31
Melanie Berg, AS&D in support of NASA/GSFC [email protected] Hak Kim, Anthony Phan, Christina Seidleck, AS&D, and Ken LaBel, NASA/GSFC 1 Independent Single Event Upset Testing of the Microsemi RTG4: Preliminary Data To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016. https://ntrs.nasa.gov/search.jsp?R=20160006689 2020-05-10T17:09:07+00:00Z

Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Melanie Berg, AS&D in support of NASA/[email protected]

Hak Kim, Anthony Phan, Christina Seidleck, AS&D, and Ken LaBel, NASA/GSFC

1

Independent Single Event Upset Testing of the Microsemi RTG4:

Preliminary Data

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

https://ntrs.nasa.gov/search.jsp?R=20160006689 2020-05-10T17:09:07+00:00Z

Page 2: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Acronyms

• Asynchronous Assert Synchronous De-AssertResets (AASD)

• Combinatorial logic (CL)• Design under analysis (DUA)• Device under test (DUT)• Edge-triggered flip-flops (DFFs)• Field programmable gate array (FPGA)• FDDR: Double Data Rate Interface Control;• Global triple modular redundancy (GTMR)• Hardware description language (HDL)• Input – output (I/O)• Linear energy transfer (LET)• Local triple modular redundancy (LTMR)• Look up table (LUT)• Mean time to failure (MTTF)• NASA Electronics Parts and Packaging (NEPP)

• Operational frequency (fs)• PLL: Phase locked loop• POR: Power on reset• Radiation Effects and Analysis Group

(REAG)• SERDES: Serial-De-serializer• Single Error Correct Double Error Detect

Single event functional interrupt (SEFI)• Single event effects (SEEs)• Single event transient (SET)• Single event upset (SEU)• Single event upset cross-section (σSEU)• Static random access memory (SRAM)• Static timing analysis (STA)• Triple modular redundancy (TMR)• Windowed shift register (WSR)

2To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 3: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Introduction• This is a NASA Electronics Parts and Packaging

(NEPP) independent investigation to determine the single event destructive and transient susceptibility of the Microsemi RTG4 device (DUT).

• For evaluation: the DUT is configured to have various test structures that are geared to measure specific potential single event effect (SEE) susceptibilities of the device.

• Design/Device susceptibility is determined by monitoring the DUT for Single Event Transient (SET) and Single Event Upset (SEU) induced faults by exposing the DUT to a heavy-ion beam.

• Potential Single Event Latch-up (SEL) is checked throughout heavy-ion testing by monitoring device current.

3To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 4: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Preliminary Investigation Objective for DUT Functional SEE Response

• The preliminary objective, of this study, is to analyze operational responses while the DUT is exposed to ionizing particles.

• Specific analysis considerations:– Analyze DFF behavior in simple designs such as shift

registers. – Compare SEU behavior to more complex designs such as

counters. Evaluating the data trends will help in extrapolating test data to actual project-designs.

– Analyze global route behavior – clocks, resets. – Analyze configuration susceptibility. This includes

configuration cell upsets and re-programmability susceptibility.

– Analyze potential single event latch-up.

4To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 5: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Microsemi RTG4: Device Under Test (DUT)

• The DUT : RT4G150-CG1657M.

• We tested Rev B and Rev C devices.

• The DUT contains:– 158214 look up tables (4-

input LUTs); – 158214 flip-flops (DFFs);

720 user I/O;– 210K Micro-SRAM (uSRAM)

bits; – 209 18Kblocks of Large-

SRAM (LSRAM); – 462 Math logic blocks (DSP

Blocks); – 8 PLLs;– 48 H-chip global routes

(radiation-hardened global routes);

5

Figures are Courtesy of Microsemi Corporation.

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 6: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

DUT Preparation

• NEPP has two populated Rev B and one populated Rev C boards with RT4G150-CG1657M devices.

• The parts (DUTs) were thinned using mechanical etching via an Ultra Tec ASAP-1 device preparation system.

• The parts have been successfully thinned to 70um – 90um.

6

Top Side of DUT

Ultra Tec ASAP-1

Bottom Side of DUT

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 7: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Summary of Test Structures and Operation• Windowed Shift Registers (WSRs):

– Versions of WSRs varied by reset type and number of inverters placed between DFF stages.

