

    .2 */*1**

    2 ;!! , ! +

    4

    7&.&+.!

    8 A0(&.'

    NGULO INTERRAMPA

    PRCTICAS OPERATIVAS

    TRONADURA AMORTIGUADA, EXIGENCIAS OPERACIONALES MENORES

    TRONADURA TRADICIONAL, SIN MAYOR EXIGENCIA EN LAS PRCTICAS OPERACIONALES

    45 50 55 60

    ANCHO DE BERMA SEGN CRITERIOS DE SEGURIDAD ESTNDARES

    ANCHO DE BERMA REDUCIDA

    TALUD INESTABLE INSEGURO

    USO DE PRECORTE, FRANJA DE CIERRE Y ESTRICTAS PRCTICAS OPERACIONALES

    BERMA REDUCIDA CON USO DE SISTEMA DE SOPORTE Y/O SISTEMA DE PROTECCIN CONTRA CADA DE ROCAS

  • Pgina 67

    "$H

    )#!*.# #!/.. #!$".% ..!0

    192 7/51212 7/1S21A2 T/1T212182 75/12D*&.5!/.'/C/&!0

    +=

    Qbhtan bi

    1 0 )( bb

    tanhQ

    =

    +0-&.&(/0. &+-/,! $5/ .9'9? 5!9> F(40/&-&.&(/0 ..! * - / , / N */ # . . / ! # , $ ; *

    Figura 4.4: Parmetros que definen la geometra del sistema banco-berma.

  • Pgina 68

    / K

    /

    !

    12/ ! 5 F

    /5 ?G @ G

    . $ * , (500-*(*+-2*&(+-&&-K + &;;((1;;(2$!/ !, & $/ ! */ ;;( =;*

    8 ?0;

    Radar Scan Area

    Radar (SSR) Radar Scan Lines

  • Pgina 71

    *

    5*! & *

    = +-9==

    8 0

    ,/

    5 &;;((

    $!

    1F52 5/#/C,-,

    18:13 8th October 2003

    20:47 8th October 2003

    23:22 8th October 2003

    08:32 9th October 2003 Displacement (mm)

    Slip Area

  • Pgina 72

    8 @0&;;(;!*#! (*+- 2*&(+ 6+()92+-)K +- ! ! !- !5*& -

    !-

    . &

    8 90&+-

  • Pgina 73

    "J% * . & & 70

    !!-

    - 1

    --2

    $!! */ !*&

    !)#&

    * ;..))B1-$2/!-/-L

    8 990-! 8 90&

  • Pgina 74

    8 9A0$Z("J 8(/**&/*9('D $ *!-,/

    . )$

    * / * / + 1 A &2 7.

    .#/..

  • Pgina 75

    )!- / * ! ! / ! / . !- . 8 980)!-Limpieza de la cara del talud con bulldozer y cadenas. Esta prctica se utiliza para eliminar riesgos de cadas de roca desde la cresta y de la cara del banco (caja).

    8 9=0*/*

  • Pgina 76

    " FN3$G:3:3E:

    3J%3

    H . * # >5/ ?/ / @ 9 )!-, ) * . &*M*

    1$(TF2/-!. .!K,! 3C ) * . - $ ! "7. , ?/ @ Z />%C!-F0

    - (FT1?2- -1>2- 1>2- 2- -Z;!/;

    5/!?/!/!

    @!9 - C! 3C/ ( C

    ; 7 Z

    )5?E;1=2

  • Pgina 77

    I0;#8 9>0.

    K - - * & ! ! +-

    & ! ! 8 9> -!>5/?//@9 F $.

    &0

    F

    /3 1 , 8/ = >2

    !5+ >8/ 3 1 , / 9 2 !$588

  • Pgina 78

    //

    !/$!!

    F

    1/2

    3/; 31, A2 ! 5 =>/ & 1 , 8 =2 . & ; *&5

    .#

    &

    *- 3' 1 , A 82

    !>?&!-/* / / / 5

    5-

    *-!+=88 ;&**-*

    #!&

    .

    &/

    & * & ! !-&

    71D82 - & 7 ! 1D >92/ .

    -I1D=?2 !/ ! . , - !*

  • Pgina 79

    8 9?0->5/!?//@9

    RQD Fase 8 RQD Fase 9

    RQD Fase 6 Chica RQD Fase 7RQD Fase 6 Chica RQD Fase 7

  • Pgina 80

    3&)$;*/&1*./!8 9290 * 9N%/ ! / /*+ 0 5 33E 5 / & - # / -+*#- ; , 1)/!!>9N%/!//*+ . , 3;1N2/,* . 3,

    RQD Fase 10RQD Fase 10

  • Pgina 81

    3&)1*./!8 9290 J */ , 1!!>9N%/!2/*+ 0 ; (TF , 1!! >9N%/ ! 2/ *

    +A0I133ENE2

    #/!/ 80 , 1!! >9N%/!2/; 3 , 19 N2/ c 12 )9?> /

    3&)E1*./!8 9290 )

    # 1 2 # 33E/ (/ / / IK ; 0; (TF/ , 1!! > 9N%/ ! 2/ * + A0 , 1!!>9N%/!//#-2 3&)J1*./!8 9290 J */ , 1!! > 9N%/ ! 2/ * + 0I133ENE2

    #/!/

  • Pgina 82

    A0 ; (TF / * , 1!! > 9N%/ ! 2/ * + 80)!$&-&

    /!5 / 3E ! ; ! 5- - 3&)1*./!8 9290 */ 133EN 5 2 # ;

    , 1!!>9N%/! 2/*+ 8 9 J$ #>5/?//@9

  • Pgina 83

  • Pgina 84

    !K@ * ( . (TF 14&2 !.-

    (TF!>5/?//@9 * (TF 1 >G2/

    !/ &/ $.# +*(TF 12 *!#1.=Q2 *(TF-N / * !-/ * ! ! * *- *.0

    J , / 9 0 B (TF 8=G/

    &*!!!D ;!88

    J , A0 B (TF ! AG

    1Z2**- ;!=88

    J,8/=> B(TFAG

    ;!>8

    +*(TF/! **192

    *(TF//8>Q.

    **!/..$/

    #/

    *- / * (TF/ # 19>2

  • Pgina 85

    8 9@0(TF!0>5/?//@9

  • Pgina 86

    G*-44=&D!.

    * . ! & / !, 3E&!.. 7 + !. , * *, ! !. !&3E!/ .

    8>Q/ ! & + * /*-&! ;.&A3E!?!@ * 35.!.555.

    .&3E

  • Pgina 87

    3$G:3:3E:3J%3!8 -!!>5/!?/!/!@!9 !*-!- ! A/ 8/ =/ > ? . *- K 1>2 - !;

    5/ ! ?/ ! / ! @ ! 9 & !/ / .. . F 5- / !=/>?1!-/IK/!.!>1>2/!//-/(/2

  • Pgina 88

    8 0!>5/!?/!/!@!9

  • Pgina 89

    "FFN

    -*/!. / +- & 3E 5 & ! , 1!2 7&!-#! 7.

    !#! / . ! 1B!8 92 7 .

    7.

    ! .

    - - ! 1 2

    1 !/ ,

    -

    !2

  • Pgina 90

    8 9Z7.'!

    ) *

    ! * 5 ! . . / ! ) ! 5 * # 1! 8 92 . ./ - / . #!>5/!?/!/!@!9 ! 8 !/ / !

    / ! # # 3Q A/ 3 .* /+- &--)+I K &(&- )0 //.

    . .5 ;5!>!?1!IK/!/!-/!!2

  • Pgina 91

    8 Z7.#3QA)3

    Joint Contour

    ISA Joints Faults

    Sector 3 Pared NorEste Diaclasas Sector 3

    Fallas Sector 3

  • Pgina 92

    ! ? .

    / . !- 3/ $ * *- /

    !3C/.#

    - 33E &

    !- ! & $ 5

    / 33E >Q Q 5 1 5 2 !-//F/IK///B

    -!7*1332!33E

    ! # * ; ! $*&$17

    A$#2

    ) * ! (/ !

    33E . * !

    F &

    . / &

    !- - ! * / !

    -(TF1!25&

    & !$ / ) && &$/& . -! . 1 , Z ) (/+-(2

    F - ! & .

