26
10/11/2016 1 Influence of texture properties Luc Goubert, Belgian Road Research Centre Christian Gottaut, German Federal Highway Research Institute Why talk about texture? Measuring pavement properties, skid resistance, acoustic quality and rolling resistance: Cumbersome measurements Constant measurement speed Generally: dedicated, expensive, complicated and delicate equipment

Influence of texture properties

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

10/11/2016

1

Influence of texture properties

Luc Goubert, Belgian Road Research Centre

Christian Gottaut, German Federal Highway Research

Institute

Why talk about texture?

Measuring pavement properties, skid resistance,

acoustic quality and rolling resistance:

• Cumbersome measurements

• Constant measurement speed

• Generally: dedicated, expensive, complicated and

delicate equipment

10/11/2016

2

Texture measurements

• Texture in macro- and megatexture range can be

relatively simply, fastly and reliably measured

• At any speed (up to what the equipment allows)

WP4 – DoW

Task 4.1: Influence of texture properties and common descriptors

• What is the current “State of the Art” concerning texture influence on

skid resistance, noise emission and rolling resistance?

• What is the use of enveloping of texture profile curves? And how can it

be improved?

• Do 3D measuring devices yield a significant advantage over traditional

2D devices?

• Which road surface texture descriptors can be used to assess skid

resistance, noise and rolling resistance?

• Is it feasible to complement or replace measurement of these

performance parameters with texture measurements and suitable

models?

10/11/2016

3

Enveloping

Enveloping: von Meier et al

method (1992)• Principle: reducing the second derivative

(smoothening) the profile with an

iterative procedure

• d* = second derivative and is measure

for “elasticity” of the tyre rubber

• The authors propose: d* = 0,054 m-1

10/11/2016

4

Research questions

• Is the Von Meier method able to yield a

reasonable approximation of the

enveloping curve of a texture profile?

• If yes, what would be a good value for

d*?

10/11/2016

5

BRRC experiment

• Two “easy” surfaces: one

with a pronounced positive

and one with a negative

texture

• Measurement of original

profile with profilometer

• Filling voids with suitable

plastic, non sticking

material

• Drive over with real car

tyre and fixing enveloping

surface

• Measuring enveloping

curve with profilometer

Used profiles

18,4 mm

12 12

12

9,2

10/11/2016

6

-6,00

-4,00

-2,00

0,00

2,00

4,00

6,00

-20 0 20 40 60 80 100 120 140 160 180 200

original

measured

d* = 0,01

d* = 0,006

d* = 0,054

Measured and calculated

profiles

Measured and calculated

profiles (detail)

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

5,00

-10 0 10 20 30 40 50 60

original

measured

d* = 0,01

d* = 0,006

d* = 0,054

d* = 0,006 m-1 is best fit,

but obviously not OK

10/11/2016

7

Enveloping procedure

Hamet & Klein

J.-F. Hamet & P. Klein, “Road texture and tire noise”, INTERNOISE 2000, Nice, August 2000

Enveloping procedure

Hamet & Klein

J.-F. Hamet & P. Klein, “Road texture and tire noise”, INTERNOISE 2000, Nice, August 2000

10/11/2016

8

New enveloping

algorithm• Proposal: “indentor” algorithm:

– we let a defined area of the 2D profile “indent” into the

rubber of the tyre

– For the points which are indented in the rubber (the peak

areas of the profile):

y(enveloped profile) = y(original profile)

– For the points which are not indented in the rubber (the

valley areas of the profile):

y(enveloped profile) = y(interpolated between the nearest

remaining points of the original profile)

New enveloping

algorithm: principle

Foot print length (FPL)

Indented area (S)

(before the calculation of the area S for each footprint, the slope

is suppressed by subtraction of the regression line (not shown here))

10/11/2016

9

New enveloping

algorithm:principle

Triangular profile

10/11/2016

10

New algorithm on

triangular profile

S = 30 mm² and FPL = 90 mm

Interpolation procedure: cubic Hermite

Real road surface:

C2-section in Nantes

S = 30 mm² and FPL = 90 mm

10/11/2016

11

Calibration of the indentor

enveloping

Overriding with SRTT,

mounted in CPX

Calibration of the indentor

enveloping

OK, but unwanted traces

of sipes

10/11/2016

12

Calibration of the indentor

enveloping

OK, but

unwanted traces

of sipes

-3

-2

-1

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160 180 200

Protruding peaks of

triangular profile

Calibration of the indentor

enveloping

-3

-2

-1

0

1

2

3

4

5

60 65 70 75 80 85 90

For P1 tyre:

S ≈ 6 mm²

10/11/2016

13

Enveloping and rolling

resistance

RRC and Lme, Lma

and MPD

Without enveloping

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

ES14

/BRRC_5

0

ES14

/BRRC_8

0

SRTT/B

ASt_

50

SRTT_B

ASt_

80

AAV

4/BASt_

50

AAV

4/BASt_

80

ES16

/BASt_

50

ES16

/BASt_

80

SRTT/T

UG_5

0

SRTT/T

UG_8

0

AAV

4/TU

G_5

0

AAV

4_TU

G_8

0

ES16

/TUG_5

0

ES16

/TUG_8

0

ES14

/TUG_5

0

ES14

/TUG_8

0

Trailer-Tyre-Speed combination

MPD

LMa

LMe

With enveloping

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

ES14

/BRRC_5

0

ES14

/BRRC_8

0

SRTT/B

ASt_

50

SRTT_B

ASt_

80

AAV

4/BASt_

50

AAV

4/BASt_

80

ES16

/BASt_

50

ES16

/BASt_

80

SRTT/T

UG_5

0

SRTT/T

UG_8

0

AAV

4/TU

G_5

0

AAV

4_TU

G_8

0

ES16

/TUG_5

0

ES16

/TUG_8

0

ES14

/TUG_5

0

ES14

/TUG_8

0

Trailer-Tyre-Speed combination

MPD

LMa

LMe

(source: MIRIAM 2011)

10/11/2016

14

IFSTTAR test tracks

Test track Length (m) MPD (mm)

A 214.40 1.27

A’ 47.00 3.40

C1 139.00 0.36

C2 96.40 4.19

E1 245.00 0.94

E2 240.00 1.16

F 238.00 1.56

L1 124.00 0.14

L2 112.00 0.81

M1 223.00 1.44

M2 144.40 1.27

N 184.00 0.41

MPD versus different

enveloping procedures

28

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

A A' C1 C2 E1 E2 F L1 L2 M1 M2 N

MP

D (

mm

)

Test track

original

von Meier (0,054m-1)von Meier (0,006m-1)ind. env. (10 mm²)

ind. env. (6 mm²)

Klein

10/11/2016

15

RRC versus MPD

29

y = 0,1526x + 0,559R² = 0,9613

y = 0,4501x + 0,4915R² = 0,9489

y = 0,2649x + 0,5854R² = 0,9762

y = 0,5392x + 0,4809R² = 0,9527

y = 0,1765x + 0,5723R² = 0,9652

y = 0,3794x + 0,5444R² = 0,9628

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1,10

1,20

1,30

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

RR

C [

%]

MPD

TUG trailer, P1 tyre, 50 km/h

MPD original

ind. env. (10 mm²)

von Meier (0,006 m-1)

ind. env. (6 mm²)

von Meier (0,054 m-1)

Klein (5,5 Mpa)

real pavements

RRC versus MPD

(original)

30

y = 0,0998x + 0,6051R² = 0,7604

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

RR

C [

%]

MPD

TUG trailer, P1 tyre, 50 km/h

10/11/2016

16

RRC versus MPD (von

Meier d* = 0,054 m-1)

31

y = 0,139x + 0,5984R² = 0,7887

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0 0,2 0,4 0,6 0,8 1 1,2 1,4

arw

1b C

r [%

]

MPD

TUG trailer, P1 tyre, 50 km/h

RRC versus MPD

(Hamet & Klein)

32

y = 0,2389x + 0,5984R² = 0,8435

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

RR

C [

%]

MPD

TUG trailer, P1 tyre, 50 km/h

10/11/2016

17

RRC versus MPD

(indentor with S = 6 mm²)

33

y = 0,3341x + 0,5607R² = 0,8551

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

RR

C [

%]

MPD

TUG trailer, P1 tyre, 50 km/h

RRC versus MPD

(original)

34

y = 0,1166x + 1,0265R² = 0,5639

0,80

0,90

1,00

1,10

1,20

1,30

1,40

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

RR

C [

%]

MPD

BRRC trailer, H1 tyre, 50 km/h

10/11/2016

18

RRC versus MPD

(indentor with S = 6 mm²)

35

y = 0,4474x + 0,9511R² = 0,8327

0,80

0,90

1,00

1,10

1,20

1,30

1,40

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

RR

C [

%]