– All designs contained four separate WSR chains.– Chains either had 0 inverters, 4 inverters, 8 inverters, or 16

inverters.– Resets were either synchronous or asynchronous.– Input data patterns varied: checkerboard, all 1’s, and all 0’s.

• Counter Arrays (data not presented today):– Resets are synchronous.– 200 counters in one array.– Two full arrays (400 counters total) in each DUT.

• Frequency was varied for all designs.• All DFFs were connected to a clock that was routed via

RTG4 hard global routes (CLKINT or CLKBUF).– This was verified by CAD summary output and visual

schematic-output inspection.7

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 8: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Windowed Shift Registers (WSRs): Test Structure

8To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 9: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

WSR Operation

9

Output never changes!We choose WSR’s over conventional shift registers because of increased signal integrity across the tester/daughter interface.

Great for high speed internal DUT operation.To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 10: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Errors in WSRs

10

No Error, output for one WSR is always “1010” or “0101”

Upon Error, output for one WSR will either: change by one bit, multiple bits, or change from “1010” to “0101”.

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 11: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Microsemi RTG4 Clock Conditioning Circuit (CCC)

11

Figure is Courtesy of Microsemi Corporation.

FDDR: Double Data Rate Interface Control;SERDES: Serial-De-serializer;POR: Power on reset;PLL: Phase locked loop;GBn: global network;DGBIO: dedicated global I/O pad.

• User can connect:– From DGBIO pad to

CLKINT,– FROM DGBIO pad to

CCC-PLL to CLKINT,– From DGBIO pad to

CLKBUF,– From normal input to

CLKINT,– From normal input to

CCC-PLL to CLKINT.

• CLKBUF: Hardened global route. Input can only be a DGBIO pad.

• CLKINT: Hardened global route. Input can come from fabric or any input.

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 12: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

• ASSD is the traditional method of reset implementation in NASA driven systems.

• This is a requirement for the protection of a mission in case of loss-of-clock.

• Synchronization is performed prior to clock tree connection.

• The ASSD global reset is connected to the asynchronous pin of each DFF, however, it is synchronized to the clock and is hence synchronous.

Asynchronous Assert Synchronous De-Assert Resets (AASD)

12

Metastability Filter

• The reset synchronization is not in the data path. This allows for faster operation.

Logic “1”

RESET

Clock Tree Buffer

To Asynchronous DFF input pin

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 13: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Microsemi RTG4 WSR Test Conditions• Temperature range: Room temperature• Facility: Texas A&M.• Performed December 2015, March 2016, and May 2016.• NEPP Low Cost Digital Tester (LCDT) and custom DUT

board.• Tests pertaining to results provided in this

presentation:– 4 separate WSR chains with 1000 DFFs:

• WSR0: 800 DFFs with no inverters between DFF stages.• WSR4: 800 DFFs with 4 inverters between DFF stages.• WSR8: 800 DFFs with 8 inverters between DFF stages.• WSR16: 800 DFFs with 16 inverters between DFF stages.

– 4 separate WSR chains with 20,000 DFFs. Each are WSR0.• LET: 1.8 MeVcm2/mg to 20.6 MeVcm2/mg.

13To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 14: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Studying the Differences between Global Routing Networks(1)

• 4 clk 4 rst (800 stage WSRs): – DUT that has WSR0, WSR4, WSR8, WSR16. – All clocks are connected to CLKINT. Only WSR0 has a DGBIO. – Each WSR chain has it’s own synchronized AASD reset.

• 4 clk 4 rst FILTER (800 stage WSRs): – DUT that has WSR0, WSR4, WSR8, WSR16. – All clocks are connected to CLKINT. Only WSR0 has a DGBIO. – Each WSR chain has it’s own synchronized AASD reset.– SET Filter is active on every DFF in all WSR chains.

• 4 clk 4 rst Direct CLKBUF (800 stage WSRs): – DUT that has WSR0, WSR4, WSR8, WSR16. – All clocks are connected to CLKBUF. All WSR chains have a

DGBIO. – Each WSR chain has it’s own synchronized AASD reset.– SET Filter is active on every DFF in all WSR chains.

14To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 15: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Studying the Differences between Global Routing Networks(2)

• Large shift register (20,000 stage WSRs): – DUT that has 4 WSR0s. – All clocks are connected to CLKINT. Only WSR0 has a DGBIO.