    - , +*!!-1d2

    F

    +/ !

    !-/ &(/+-5!!

  • Pgina 93

    (TF! 5!

    9 ! 9 5 ! , ; ;;( 8 5 & ,

    C 5- /

    .-

    - .

    =Q

    &.#/.

    &

    .

    8>Q.#

    / . ! ; & # N * )!- 1 )*2.& /.$

    ; # * ,

    C;7I/* . . & , $

    #

    !?-.

    8Q.

    =Q#!?182 #!?/#

    !?182

    5;

    F / #

    .

    =Q/&&&+.*

    5 & !*/!/$

    ;

    A.+'A

  • Pgina 94

    "F

    "(+-0//*9( .

    ./ . ! / !

    )*,!*! / ! * +- ,+-*30()1!+-2;; K+*.$/K ! 5

    "(,-2&/*9(+Q/(*/&

    3/( & & (( , *

    F5!-$+ #&5 !- &5* : /*. 1. *2/ , (TF 1 &2 K5 -*

    Modelo de Bloques de calidad Geotcnica RMR (Exploraciones)

  • Pgina 95

    Modelo de Bloques de calidad Geotcnica RQD (Exploraciones) Modelo de Bloques de calidad Geotcnica RMR (Geologa CCMC)

    !-,*-. , ! / & * +0./'I5; 7 " B&0&/*9(2/

  • Pgina 96

    Radio Hidrulico (RH) = [(a*b) / (2a + 2b)] -.,$((1&!- $ (( * -- 2/ !/ .! 5/!*/-

    .! 5 ! * / -

    !-!-,,

    Zona de Derrumbe

    Zona de Transicin

    Zona Estable

    RH = (rea de Cavidad / Permetro de Casern) A

  • Pgina 97

    ""(

  • Pgina 98

    "

    !0/+-+&)+K

    ". # + / 3/ 7+ 5 ' $ . C!! 3= %!0"; . . # + ;; 7D( /^&$5B F5 - $ K 7/$.K!/0 B ! - ! $ !- ( R. ! *

    +! B/ !((. & !

    &! +- / /&+- +-/!& ' !# ! ! . +- / 3;,!)9/A/98> / &$ -, -! .

    $. %

  • Pgina 99

    "/+-(+-&

    ".#+;;L

  • Pgina 100

    + I/ & ! / * ! !- + +->//9/99 ( +- / /+9-! 7/! 7/ # -9/9- ; &$ & ; 7F(

  • Pgina 101

    "$?G%

    I, ! . / .

    * 7 / !5/

    '-8? >8= 1 8G2*#> !.///& + 8 # / +, 5 # = ! ? &5#9 7 */ ? 9/98 1A9 9G2/ 5 -*1 G?2!+ !-1 -*2 * - 1.1

    2

    &2 *

  • Pgina 108

    (+/(+)4(-&) $ / ! - * 7. +-/# 1-/)&2*(+F!- 5

    & - F#>

    & #? * / $'$ - 5-/ & !-;7

    /0&/*9(

    Te1)N2aDa8aD

    F0

    I)FD0I$

    ;7-

    )0 )*;7/4E

    )Y)Ia19Z!2

    )I );7!0

    0 $!$-/

    4E5ND0 !;7/D0 )-&.

  • Pgina 109

    +(/*&()+&&&*(&K;790 9 4E;70 9 4E

    3&/+-))/&&2*(+K;790 A/G;70 A =G

    ()*-&/*()&-

  • Pgina 110

    $! 12/ ! 12/512 12 !

    $ - -

    5- ) . - 5- .!

    -/)&2*(+5/01-&/*()

    #!

    3-+&7&)>.**&)2

    !*.-*/ ! G # ? ; ;

    . -*1$$2&-!, * - . & & $ 51$2*

  • Pgina 111

    U,*/*(/*&/+*B&(+&!7;75

    /=GD*-5

    &. &- 1 / /-

    ;72 ! / . - / & 5- - 1!&/$// 2 * #9

    $

    V) E J

    ,*/*(/*&/+*B

    =(& J: J$:" J:JJ JJ

    ,*/*(/*&/+*B=(& J$: J:E J:$

    JJ JJ

    /&2.*B)+*2*(+)*(&4 / - / */ * !-5-/ $ * F #8

    /&5!- )-& ;-

  • Pgina 112

    --$!$;71:65N2 $! $ !- $ -/ - $!$#9>

    6.0

    6.5

    7.0

    7.5

    8.0

    8.5

    9.0

    9.5

    10.0

    2001 2002 2003 2004 2005 2006Year

    ESC

    (Kw

    h/To

    n)

    3*40-&

    ()02)1/=,*/(-4=&*()D*& !-!$&. $! $/

    = -

    */&

    ! #/ K

    /*/!,!**

  • Pgina 113

    6.5

    7.0

    7.5

    8.0

    8.5

    9.0

    9.5

    2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

    Year

    ESC

    (Kw

    h/To

    n)

    -

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    Lin

    er

    Life

    (D

    ay)

    Energy Specific Consumption Liner Life

    3*40-&*&B)+*2*(+)(

  • Pgina 114

    (*&)94*/&)--!

    D3CF7F;C7;D;7F7;3;)73;F)(FDCf3

  • Pgina 115

    %# - / #/-= ,/+&+- - +- . //4*-1#982 ' ; & +- . =? =# D** .99

    +

    -+-K!&4 ;&.G-+- - . ! +- ; !?G $, ! -/ $ & ! +- . 0

    /

    55 / 9 /

    75#

    5 (' $ 9

    - ! !/ #5

  • Pgina 116

    C - /*;

    C 1'2 +/

    C-$!-

  • Pgina 117

    C-#$!6$

    /$-

    %#+1W?

    &'(()*+&,(&',+

    #)--).

    .)/,'+01)*0'.

    -.

    #(,/(2

    13"

    45

    /6#7

    / 45%

    8/5

    8/5

    / 45%

    13"

    45

    /6#7//#

    .58

    /85

  • Pgina 118

    (/0)*()

    /98D;]N * # > $ # ?/ -

    - &)/;9/ -& /C)

    5-*#8/0 0 C

    5 7/ K#*-;7 > *

    /,+ -0 F ) ! & 0#=-!5 $0? * ? . /&$=9G !&&!-

  • LOM 2008 Pgina 119

    3

    !#5

  • LOM 2008 Pgina 120

  • LOM 2008 Pgina 121

  • LOM 2008 Pgina 122

  • LOM 2008 Pgina 123

  • LOM 2008 Pgina 124

  • LOM 2008 Pgina 125

    - # 5!

    & &!

    -.- 7 5

    /&.& / /

    * !

    !. F

    - !

    -! ;.!-

    5

    % .

    ") +- = % & !- . A >

    - !1CC(2 89 >G/ 13)B92 A/>8?

    -4A/#7-#

  • LOM 2008 Pgina 126

  • LOM 2008 Pgina 127

    )+);*)+9-*/)(/(+-&-&7 - /

    #9@@!5

    F #9@@ !&,/#/

    #?5.

    7--!.!0

    !"##$!""#$!$

    0

    1

    2

    3

    4

    5

    7 8 % 4 7

    Ao

    %''!

    0.000

    0.050

    0.100

    0.150

    0.200

    0.250

    0.300US

    $ / Lb

    Cu

    '.! '.!

    .! -

  • LOM 2008 Pgina 128

    !"(###!""#$!$

    8

    %

    4

    7

    7 8 % 4 7

    Ao

    US$ *

    1.

    000.

    000

    .! - .

    !"(#""#$!$

    %

    %

    %

    %

    8

    7 8 % 4 7

    Ao

    %)*++++++

    ( - )9 / ( 0

  • LOM 2008 Pgina 129

    7#8

    0&(+(/*9(0 $ 5 , & & & - 1 #$/ 5/ 2 I, Q $91#82/;551#>2! !;791#>'?2 -/*&/-0K# 5 I,#A*- ;7/ & 5 ? 12 # > ? 5

    * ;7/,+ &( .-&0 # = - !-51-

    8= 5

    2 +-)K . # = - , 7

    ; ,.5#@

    (-4=&Q/+-*/&KR # $ , C) & ! #A9 4E5 & # ?/ -/ ! 9 =A >/!--C) .