MPD

BRRC trailer, H1 tyre, 50 km/h

RRC versus MPD

(indentor with S = 6 mm²)

36

y = 0,4474x + 0,9511R² = 0,8327

0,80

0,90

1,00

1,10

1,20

1,30

1,40

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

RR

C [

%]

MPD

BRRC trailer, H1 tyre, 50 km/h

10/11/2016

19

R² for RRC versus MPD

(50 km/h)

37

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

raw von Meier 0,054 von Meier 0,006 indentor 10 indentor 6 Hamet & Klein

enveloping method

P1-TUG

H1-TUG

H1-BRRC

R² for RRC versus MPD

(80 km/h)

38

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

raw von Meier 0,054 von Meier 0,006 indentor 10 indentor 6 Hamet & Klein

enveloping method

P1-TUG

H1-TUG

H1-BRRC

10/11/2016

20

R² for RRC versus LMe

(50 km/h)

39

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

raw von Meier 0,054 von Meier 0,006 indentor 10 indentor 6

enveloping method

P1-TUG

H1-TUG

H1-BRRC

R² for RRC versus LMe

(80 km/h)

40

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

raw von Meier 0,054 von Meier 0,006 indentor 10 indentor 6

enveloping method

P1-TUG

H1-TUG

H1-BRRC

10/11/2016

21

2D/3D devices

TL 5 (2-D)T3Dk (3-D)

2D/3D Devices

10/11/2016

22

43

For an oriented texture it is nearly

impossable for a 2-D device to make

reliable measurements in the direction

of orientation.

The high amount of data acquired

with one measurement leads to a

higly statistical significance

Benefits of 3D

amount of data (measured in a few seconds)

40120 (2D) / 1310720 (3D)

44

Polished mastic asphalt with drilled

holes to isolate the flow-induced noise

effects

Texture measurementResulting noise

Nearly impossible to calculate from single „texture

line“ values, but a 3D representation allows a (time

consuming) computational calculation

Benefits of 3D

10/11/2016

23

Texture and skid resistance

projector

camera

measuring

principle measuring resultdevice

10/11/2016

24

47

y(T3Dk) = 1.491x + 0.103R² = 0.76

y(T3Dg) = 0.764x + 0.256R² = 0.56

y(TL5) = 1.098x + 0.221R² = 0.68

0.0

0.3

0.6

0.9

1.2

1.5

1.8

0.0 0.2 0.4 0.6 0.8 1.0 1.2

MP

Do

(m

m)

µSKM,60 (–)

T3Dk-MPDo

T3Dg-MPDo

TL5-MPDo

TL 5

only 2-D device but

medium resolution (~0,001 mm,

Spot size ~0,1 mm)

y(T3Dk) = 1.547x - 0.050R² = 0.67

y (T3Dg)= 0.757x + 0.202R² = 0.45

y(TL5) = 1.117x + 0.124R² = 0.58

0.0

0.3

0.6

0.9

1.2

1.5

1.8

0.0 0.2 0.4 0.6 0.8 1.0 1.2

MP

Do

(m

m)

µSKM,20 (–)

T3Dk-MPDo

T3Dg-MPDo

TL5-MPDo

T3Dg

3D-device with a big measuring

field, but a relative low resolution

(~ 0,04 mm)

T3Dk

small 3D-device with a high

resolution (~ 0,001 mm)

48

Skid resistance and MPD

highe

rsp

eed

(SKM

)

lowest

resolution

highest

resolution

medium

resolution

10/11/2016

25

Conclusions (enveloping)

– The existing “simple” enveloping method of von Meier e.a. does not

yield a realistic enveloping profile

– The d* parameter proposed by the authors is not representative for

the P1 tyre (a realistic value has been determined in ROSANNE)

– A simple and suitable for standardization enveloping “indentor”

enveloping method has been proposed, yielding realistic enveloped

profiles (close to result very sophisticated Hamet & Klein method)

– Correlation of RRC for P1 and H1 tyres with MPD improves in some

cases significantly with the new enveloping procedure, up to

excellent R²

– “performance” of indentor enveloping appears comparable with

sophisticated Hamet & Klein method

– But in some cases enveloping doesn’t work

Conclusions (3D and skid

resistance)– 3D measurements are necessary for assessing the texture influence on

noise in the case of anisotropic pavements

– Regarding the correlation skid resistance and MPD: it gets better with

a higher resolution (regardless 2D or 3D)

10/11/2016

26

ROSANNE

Thanks for your attention!

[email protected]

[email protected]