• Large shift register Filter (20,000 stage WSRs): – DUT that has 4 WSR0s. – All clocks are connected to CLKINT. Only WSR0 has a DGBIO. – SET Filter is active on every DFF in all WSR chains.

• Large shift register CCC (20,000 stage WSRs): – DUT that has 4 WSR0s. – All clocks are connected to CLKBUF. All WSRs have a DGBIO. – SET Filter is active on every DFF in all WSR chains.

• There are no resets in the large shift register WSRs.• There are no user inserted inverters between DFF stages

in the Large shift register WSRs15

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 16: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Characterizing Single Event Upsets (SEUs): Accelerated Radiation Testing and SEU Cross

Sections

Terminology:• Flux: Particles/(sec-cm2)• Fluence: Particles/cm2

σseu is calculated at several linear energy transfer (LET) values (particle spectrum)

fluenceerrors

seu#

SEU Cross Sections (σseu) characterize how many upsets will occur based on the number of ionizing

particles to which the device is exposed.

16To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 17: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

SEU Testing is required in order to characterize the σSEUs for each of FPGA categories.

FPGA SEU Categorization as Defined by NASA Goddard REAG:

Design σSEU Configuration σSEU Functional logic σSEU

SEFI σSEU

Sequential and Combinatorial logic (CL) in data path

Global Routes and Hidden Logic

SEU cross section: σSEU

17To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 18: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Accelerated Test Results

18To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 19: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Configuration Re-programmability

• During this test campaign, tests were only performed up to an LET of 20.6MeVcm2/mg.

• Higher LETs will be used during future testing.• No re-programmability failures were observed up

to an LET of 20.6MeVcm2/mg when within particle dose limits.

19To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 20: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

4 CLK 4 RST FILTER versus LET at 100MHz

20

0.00E+00

1.00E-09

2.00E-09

3.00E-09

4.00E-09

5.00E-09

6.00E-09

7.00E-09

0 5 10 15 20 25

σ SEU

(cm

2 /DFF

)

LET MeV*cm2/mg

WSR16 CheckerboardWSR8 CheckerboardWSR4 CheckerboardWSR0 CheckerboardWSR16 All 1'sWSR8 All 1'sWSR4 All 1'sWSR0 All 1'sWSR16 All 0'sWSR8 All 0'sWSR4 All 0'sWSR0 All 0's

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 21: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Comparing All WSR Chains:4 clk 4 rst with Filter and 4 clk 4 rst …100MHz with

LET = 20.6MeVcm2/mg

21

0.00E+00

5.00E-09

1.00E-08

1.50E-08

2.00E-08

2.50E-08

3.00E-08

3.50E-08

Chekerboard All 1's All 0's

σ SEU

cm2 /D

FF)

WSR16 4 clk 4 rst filterWSR8 4 clk 4 rst filterWSR4 4 clk 4 rst filterWSR0 4 clk 4 rst filterWSR16 4 clk 4 rstWSR8 4 clk 4 rstWSR4 4 clk 4 rstWSR0 4 clk 4 rst

Clear improvement with use of SET filter.

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 22: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

4 Clk 4 rst Direct CLKBUF SEU Cross Sections versus Frequency at LET = 20.6

MeVcm2/mg

22

0.00E+00

1.00E-09

2.00E-09

3.00E-09

4.00E-09

5.00E-09

6.00E-09

7.00E-09

8.00E-09

0 20 40 60 80 100 120

σ SEU

(cm

2 /DFF

)

Frequency MHz

WSR16 Checkerboard

WSR16 All 1's

WSR16 All 0's

WSR8 Checkerboard

WSR8 All 1's

WSR8 All 0's

WSR4 Checkerboard

WSR4 All 1's

WSR4 All 0's

WSR0 Checkerboard

WSR0 All 1's

WSR0 All 0's

The importance of testing with pattern variation and combinatorial logic variation.