  • LOM 2008 Pgina 130

    D]99 #?!?1D]98.#2

    #

    +

    D*-;7-?Z@

    F!+-

    5-$, 5-

  • LOM 2008 Pgina 131

    7;7

  • LOM 2008 Pgina 132

  • LOM 2008 Pgina 133

    $? 30

    - (+-.+>/$ - @0

    o B-C!o Bo '7o '

  • LOM 2008 Pgina 134

    - ' C! ' 4! ' .*'!4'!$/#/

    K 5 *- - - F 5 ! *

    5 5*/ '/!$!. $ 3* !/! / !

    ! ./ !/!-5 -! !/ / * - + -! ! !$ 5 / 3/ !*-!/&$

    ! 5 ' ./- *- /& 4

    / ./ 5 : !/ 5 4 - *' !.

  • LOM 2008 Pgina 135

    > 9 ;->3

    $ -&$39=Z8QE/*5 * ; /IK'(/-'

    -!-33E3E/'*-/ / /

    / &

    5*- !.,53'E

    $" !

    * 3 */!/!/!

  • LOM 2008 Pgina 136

    /*//&$+/9Z ? / 5. *-

    / & * 464/#- 1K2 b ! * 5 5 /&/Z8G

    /$3E'E

    > *-3

    (0EB

    000*-!

  • LOM 2008 Pgina 137

    $ %$ %3.?&++&*

    0

    -(&&) =(*2

  • LOM 2008 Pgina 138

    .*// / . , - *!0

    (*& *1 9*4; ?B.C! , =7!$ == =?9 , ?F& , ?B @9B @B @A

    I> D-$" )-/9! - & !

    $5 &&!?//&++ & 50 $ 19/ 2/ $19/2/19/219/ 2/ - - &$*, $!!, - 1: 2 -1 52 7 4

    - 5/ &

    -// $ (+/(+)3

  • LOM 2008 Pgina 139

    D-$&D9-$D-$)9)9977797797777779779779777797;;9;;9;!-&9!-!-$$ &+4-*7&/*9(/0-))) *-*- .&K&-

    /-$0

    *)+&(/*&(B-)&84Y4'

    X XG) Z U0 U U4 U

    9 OA Z9A ?/@> @ >> 8? 9 @ >

    C Z> 8/>?A = 9 9 8 @ 8 A>

    WC :" J " J$

    C! A 9 ZA =>8 9 ?=9 A? @ A== 8

    +& : J$ " "

    I> A *-(3

  • LOM 2008 Pgina 140

    $ (-&/*9(-/;*B/0-))7 b! C$/ * - &&&. 1> =G 2 )* /D

    & -0

    I> 8 )-($E0*+-*&&L0))!-&

    3/ - / - - !- !- & $*& . !- * 3

    *)+&(/*&(B-)&8-/;*B1(-&'

    X

    XG) Z U0 U0 U4 U

    9 OA Z9A /?@ = 9/@= 8A> @ @9 >9

    C Z> 8/@ ? 9 >? A@A @ 9@ A=

    WC :E E " J$J$ J$

    C! A 9 ZA =>9 8 9 > A>? 9 8

    +& ": "$ E "J J$$

  • LOM 2008 Pgina 141

    Page 1 of 3 MODEL IDENTIFICATION: Candelaria Norte (CAND15.DAT)

    Block Size (x, y, z): 2 x 2 x 2 mNumber of Blocks (x, y, z): 450 x 300 x 200Grade Interpolation Method(s): NN, OK, IDW

    Procedure Evaluated

    Level of Completeness

    Impact Potential Opportunity - Risk

    Assessment

    1.0 DATA COLLECTION Responsible person and title: W. Martin

    1.1 Drilling Method(s) High High Low

    1.2 Drill Hole - Sample Distribution Drill hole pattern appropriate for deposit geometry. Adequate drill hole spacing. Properly angled holes, ifapplicable. Drill hole location map provided. High High Low

    1.3 Sample Quality High High Low

    1.4 Sample Logging High Mod Low

    1.5 Assaying Methods Sample preparation practices are appropriate. Analysis methods are reasonable for desired elements. Analyticallimits are not a limitation. High Mod Low

    1.6 Sample QA/QC Checks Assay lab has QA/QC procedures in place including routine in-house and outside check-assays on duplicate andblind samples. Mod High Mod

    1.7 Storage of Geologic Materials Core, chips, pulps and reject materials are stored in good condition and organized to permit access for furtherevaluation, check assays etc. Mod High Mod

    1.8 Archive Of Drilling Information Mod High Mod

    2.0 GEOLOGIC DATABASE(S) Responsible person and title: C. Calderon

    2.1 Data Entry and Management Mod Mod Low

    2.2 Collar/ Downhole Survey Data Mod High Low

    2.3 Database Storage Fields High Low Low

    2.4 Geologic Coding Mod High Low

    2.5 Analytical Data Validation High High Low

    2.6 Unassayed and Analytical Threshold Information

    Unassayed information is identified and handled using consistent and well documented methods. Analyticalthreshold limits are reasonably represented. High Low Low

    2.7 Rock Quality Data Geomechanical data used in block models such as RQD, hardness, Bond Work Index, uniaxial, triaxial andextensive shear tests etc. are stored in a central database and available in files. High Mod Low

    2.8 Bulk Density Test work Adequate amount of bulk density information representing relevant zones-lithologies of the deposit. High High Low

    2.9 Compositing Strategy High Low Low

    2.10 Statistical Evaluation of Data High Mod Low

    A written SOP was provided. Densities are measured on each one-meter interval, whenever possible. For the few intervals that do not have densities measurements, densities are calculated from the interval above or below, or the average density is assigned for that geologic unit.

    Analytical data are routinely validated and outliers are investigated or reassayed; Codes are routinely checked foranalytical or mineralogical outliers.

    All determinations, estimates and descriptions are presented in a clear and consistent manner; standardizedabbreviations and codes are used. Regular peer review of logging methods and accuracy of mineral estimates isperformed for logging conformity and consistency.

    Coding strategy for geological and mineralogical features is appropriate for style of mineralization; coding scheme isdocumented and applied consistently. Metallurgical parameters are assigned to mineralogical ore types based ontesting of a representative cross section of sample material types and spatial locations. Reasonable input fromproject metallurgists.

    Drill interval, composite interval and model fields stored in the database are appropriate for the style ofmineralization and mining method for geologic modeling and grade estimation purposes.

    Split core is well-organized and stored outside in four areas, but there is still potential for contamination of core by concentrate dust.

    A check-off sheet is included in each drill-hole folder. Folders are very complete, containing signed collar survey, down-hole survey printout, geotech log, density measurements, geologic log, assays, and printouts from electronic files. Logs are stored in non fire-proof vault

    Have a dedicated database manager with write and access protection. Drill hole data are stored in ASCII files (one file per drill hole). These require a Fortran routine to convert to MineSight input files. Exploration staff is looking at acQuire data base software in conjunction with Candelaria mine geology staff. It is recommended that this software be purchased, as it will greatly improve drill hole data base capabilities.All holes with collar and down-hole surveys. For recent drilling, Maxibore surveys are taken every 3 m. Older holes are surveyed every 25 m. Written SOP for downhole survey methods provided.

    Table presented with storage fields for assay and composite files.

    Statistical evaluations of drill interval, composite and block model data are routinely performed and histograms andcumulative frequency plots and summary statistical tables are available for review. Statistical outliers are addressed appropriately.

    Strategy for compositing drilled intervals is appropriate to style of mineralization and mining method; compositeintervals are routinely evaluated for analytical and geological outliers.

    The 2004 assays determined by ALS for Cu, Au, and Ag. Older holes principally by the Candelaria lab. Analytical procedure for each determination provided by ALS. Older holes assayed for Cu, Au, Ag, Zn, Pb and Fe. Magnetic Fe for current holes is done by Candelaria lab.

    Old holes did not have consistent QA/QC procedure. A rigorous QA/QC procedure (including written SOP) was implemented for the 2004 drilling. QA/QC results were summarized on a monthly basis. Some samples were identified as questionable and were re-assayed for Cu and Au to conform with the newly implemented QAQC procedure.

    Cumulative frequency plots and basic statistics were generated for assay, composite and block values by geologic and vein unit for Cu, Au and SG.

