18
INFLUENCE OF NATURAL FIBRE TYPE IN ECO-COMPOSITES Bordeaux, 27 March 2007 Dr. Míriam García 3rd WOOD FIBRE POLYMER COMPOSITES INTERNATIONAL SYMPOSIUM

INFLUENCE OF NATURAL FIBRE TYPE IN ECO-COMPOSITES

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

INFLUENCE OF NATURAL FIBRE TYPE IN ECO-COMPOSITES

Bordeaux, 27 March 2007

Dr. Míriam García

3rd WOOD FIBRE POLYMER COMPOSITES

INTERNATIONAL SYMPOSIUM

INTRODUCTION

RESULTS FOR BIOPOLYMER+ANNUALLY GROWN PLANTS FIBRES

RESULTS FOR POLYMER+WOOD FIBRES

CONCLUSIONS

INDEX

ECO-COMPOSITES

BIOPOLYMER

PETROLEUM DERIVED POLYMER

+WOOD

ANNUALLY GROWN PLANTS (PRODUCTS OR SUBPRODUCTS)

INTRODUCTION

kenaf

Wood fibre

0

Rice husks

INTRODUCTION

COMPETITORS

Wood Fibre Composites

Talc or mica composites

Long natural fibre composites

Glass fibre composites

NATURAL FIBRES VS GLASS FIBRES

Lower impact strength

Lower specific weight(1,25-1,50 vs 2,6 g/cc)

Price

DISADVANTAGESADVANTAGES

INTRODUCTION

Advantages of eco-composites vs wood

Dimensional stability

Durability against fungi and insects

Processability like plastics

Advantages of eco-composites vs typical composites

Biodegradability

Price

INTRODUCTION

3000

3500

4000

4500

5000

5500

6000

0 5 10 15 20 25 30 35

KENAFRS

YOU

NG

'S M

OD

ULU

S (M

Pa)

% FIBER

Kenaf eco-composites: fibres increase stiffness of the polymer

Rice husks eco-composites: rice acts as a filler

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35

KENAFRS

TEN

SILE

STR

ENG

TH (M

Pa)

% FIBER

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35

KENAFRS

FLE

XUR

AL M

OD

ULU

S (M

Pa)

% FIBER

60

65

70

75

80

85

90

95

0 5 10 15 20 25 30 35

KENAFRS

FLE

XUR

AL S

TREN

GTH

(MPa

)

% FIBER

TENSILE

FLEXURAL

BIOPOLYMER+RICE HUSKS OR KENAF

EXTRUSION+INJECTION

BIOPOLYMER+RICE HUSKS OR KENAF

L/D=50

KENAF

L/D=3.5

RICE HUSKS

BIOPOLYMER+RICE HUSKS OR KENAF

Fibre content

(%)

Unnotched impact strength (J/m)

Notched impact strength (J/m)

Kenaf RS Kenaf RS

0 76±6 76±6 7.4±0.3 7.4±0.3

20 47±4 33±7 11.5±0.9 9.0±1.6

30 52±3 36±4 12.2±0.8 6.8±1.0

CHARPY IMPACT STRENGTH

0

5

10

15

20

25

PLA KENAF KENAF/FR 10% RS RS/FR 10%

BUR

NIN

G T

IME

(s)

BIOPOLYMER+RICE HUSKS OR KENAF

FIRE TESTS

10% FR

DURABILITY

Eco-composites without pigment

500h QUV

Chalking, bleaching and cracking

Eco-composites with 4% pigment

1500h QUV

BIOPOLYMER+RICE HUSKS OR KENAF

Retaining of flexural properties: stiffness at low deformation levels is maintained

2.4 ±0.287.8 ±11.35800±2500 h

1.0 ±0.229.6 ±14.64900 ±5401500 h

1.0 ±0.132.0 ±7.55200±2501000 h

1.5 ±0.269.1 ±6.65900±250500 h

ε (%)σ (MPa)E (MPa)

KENAF

3.3 ±0.377.9 ±8.84100±1500 h

1.0 ±0.514.8 ±9.04000±2001500 h

1.0 ±0.529.5 ±8.14200±5501000 h

1.6 ±0.254.1 ±11.94600±300500 h

ε (%)σ (MPa)E (MPa)

RS

30

40

50

60

70

80

90

100

110

0 500 1000 1500 2000

MODULUSSTRENGTH

PRO

PER

TY R

ETE

NTI

ON

(%)

AGEING TIME (h)

0

20

40

60

80

100

120

0 500 1000 1500 2000

MODULUSSTRENGTH

PRO

PER

TY R

ETE

NTI

ON

(%)

AGEING TIME (h)

DURABILITY

CONCLUSIONS

Kenaf eco-composites give rise to better mechanical performance than rice husk eco-composites

In non load-bearing applications, the low price of ricehusks can compensate the lack of mechanical improvement

BIOPOLYMER+RICE HUSKS OR KENAF

WPC

HDPE+WOOD

VARIABLES

WOOD FIBRES

Fibre A L=300-500 µm

Fibre B L=100 µmINJECTION PRESSURE

FIBRE CONTENT

DIRECT INJECTION

PROCESSING

TENSILE

FLEXURAL500

1000

1500

2000

2500

0 10 20 30 40 50

P=1712 barP=2575 barP=3038 bar

TEN

SILE

MO

DU

LUS

(MP

a)

% FIBRE

15

16

17

18

19

20

21

22

23

0 10 20 30 40 50

P=1712 barP=2575 barP=3038 bar

�TE

NSI

LE S

TRE

NG

TH (M

Pa)

% FIBRE

500

1000

1500

2000

2500

3000

0 10 20 30 40 50

P=1712 barP=2575 barP=3038 bar

FLE

XUR

AL M

OD

ULU

S (M

Pa)

% FIBRE

16

18

20

22

24

26

28

30

32

0 10 20 30 40 50

P=1712 barP=2575 barP=3038 bar

FLEX

UR

AL

STR

EN

GTH

MP

a)

% FIBRE

Increases in the stiffness and the strength with fibre content

Injection pressure has no effect

FIBRE AHDPE+WOOD

HDPE+WOOD

B fibre: results independent of fibre content

Results for 30%A fibre ≅ 20%B fibre

67% fibre in volumePROPERTY MICA

25%TALC 30%

TALC 40%

GLASS FIBRE 30%

WOOD FIBRE 20%

WOOD FIBRE 40%

FIBRE A 30%

FIBRE B 20%

Tensile modulus (MPa)

3100 3510 1700 2700 1635 1700

Tensile strength (MPa)

34.5 32.4 20.7 23.4 17 18 19.4 26.6

Flexural modulus (MPa)

2000 2137 2410 3020 1400 2400 2270 2309

Flexural strength (Mpa)

44.8 46.9 37 26.2 31 35 27.9 33.7

HDPE+WOOD

CONCLUSIONS

Stiffness of the injected eco-composites is comparable to commercially available filler filled composites, while strength is comparable to both filler and glass fibre filled commercial composites but with much innocuous environmental performance.

NATURAL FIBRE REINFORCED ECO-COMPOSITES

CONCLUSIONS

Annually grown plantsAspect ratio of the fibres plays a key role: the higher the aspect ratio the higher the mechanical properties

Price of the materials can be easily reduced with the addition of agricultural subproducts for i.e. decorative appliances

WPCcomposites can be easily obtained by direct injection moulding up to almost70% in volume

Mechanical performance is fibre content dependant but not injection parameters dependant

Mechanical properties comparable to talc filled composites

Thanks for your attention

[email protected]