    There are no "ore types". A 0.8% Cu boundary is used to separate "ore" and "waste" in the magnetite manto. The 0.8% boundary is an economic cutoff, and is not based on grade distributions or geological controls. Veins are also designated with Cu grades >0.8% outside of the manto, but inside mantos they were coded with Cu grades >1.5 percent. No outlier checking is performed.

    Two-meter down-hole composites are calculated using the ten geologic units as a control.

    A table of default values is used to account for varying detection limits over time. Missing values are designated with -1.

    A written SOP was provided. Geotechnical logging is done using CNI format. A rock mass rating (RMR) model is scheduled for completion by the 3rd quarter of 2005.

    Seven lithologic-alteration and three vein units coded to control grade distribution. Table of each lithology and vein type provided with binder. Also shown in binder are geotechnical and metallurgical attributes.

    SOP provided of sampling protocol. One meter sample intervals, generally >95% core recovery. Core is sawed to produce half-core samples for assay.

    Model contains 388 core drill holes that total 72,823 meters of drilling. This includes 329 underground holes (44,831 meters) and 59 surface holes (28,010 meters).

    SOP provided of revised and existing core logging procedures. Used revised logging form (with graphic log and expanded comments section) for holes drilled in 2004; earlier holes logged with established logging form.

    A nominal 35 meter drill spacing between sections, and generally a 30 meter spacing between holes within individual sections. Some intermediate sections were drilled and interpreted in the area of the West Vein.

    Model Software: MineSight

    Modeled by: Cand. Expl. Staff

    Model Completed: Jan. 2005

    Drill hole collar locations are identified using appropriate survey methods and coordinates have been validated.Downhole surveys have been performed using appropriate survey methods and the results have been validatedagainst drilling plans. Collar and downhole survey data are stored in a central database and copies are placed indrill hole or archive files.

    Paper archive of geologic logs, assay sheets, surface and down hole surveys, and drillers logs for each holes maintained in an organized fashion.

    Drilling method(s) for remaining in-ground resource are appropriate for resource delineation for the deposit type andstyle of mineralization present.

    Standards Evaluated

    Recovery, sample size, sample length, splitting and sampling methodology, quality and precision are appropriate fordeposit type. Methods are well documented and supported by statistical analysis, duplicate sample studies (etc.)that are available for review and part of a sustained validation program.

    To ensure referential integrity, database is managed by one designated individual and write access is restrictedbased on specified user requirements.

    Mining / Processing Method: UG Mill

    Deposit Type: FeOx Cu / Au

    Specific Comments

    PROPERTY: Candelaria Norte

    Date of Review: Feb. 24-25, 2005Summary of Review: The modeling methodology is consistent with, and meets the corporate standards and is certified for use by mine planning. A key issue identified with this audit is the need to have a process in-place that reconciles the production data to this long range model.

    Reviewed by: RJS, JAW

  • LOM 2008 Pgina 142

    Page 2 of 3 MODEL AREA: Candelaria Norte MODEL IDENTIFICATION: (CAND15.DAT)

    Procedure Evaluated

    Level of Completeness

    Impact Potential Opportunity - Risk

    Assessment

    3.0 GEOLOGIC MODEL SETUP Responsible person and title:

    3.1 Model Parameters High Mod Low

    3.2 Model ItemsModel items stored in the blocks are appropriate for assignment of grade and for other attributes required foreffective economic evaluation. Minimum and maximum values assigned to each model item bracket the range ofvalues stored in the database and precision matches the measured precision for each item.

    High Mod Low

    3.3 Topography

    4.0 GEOLOGIC MODEL Responsible person and title:

    4.1 Geological Framework High High Low

    4.2 Geological Model Setup Parameters High High Mod

    4.3 Geologic Model Construction Methodology High High Low

    4.4 Model Block Coding High Mod Low

    5.0 GRADE MODEL Responsible person and title:

    5.1 Grade Estimation Methods High Mod Low

    5.2 Interpolation Parameters Mod High Low

    5.3 Interpolation Constraints High High Low

    5.4 Exceptional Grade Populations High Mod Low

    5.5 Mining Dilution/Ore Loss Mod High Low

    Model has Cu grades and SG for dominant and secondary geologic unit stored in each block. To properly account for dilution, a combined weighted grade is sent to the engineers. This must take into account blocks that are missing grades or densities for either the dominant or secondary geologic unit. It is recommended that the average Cu grades and densities for each unit in the block model be substituted for the missing values.

    Cu and SG are interpolated using ordinary kriging (OK), inverse distance weighting (IDW) and nearest neighbor (NN). The IDW model (power=2) is the official resource model. It provides a better comparison to composites and the NN model.

    Blocks coded from plan VBMs (section 4.3). Block codes were checked and no errors found.

    PROPERTY: Candelaria Norte

    Reviewed by: RJS, JAW Date of Review: Feb. 24-25, 2005

    The ten interpolation groups (7 lithologic x 3 vein zones) appear to adequately control grade interpolation. The use of a hard grade boundary at 0.8% Cu should be monitored and reconciled to actual mine production. All geologic units, including veins and mantos were interpolated separately.

    Ten geologic units appear to be adequate for interpolation of copper grade and density. Detailed lithologic model will be used for RMR model. Density estimation may also have to be redone once geologic model is completed, as this will provide better density populations.

    Geologic foundation of model is very good. Staff has excellent understanding of lithologic and alteration controls on copper mineralization.

    Total model is below topographic surface. No old stopes are present in the modeled area. Mine access has not been accounted for in the model, but these have a minor volume.

    Adequate assignment of geologic codes to cover relevant geologic parameters. Geologic parameters that affectrecovery or processing such as lithology, alteration, or mineralogical ore types stored in the blocks are assignedappropriate codes to provide data required for economic evaluation.

    Used cumulative frequency plots and observed geologic controls and geometries to determine search distances and thresholds for high-grade Cu restrictions. For example, the East vein has a 4.0% Cu high-grade restriction with a search of 15m. No low-grade restriction is used for Cu, and no restrictions (high or low) are used for density. Grade restrictions are documented on the interpolation parameters table.

    Seventeen transverse and 22 longitudinal cross sections spaced at 35 m intervals (some intermediate sections) were interpreted for lithology groups and grade zones. 138 level maps were completed with a 2m spacing, and 11 level maps with a 4m spacing. Grade zones drawn using a 0.8% Cu cutoff for mantos and veins, and >1.5% for vein mineralization within the manto. The manto and veins transition smoothly between each section and level map.

    A table was presented summarizing all interpolation parameters. Variograms calculated for Cu, Au and SG for each rock/vein type. Cross validation runs were made to guide interpolation parameters. The variograms are nested with near ranges of 3 to 8 meters and outer ranges of 25-35 meters. Variograms with directional anisotropy were used for geologic units 91 and 92. All other units used global 3d variogram parameters.Grade distribution in the model was examined in MineSight, and looks reasonable.

    Standards Evaluated Specific Comments

    Blocks are 2 x 2 x 2 m to provide detail needed for underground mine planning. The model contains 27 million blocks. This model includes the West and East veins and the central sector of Candelaria Norte.

    Model fields are adequate to provide robust resource model.

    Mining dilution and ore loss considerations are adequately addressed, if relevant.

    Features used as hard or soft boundaries to limit composites available to assign grade are coded appropriately andblock matching and block limiting strategies effectively constrain composites used to assign block grade accordingto planned interpolation strategy.

    Exceptionally high or low grade sub-populations are effectively identified based on statistical evaluation ofcomposite data. Strategies used to truncate grade or limit parameters used for interpolation of exceptionalpopulations are supported by geological or mineralogical character and distribution of grade within these sub-groups.

    Block size and number of blocks is appropriate for style of mineralization and drill hole data density for the deposit.Model extent and orientation are reasonable.

    Parameters such as minimum and maximum number of samples and maximum number of samples from one drillhole used to interpolate grade into a block and search distances are derived from rigorous geostatistical evaluationof composite data. Anisotropy and directional search envelopes used to interpolate grade are supported by cross-validated variography and correlate with geologic character of the ore body. Search distances used correlate withdemonstrated continuity of grade in the orebody and spacing of drill holes used to delineate the resources.

    Model features used to define volumes of material with similar lithology or metallurgical characteristics are usedeffectively to code blocks. Codes assigned to blocks are rigorously compared with features used to define them toensure that all blocks are coded as intended.

    Accuracy and extent of topographic coverage is adequate for model. Geodetic datum and control is established.Topography reference points checked. Consistency between topography and drill collar elevations.

    Method used to interpolate grade into blocks is appropriate for the style of mineralization and local and globaldistribution of block grades correlates with assay and composite data used to assign grade. Grade transitionsappropriately within and across boundaries between lithological or mineralogical features that define gradepopulations. Grade-tonnage curves for estimate honors expected mining results.

    Degree of understanding of basic deposit geologic framework sufficient to support reasonable geologicinterpretation. Allows for consistent and reasonable correlation.

    Model is constructed using geologic and mineralogical cross sections and level plans oriented and spaced atappropriate intervals to effectively model the geometry and distribution of mineralogical and geological features thatcontrol grade, processing, and recovery characteristics of the orebody. Use surface and pit geologic mappingwhenever possible Directional features and lithologic contacts recognized as controls on distribution of grade,recovery, or throughput are incorporated in model interpretation. Modeled features show continuity and consistencyin trend and plunge and are reconciled at coincident pierce points in all directions.

  • LOM 2008 Pgina 143

    Page 3 of 3 PROPERTY: CN MODEL AREA: CN MODEL IDENTIFICATION: CAND15.DAT

    Reviewed by: RJS, JAW Date of Review: Feb. 24-25, 2005

    Procedure Evaluated

    Level of Completeness

    Impact Potential Opportunity - Risk

    Assessment

    6.0 RESOURCE CLASSIFICATION Responsible person and title:

    6.1 Classification Criteria High High Low

    6.2 Methodology High High Low

    6.3 Classification Validation

    7.0 MODEL PERFORMANCE Responsible person and title:

    7.1 Model Statistical Checks High Mod Low

    7.2 Reconciliation Process High High High

    7.3 Model Prediction High High High

    8.0 TRANSFER & ARCHIVE Responsible person and title:

    8.1 Documentation Procedures High Mod Low

    8.2 Model Transfer Process High Low Low

    8.3 Model Archive Procedures Mod Mod Low

    Blocks assigned to the categories of measured and indicated resource class designations used to define provenand probable reserves can be shown to have variance among predicted and mined grade, tonnage and recoveryvalues within established operational limits for the grade and style of mineralization.

    Not completed

    Regular comparisons are performed among long-range (exploration) mid-range, and short-range (blast hole)models; and processing data, if available. Global Key Performance Indicators such as predicted ore types, grade,tonnage, total metal, recovery, and recoverable metal are compared and reconciled on a regular schedule. Modelperformance data are documented and available for review.

    Several back-up copies of model are made and stored off-site.

    Reviewed cumulative probability of TCu for composites, IDW, kriging and NN. The 0.8% Cu hard boundary has an impact on interpolated grade that needs to be monitored with production data. A table comparing TCu assay, composite, and modeled values was presented.

    No production data available.

    Procedures established for archiving of key model attributes, features and databases. The components thatcomprise a model are archived so that any model can be reproduced by another group to an exact duplicate of theoriginal model. Duplicate electronic copies delivered to appropriate locations.

    All relevant aspects for the resource model are adequately documented. Cross sections and level maps used tocreate the block model are available for review as either hard copies or as electronic files. Statistical graphs andvariograms used to formulate interpolation strategies and summary statistics tables showing interpolationparameters, drill hole interval, composite, and block grades are available for review.

    A well organized and completed binder was provided for audit. SOPs are contained within the binder and document the key procedures.

    Comparison of model statistics with those of the contributing composites and/or samples, including histograms,cumulative frequencies, and correlations.

    No production data available for reconciliation process. A reconciliation plan and process needs to be developed.

    An email and memo are sent to mine planners discussing model attributes. Model updates are transferred to Mine Planners for economic evaluation using an established procedure and modelfiles delivered to customers are accompanied by a written transmittal document that includes tables listing modelitems and summaries of model

    Models globally predict actual ore types, grade, tonnage, and recovery of mined material types with degree ofaccuracy necessary to permit effective mine planning and within established control limits.

    Method used to assign Resource Class to blocks effectively portrays continuity and consistency of grade distributionwithin the orebody. Resource classes assigned correlate with spatial distribution of composite drill hole data withinthe orebody. Ranges of influence of composite data used to define resource classes are supported by geostatisticalevaluation of grade populations.

    Resource classification based on distances of 13, 26 and 40 meters from the drill hole for measured, indicated and inferred (respectively), versus number of drill holes (>3, 2, 1) used to interpolate grade. Table of classification criteria in binder.

    Standards Evaluated Specific Comments

    Levels of confidence have been established to characterize measured, indicated, and inferred categories. Classification criteria for measured, indicated and inferred.

  • LOM 2008 Pgina 144

    $ F%3$ @-*3& ++/ * @ > & !-- &- & !- - $ +- & ! * - /

    $ H$ //*9(Q+61+&/*9(

    C*--/G/&!#

    - , +- 0

    $0$, $0!//12!

    * $ * 0

    &*.+ I-0 &

    ! +

    +-

    F- 0

    -

    ( - 0 # ! *&&

    -/ ! 1B E/B B 2 /&&

  • LOM 2008 Pgina 145

    !/ / !98/9SAS3

    !- +/*,+-/&-/-$

    $

    -5!-

    -/ &, -$555

    , 5 + ! + -+- - ! . * !- - $*&RF&! $ 0.?B+1*(4,58 +- 5* > / -/-

    ,5+!&! -$$-1$2

    & ! * / $ $! " % & ! - !RFK

    !-=A=K 5 - $

    -

    5 - 7. & '5$&-!

    !-&*FIR $*!RF

  • LOM 2008 Pgina 146

    $ " &-

  • LOM 2008 Pgina 147

    7. & ! # ! 5

    7.-' 7. +- !

    + & ,

    7. *- - / -

    $" %F7!-!-* * / !-,*1$/$ / , N . *

    / 2 !.* . */ !!- !- $$//&- !&*!-0

    ; * , -

    ;.*!-((/T;C/!-,N.

    )-+*.!5,/.#

    D*

    /*!-

    $ F$ -*(+&/*()2-/*&)

    /; E2 3

  • LOM 2008 Pgina 149

    (Ton in Metric Unit and $ = Dolar)

    Mine OperationBase Mining Cost 11.336 $/ton

    Sustaining Capital & Owner's Cost 0.158 $/ton

    Total 11.494 $/ton

    Ley de Corte 0.751Costo de Remanejo Banco-416 a Chancador 1.033 $/ton

    Precio (US$/lb) 1.2Concentrator Processing CostsTreatment cost 2.905 $/ton

    Sustaining Capital 0.000 $/ton ore

    G&A 0.772 $/ton

    Total 3.677 $/ton

    4.710Downstream CostsLand Freight + Ocean Freight 0.092 $/Lb Cu

    Sales 0.005 $/Lb CuSmelting 0.149 $/Lb Cu 0.137 0.144Refining 0.098 $/Lb Cu 0.105 0.100

    0.95 1.00Precious Metal Credit (0.217)$ $/Lb CuTotal 0.127

    $/Lb Cu 0.122 0.124268.4412 274.1656

    2094.3915 2204.6226

    Gold and Silver Potential Credits

    Cu grade in Concentrate 31.0%Smelting/Refining Cu Rec % 96.3%Avg Au grade in Concentrate gms 6.58 Deduct (gms) 0.33 5%Au Price $/oz - Ref. charge 495.00$ Avg Ag grade in Concentrate gms 149.8 Deduct (gms) 31.0 Ag Price $/oz - Ref. Charge 9.65$ Credito por Magnetita 0.01$ $/Lb CuCu Price 1.20$ Value Per lb Cu 0.217$

    Price and Metallurgical Recovery

    Price MillSmelting/ Refining Overall

    Copper 1.20$ 94.000% 96.307% 90.529%Gold 500.00$ 82.500% 95.000% 78.375%Silver 10.00$ 85.000% 100.00% 85.000%

    Discount flow rate 12%

    gr Au/ton en mineral 0.37 Conversionsgr Ag/ton en mineral 8.11 2204.6226 lb/Tm Metric Tons

    % Cu en mineral 1.52% 31.1037 g/oz troy Precious MetalsToneladas de Concentrado 8250

    Candelaria Norte Mine Cog estimation LOM and 10K 2008

    ,

    "$

    ,

    "%!0:"

    8%;%%%4%!

    "5

    6"$

  • LOM 2008 Pgina 150

    $$ $$%3 B - C! + 3/ ! ' & ! ! B - +/

    -0

    '

    0?=?A99'

    3 03=?A3=?A>' 099>>

    )*-*-/+-/+/5

    -/"%12&

    5.

    ) ! +- 99?/ . !/, +-0

    ' +&1&? 0+- +*

    ' +&1&?0+-/

    "% 19 52 +* 5.98 ?9

    ' +&1&? 0 +- / * K

    /!-

    15.

    =/!8==G2-

    ?=G

  • LOM 2008 Pgina 151

    I> = (

    )&--) -0//*9( +&

    I12 /@9 9??/== JE:$

    1G2 A? 9 >8 J

    71N2 >A= 8=A "

    71N2 9=? > >= $E"

    1G2 8 9 8 @== "J"

    I,12 8A/8 ' " :"

    3*4$ )2Q+-*/B+&1*&19

    Isomtrico Veta Copiap Inferior

    Chim

    en

    ea V

    entilaci

    n

    Chim

    en

    eas C

    aras

    Libres

    Chimen

    eas C

    ara

    s Lib

    resNivel-120

    Nivel-146

    Nivel-170

  • LOM 2008 Pgina 152

    I> > F

    *1)&-- //*9( (4*+082+)'

    (7 = +8 = 8>

    $I = +8 = 9

    $D = +8 A@

    $)!- = +8 A?

    * 8 +8 A

    5 gY ?>

    5B- gY 8

    5 8 +8 9

    +&)&--) :

    $$ %?-"'7%.+9A/9>9=?'9? +>!.! "'7% - ! 38=QE - Q 3E 5 !7&- ,!; -/+"'7%,)/! # & @ ++3E;*5 * F ! ! / > ? - N K # / , ) $0 F +

    -

  • LOM 2008 Pgina 153

    $+-+-

    7 !- $ K !

    Nv-140

    Nv-170

    20 m

    20

    m

    18 m

    20 m20 m 20 m

    100 mt

    170

    mt

    I> ? ( )&--) -0//*9( +&

    I12 8/?? >>A/@@ ?>/>>

    1G2 9 =@ 9 8 9 A@@

    71N2 >9 A88 AA@

    71N2 ? 8A9 8@ 8=

    I> F

    *1)&-- //*9( (4*+082'

    $ = +8 =

    $)!-+- = +8 >>=

    $ 8 +8 9

    5 gY ?

    3*4$")L02&61+&/*9((+-&

  • LOM 2008 Pgina 154

    +&)&--) :

    7./ ' 5 + & 5 (+-&? 01-*-

    *12&5+ .+,;/ . +- $ A3 ; '7/ . !- -0 75 0 7 0A> 0> AF-

    -0

    3*40-&$

    Alto

    =36

    m

    Alto

    =15

    m

    Largo=

    60 m

  • LOM 2008 Pgina 155

    I> @ ( )&--) -0//*9( +&

    I12 9/?=@ 9?/88A 99/

    1G2 >@ 9 ? 9 >

    71N2 A ?? ?A

    71N2 A =@ > >8= > 8>8

    I> 9 F

    *1)&-- //*9( (4*+082'

    (7 = +8 = 9?A

    $I = +8 = 99A

    $)!- = +8 9>

    *+- 8 +8 ?

    $ 8 +8 9

    5 gY A>

    +&)&--)

    $$ %

    -

    . 8 . = / / A/@ 9A? & .

    *A/?')/.4!/..!K/&.*

    '

    , +- ; ' ;

    -/-,-!-0

  • LOM 2008 Pgina 156

    $0 . ! - !/ *- , 5

    !

    $0 ! /

    * ?Q/ 9> / =

    5A>

    $*0 ( $ (( 89/

    /+5

    I-0 3 +

    & ! +

    B/&.+-

    5#>/!5&')5*- (/ A')5

  • LOM 2008 Pgina 157

    > > F-B

    > ? ;+-B

    1 2 3

    4

    5 6

    5

    6 7 7

    Nv 120

    Nv 175

    Nv 230

    Nv 280

    Nv 200

  • LOM 2008 Pgina 158

    I> 99( )&--) -0//*9( +&

    I12 9?9/>>> /@8A/8 A/998/@>

    1G2 9 A9A ?? 8

    71N2 @A = 8@

    71N2 > >> 99 99A 9 >

    I> 9F

    *1)&-- //*9( (4*+082'

    (7 = +8 = 9/9>

    (B- 8 +8 9>A

    $I = +8 = =?

    $D = +8 8=

    $)!- = +8 9/>?

    * 8 +8 @A@

    5 gY ?

    +&)&--) ":

    $$" %? +- 3 '

  • LOM 2008 Pgina 159

    D-+!;==Q+-=5@=/>+-'>/'?/'/'@/'9'99 7-AF

    C-6 C-7

    C-8

    C-9 C-10

    C-11

    3*4$J-5/+(+-&

    C-1 Long

    C-2 Long

    3*4$E-5/+(+-&

  • LOM 2008 Pgina 160

    I> 9A( )&--) -0//*9( +&

    I12 9>>/ /88A/?> />9/>?8

    1G2 > 9 @ 9 8

    71N2 98 > =@

    71N2 8 A>@ = A?> = A9

    I> 98F

    *1)&-- //*9( (4*+082'

    (7 = +8 = 8A

    $I = +8 = 9=9

    $D = +8 ?A

    $)!- = +8 /9?=

    $ 8 +8 8A

    8 +8 ?@

    *7 8 +8 A@A

    5 gY 9@

    +&)&--) :$"

    $$ %? +- 3 '/ ! -+$+ !.C( ;'

    3'=?A>=3'=?8>/'?@@'?A=/9>

  • LOM 2008 Pgina 161

    AF-

    -0

    3*40-&$

    1ro

    3ro2do

    Cas-1

    Cas-2

    Cas-3

    Ancho=20 m

    Ancho=15 m

    Ancho=15 m

    Alto

    =40

    m

    Largo=70 m

  • LOM 2008 Pgina 162

    I> 9=( )&--) -0//*9( +&

    I12 ?/9 A>8/9 A@9/@@

    1G2 9 98 9 9 9

    71N2 >= =

    71N2 > = 8 = 8 @89

    I> 9>F

    *1)&-- //*9( (4*+082'

    (7 = +8 = A9

    $I = +8 = =

    $)!- = +8 A8

    $D = +8 ?>

    *+- 8 +8 >

    $ 8 +8 A

    5 gY 8

    +&)&--) EEJ

    $$$ %! +- 3 =

    $)!- = +8

    $D = +8

    *+- 8 +8 >8

    $ 8 +8 99

    5 gY

    +&)&--) : E"

    $$ % +- 3 B/ ! -+$+ !.C( ;B.*$;=/=A=

  • LOM 2008 Pgina 165

    3*40-&$I> 9@( )&--) -0//*9( +&

    I12 =9/@A> A@/=8 8=/88

    1G2 > @@@ @=8

    71N2 9== =? 8>

    71N2 >> 8 => 8 A>8

    Casern Oeste

    Casern Sur

    Casern Este

  • LOM 2008 Pgina 166

    I> F

    *1)&-- //*9( (4*+082'

    (7 = +8 = ?8

    $I = +8 = 99

    $)!- = +8 A

    $D = +8 9?>

    *+- 8 +8 9

    $ 8 +8 A=

    5 gY 9@

    +&)&--) :"E

    $$E % +- 3 C/ ! -+$+ !.C( ;C.*$;'/8=

  • LOM 2008 Pgina 167

    3*40-&$ I> 9( )&--) -0//*9( +&

    I12 9/A?= 9A8/9 9=/8?=

    1G2 @? = @

    71N2 9 9A

    71N2 A ? A >@= A ?9

  • LOM 2008 Pgina 168

    I> F

    *1)&-- //*9( (4*+082'

    (7 = +8 = 9=

    $I = +8 = >8

    $)!- = +8 9

    $D = +8 ?=

    *+- 8 +8 9A9

    $ 8 +8 9=

    5 gY =

    +&)&--) J

    $$J % +- 3 / ! -+$+ !.C( ; . * 3/ '7B/

    3'=?A3'=?8@/'?A8'?A8/9>==

  • LOM 2008 Pgina 169

    3*40-&$"I> A( )&--) -0//*9( +&

    I12 @/8 =?/@>A >>@/99

    1G2 @A9 9 @@ 9 ?8

    71N2 9 >9 ==

    71N2 > A ? ? ? 8@

    Casern-4

    Casern-3

    Casern-2

    Casern-1

  • LOM 2008 Pgina 170

    I> 8F

    *1)&-- //*9( (4*+082'

    (7 = +8 = @@

    $I = +8 = 9?

    $)!- = +8 =9

    $D = +8 9?

    *+- 8 +8 A9=

    $ 8 +8 @A

    5 gY 98

    +&)&--) : J$

  • LOM 2008 Pgina 171

    $ $&(1-/+-)

    Desarrollo Produccin Total Desarrollo Produccin Total Desarrollo Produccin Total Desarrollo Produccin Total Total2008 2009 2010 2011 2008-2011

    Veta Copiap InferiorTonelaje (ton) 20,981 85,600 106,581 91,925 91,925 - - 198,506 Ley Cu (% Cu) 2.372 1.371 1.568 1.895 1.895 - - 1.719 Ley Au (grs/ton) 0.635 0.370 0.422 0.531 0.531 - - 0.473 Ley Ag (grs/ton) 8.157 8.342 8.306 5.143 5.143 - - 6.841 Ley Fe (fem) 4.812 4.717 4.736 5.176 5.176 - - 4.940 Tonelaje Estril (ton) 43,004 43,004 - - - 43,004

    Veta EsteTonelaje (ton) 4,120 823,492 827,612 271,959 271,959 435,750 435,750 339,829 339,829 1,875,150 Ley Cu (% Cu) 0.731 1.784 1.779 2.327 2.327 2.505 2.505 2.003 2.003 2.068 Ley Au (grs/ton) 0.164 0.384 0.383 0.516 0.516 0.565 0.565 0.425 0.425 0.452 Ley Ag (grs/ton) 3.133 10.215 10.180 8.139 8.139 11.103 11.103 9.486 9.486 9.973 Ley Fe (fem) 4.982 7.233 7.222 7.473 7.473 8.185 8.185 9.838 9.838 7.956 Tonelaje Estril (ton) 304 304 - - - 304

    Central-ATonelaje (ton) 9,532 206,400 215,932 - 128,057 128,057 46,949 46,949 390,938 Ley Cu (% Cu) 0.905 1.390 1.368 - 1.389 1.389 1.213 1.213 1.356 Ley Au (grs/ton) 0.212 0.278 0.275 - 0.321 0.321 0.296 0.296 0.293 Ley Ag (grs/ton) 3.820 7.061 6.918 - 8.094 8.094 8.775 8.775 7.526 Ley Fe (fem) 6.265 15.666 15.251 - 16.767 16.767 28.020 28.020 17.281 Tonelaje Estril (ton) 14,254 14,254 - - - 14,254

    Central-BTonelaje (ton) 48,603 789,980 838,583 483,832 483,832 298,500 298,500 641,517 641,517 2,262,432 Ley Cu (% Cu) 0.913 1.084 1.074 1.058 1.058 1.133 1.133 1.175 1.175 1.107 Ley Au (grs/ton) 0.214 0.263 0.260 0.251 0.251 0.256 0.256 0.288 0.288 0.266 Ley Ag (grs/ton) 6.213 5.502 5.543 5.504 5.504 5.907 5.907 5.349 5.349 5.528 Ley Fe (fem) 5.480 8.553 8.375 9.496 9.496 7.611 7.611 10.170 10.170 9.023 Tonelaje Estril (ton) 14,981 14,981 - - - 14,981

    Central-CTonelaje (ton) 25,744 25,744 - 200,075 200,075 163,943 163,943 - 389,762 Ley Cu (% Cu) 1.141 1.141 - 0.997 0.997 1.008 1.008 - 1.011 Ley Au (grs/ton) 0.263 0.263 - 0.233 0.233 0.215 0.215 - 0.227 Ley Ag (grs/ton) 6.026 6.026 - 3.718 3.718 6.249 6.249 - 4.935 Ley Fe (fem) 16.269 16.269 - 15.023 15.023 18.328 18.328 - 16.495 Tonelaje Estril (ton) 23,739 23,739 - - - - 23,739

    BeatrizTonelaje (ton) 48,484 72,103 120,587 4,472 438,000 442,472 71,699 71,699 - 634,758 Ley Cu (% Cu) 0.892 2.091 1.609 0.445 1.026 1.020 0.776 0.776 - 1.104 Ley Au (grs/ton) 0.231 0.505 0.394 0.101 0.239 0.238 0.166 0.166 - 0.260 Ley Ag (grs/ton) 4.721 13.025 9.686 1.419 4.842 4.807 2.858 2.858 - 5.514 Ley Fe (fem) 14.465 11.572 12.736 9.798 12.498 12.471 12.383 12.383 - 12.511 Tonelaje Estril (ton) 21,567 21,567 10,008 10,008 - - 31,575

    VictoriaTonelaje (ton) 12,920 12,920 39,017 335,306 374,323 63,242 63,242 - 450,484 Ley Cu (% Cu) 0.591 0.591 0.614 1.004 0.963 0.974 0.974 - 0.954 Ley Au (grs/ton) 0.155 0.155 0.155 0.262 0.251 0.235 0.235 - 0.246 Ley Ag (grs/ton) 2.489 2.489 2.990 4.604 4.436 4.325 4.325 - 4.364 Ley Fe (fem) 23.080 23.080 17.035 19.490 19.234 25.619 25.619 - 20.241 Tonelaje Estril (ton) 29,628 29,628 19,445 19,445 - - 49,073

    IsabelTonelaje (ton) 10,504 10,504 7,872 49,128 57,000 84,972 84,972 - 152,475 Ley Cu (% Cu) 1.094 1.094 0.703 0.880 0.856 0.887 0.887 - 0.890 Ley Au (grs/ton) 0.264 0.264 0.166 0.209 0.203 0.214 0.214 - 0.213 Ley Ag (grs/ton) 4.663 4.663 2.850 3.369 3.297 3.883 3.883 - 3.718 Ley Fe (fem) 13.531 13.531 8.453 7.853 7.936 11.241 11.241 - 10.163 Tonelaje Estril (ton) 8,242 8,242 6,566 6,566 - - 14,807

    MargotTonelaje (ton) 1,642 1,642 96,605 60,707 157,312 510,256 510,256 - 669,211 Ley Cu (% Cu) 0.863 0.863 0.932 1.225 1.045 1.084 1.084 - 1.074 Ley Au (grs/ton) 0.200 0.200 0.218 0.279 0.242 0.259 0.259 - 0.255 Ley Ag (grs/ton) 6.416 6.416 6.320 7.398 6.736 7.736 7.736 - 7.498 Ley Fe (fem) 14.682 14.682 17.972 27.089 21.490 21.178 21.178 - 21.236 Tonelaje Estril (ton) 588 588 45,163 45,163 - - 45,750

    Infraestructura PrincipalTonelaje (ton) - - - - - - Ley Cu (% Cu) - - - - - - Ley Au (grs/ton) - - - - - - Ley Ag (grs/ton) - - - - - - Ley Fe (fem) - - - - - - Tonelaje Estril (ton) 9,380 9,380 - - - 9,380

    ExploracionesTonelaje (ton) 19,014 19,014 - - - 19,014 Ley Cu (% Cu) 0.800 0.800 - - - 0.800 Ley Au (grs/ton) 0.169 0.169 - - - 0.169 Ley Ag (grs/ton) 0.127 0.127 - - - 0.127 Ley Fe (fem) 0.384 0.384 - - - 0.384 Tonelaje Estril (ton) 83,680 83,680 - - - 83,680

    OtrosTonelaje (ton) 16,881 16,881 - - - 16,881 Ley Cu (% Cu) 0.958 0.958 - - - 0.958 Ley Au (grs/ton) 0.233 0.233 - - - 0.233 Ley Ag (grs/ton) 4.971 4.971 - - - 4.971 Ley Fe (fem) 11.811 11.811 - - - 11.811 Tonelaje Estril (ton) 18,445 18,445 - - - 18,445

    Total sin Candelaria SurTonelaje Mineral (ton) 218,425 1,977,575 2,196,000 147,966 1,930,932 2,078,898 - 1,756,419 1,756,419 - 1,028,295 1,028,295 7,059,612 Ley Cu (% Cu) 1.054 1.457 1.417 0.821 1.254 1.223 - 1.434 1.434 - 1.450 1.450 1.369 Ley Au (grs/ton) 0.259 0.328 0.321 0.195 0.299 0.292 - 0.328 0.328 - 0.334 0.334 0.316 Ley Ag (grs/ton) 4.965 8.025 7.720 5.109 5.371 5.353 - 7.639 7.639 - 6.873 6.873 6.880 Ley Fe (fem) 10.250 8.690 8.845 16.972 12.506 12.824 - 14.381 14.381 - 10.875 10.875 11.690 Tonelaje Estril (ton) 267,813 - 267,813 81,181 - 81,181 - - - - - - 348,994

    Payable Cu Production ('000 lbs) 4,597 57,491 62,088 2,426 48,329 50,755 - 50,269 50,269 - 29,768 29,768 192,880

    Ao-2011Ao-2010

    Produccin por Sectores

    Ao-2008 Ao-2009

    I> =);

  • LOM 2008 Pgina 172

    $&(1-(*&)94*/&)

    Unidad Manto Volcanoclstico Manto Magnetita Metandesita Manto Magnetita Veta Vetas VetaGeolgica Superior Indiferenciado Mineral Biotita Estril Oeste Centrales Este Total

    Cdigo 27 50 57 61 70 91 92 93

    Ton 1,466 674,247 343,332 191,391 194,391 52,672 329,108 409,392 2,196,000 Ley Cu 1.080 0.511 1.206 0.611 0.619 2.685 2.025 3.189 1.417 Ley Au 0.217 0.119 0.250 0.156 0.137 0.744 0.477 0.701 0.321 Ley Ag 7.183 3.363 5.968 2.490 3.035 11.385 11.431 17.584 7.720 Ley Fe 1.997 3.522 16.259 5.089 16.353 6.277 9.844 9.137 8.845

    Cu Payable (Klbs) 32 6,875 8,267 2,333 2,400 2,823 13,299 26,059 62,088

    Ton 1,189 409,881 344,083 359,001 291,345 51,394 352,159 269,846 2,078,898 Ley Cu 1.019 0.460 1.107 0.543 0.549 2.593 1.942 2.966 1.223 Ley Au 0.202 0.115 0.266 0.127 0.137 0.715 0.469 0.666 0.292 Ley Ag 6.764 2.516 4.820 1.810 2.354 9.791 9.536 11.984 5.353 Ley Fe 1.456 3.938 23.898 7.567 21.979 6.909 12.938 10.337 12.824

    Cu Payable (Klbs) 24 3,761 7,604 3,888 3,194 2,660 13,649 15,976 50,755

    Ton - 292,424 297,223 252,396 249,904 - 261,122 403,350 1,756,419 Ley Cu - 0.530 1.230 0.502 0.561 - 2.102 2.931 1.434 Ley Au - 0.125 0.276 0.108 0.130 - 0.506 0.659 0.328 Ley Ag - 3.435 7.655 1.843 3.061 - 13.372 13.428 7.639 Ley Fe - 4.079 25.716 8.691 19.268 - 19.417 10.771 14.381

    Cu Payable (Klbs) - 3,093 7,298 2,530 2,796 - 10,955 23,597 50,269

    Ton - 235,271 118,236 85,396 80,699 - 160,540 348,154 1,028,295 Ley Cu 0.825 0.454 1.061 0.544 0.539 - 1.713 2.569 1.450 Ley Au 0.166 0.109 0.238 0.116 0.124 - 0.441 0.571 0.334 Ley Ag 5.139 2.596 5.601 1.698 2.490 - 8.383 11.783 6.873 Ley Fe 1.629 5.866 21.624 6.829 12.870 - 11.487 10.858 10.875

    Cu Payable (Klbs) - 2,130 2,503 927 868 - 5,488 17,852 29,768

    Ton 2,655 1,611,823 1,102,874 888,184 816,339 104,066 1,102,928 1,430,742 7,059,612 Ley Cu 1.052 0.493 1.166 0.546 0.568 2.640 1.971 2.924 1.369 Ley Au 0.211 0.117 0.261 0.127 0.134 0.730 0.476 0.651 0.316 Ley Ag 6.995 3.049 6.025 1.955 2.746 10.598 10.842 13.944 6.880 Ley Fe 1.755 4.071 21.766 7.282 18.909 6.589 13.337 10.243 11.690

    Cu Payable (Klbs) 56 15,858 25,673 9,678 9,259 5,483 43,391 83,483 192,880

    Ao

    Ao-2008

    Ao-2009

    Ao-2010

    Ao-2011

    Total

    I> >)D-

  • LOM 2008 Pgina 173

    $

    Reservas Reservas TotalProbadas Probables Reservas

    Ton 1,472,035 723,964 2,196,000 Ley Cu 1.419 1.412 1.417 Ley Au 0.322 0.321 0.321 Ley Ag 7.736 7.689 7.720 Ley Fe 8.837 8.861 8.845

    Cu Payable (Klbs) 41,679 20,408 62,088

    Ton 1,395,785 683,113 2,078,898 Ley Cu 1.225 1.220 1.223 Ley Au 0.292 0.291 0.292 Ley Ag 5.354 5.351 5.353 Ley Fe 12.807 12.858 12.824

    Cu Payable (Klbs) 34,122 16,632 50,755

    Ton 1,184,045 572,374 1,756,419 Ley Cu 1.434 1.434 1.434 Ley Au 0.328 0.328 0.328 Ley Ag 7.639 7.639 7.639 Ley Fe 14.381 14.381 14.381

    Cu Payable (Klbs) 33,888 16,382 50,269

    Ton 693,199 335,096 1,028,295 Ley Cu 1.450 1.450 1.450 Ley Au 0.334 0.334 0.334 Ley Ag 6.873 6.873 6.873 Ley Fe 10.875 10.875 10.875

    Cu Payable (Klbs) 20,067 9,701 29,768

    Ton 4,745,064 2,314,548 7,059,612 Ley Cu 1.370 1.366 1.369 Ley Au 0.316 0.316 0.316 Ley Ag 6.885 6.868 6.880 Ley Fe 11.686 11.698 11.690

    Cu Payable (Klbs) 129,757 63,123 192,880

    Total

    Ao

    Ao-2008

    Ao-2009

    Ao-2010

    Ao-2011

    I> ?)I(

  • LOM 2008 Pgina 174

    $"F3 > 9= II

    Tonelaje y Ley TotalesLOM-2008

    2,196 2,0791,756

    1,028

    1.417

    1.223

    1.434 1.450

    -

    500

    1,000

    1,500

    2,000

    2,500

    3,000

    2008 2009 2010 2011

    Aos

    Ton

    elad

    as (kt

    on

    )

    -

    0.250

    0.500

    0.750

    1.000

    1.250

    1.500

    Ley

    Cu (%

    )

    Tonelaje Ley Cu

    > 9 I;

  • LOM 2008 Pgina 175

    Total Minado por SectorLOM-2008

    -

    500

    1,000

    1,500

    2,000

    2,500

    2008 2009 2010 2011Aos

    Ton

    elad

    as (kt

    on

    )

    Veta CopiapInferiorVeta Este

    Central-A

    Central-B

    Central-C

    Beatriz

    Victoria

    Isabel

    Margot

    Otros

    > 9> ;

    Total Finos de Cu por SectorLOM-2008

    -

    10,000

    20,000

    30,000

    40,000

    50,000

    60,000

    70,000

    2008 2009 2010 2011Aos

    Fin

    o de

    Cu

    (kl

    bs C

    u)

    Veta CopiapInferiorVeta Este

    Central-A

    Central-B

    Ce