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 23: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Comparing 4 clk 4 rst DUT Variations

23

0.00E+00

5.00E-09

1.00E-08

1.50E-08

2.00E-08

2.50E-08

3.00E-08

3.50E-08

σ SEU

(cm

2 /mg)

WSR16 at 100MHz LET=20.6 Comparisons

4 clk 4 rst direct clkbuf

4 clk 4 rst FILTER

4 clk 4 rst

0.00E+00

5.00E-09

1.00E-08

1.50E-08

2.00E-08

2.50E-08

3.00E-08

3.50E-08

σ SEU

(cm

2 /mg)

WSR0 at 100MHz LET=20.6 Comparisons

4 clk 4 rst direct clkbuf

4 clk 4 rst FILTER

4 clk 4 rst

Pattern Direct/filter

Direct/no filter

Checker 0.96 0.28All 1’s 1.24 0.26All 0’s 0.88 0.33

Pattern Direct/filter

Direct/no filter

Checker 1.1 0.47

All 1’s 1.0 0.007All 0’s 1.0 0.025

Tables represent Ratios of SEU cross sections.

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 24: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Comparison of Large Shift Register WSRs across LET at 100MHz:

No SET Filter versus SET Filter

24

0.00E+00

5.00E-10

1.00E-09

1.50E-09

2.00E-09

2.50E-09

3.00E-09

3.50E-09

4.00E-09

4.50E-09

5.00E-09

0 5 10 15 20 25

σ SEU

(cm

2 /DFF

)

LET MeV*cm2/mg

No filter CheckerboardNo Filter All 1'sNo Filter All 0'sFilter CheckerboardFilter All 1'sFilter All 0's

LETonset is higher for designs with SET filters; but not by much.

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 25: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Comparison of WSR0 SEU Cross Sections at 100MHZ at LET = 20MeV*cm2/mg

25

0.00E+00

5.00E-10

1.00E-09

1.50E-09

2.00E-09

2.50E-09

3.00E-09

3.50E-09

4.00E-09

4.50E-09

Checkerboard ALL 1'S ALL 0'S

σ SEU

(cm

2 /DFF

)

Large Shift Reg CCC

4 clk 4 rst Direct CLKBUF

4 clk 4rst FILTER

4 clk 4 rst

Large Shift Reg FILTER

• As expected 4 clk 4 rst has the worst SEU performance. It is the only design with no SET filters.

• 4 clk 4 rst Direct CLKBUF has the best SEU performance. There is a direct connect from the DGBIO to the CLKBUF.

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 26: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Additional Accelerated Radiation Test Data Observations

• WSR input pattern of All 1’s had greater SEU cross sections than WSR input pattern of checkerboard.– This only occurred with designs that used resets. Most likely

the reset was the cause.– The use of resets in a synchronous design is imperative. This

observation must not change the rules for reset implementation.

• Connecting from a DBGIO to a CLKBUF versus a normal I/O to a CLKINT did not provide significant improvement in SEU cross sections.

• Connect from a DBGIO to a CCC-PLL into a CLKINT did not improve SEU cross sections. It actually had higher SEU cross sections.– However, the performance is acceptable espcially since there

is a PLL in the path.26

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 27: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

27

RTG4 shows an improvement over

ProASIC3 in functional data path.

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

NEPP: ProASIC3 Accelerated Heavy-ion Test Results

Page 28: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

NEPP: Microsemi ProASIC3 LTMR versus no-TMR at LET=20.3MeVcm2/mg

28

RTG4 shows an improvement over LTMR ProASIC3 in functional data path.

Not shown is the significant improvement with the RTG4 over the ProASIC3 in the global routes.

σ SEU

(cm

2 /DFF

)

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 29: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

P(fs)error Pconfiguration + P(fs)functionalLogic + PSEFI

User Inserted Mitigation Local Triple Modular Redundancy (LTMR)

∝P(fs)DFFSEU →SEU + P(fs)SET→SEU

0

CombLogic

Voter

Voter

Voter

LTMR

CombLogic

CombLogic

DFF

DFF

DFF

• Only DFFs are triplicated. Data-paths are kept singular.• LTMR masks upsets from DFFs and corrects DFF upsets if feedback is

used.

29

• Good for devices where DFFs are most susceptible and configuration and CL susceptibility is insignificant; e.g., Microsemi ProASIC3.

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 30: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

RTAX4000D and RTAX2000 WSRs at 80MHz with Checkerboard Pattern

30

1.00E-12

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

0 20 40 60 80

Cro

ss S

ectio

n (c

m2 /b

it)

LET (MeV*cm2/mg)

RTAX4000D WSR8I

RTAX4000D WSR0

RTAX2000v2 WSR8I

RTAX2000v2 WSR0_0

σ SEU

(cm

2 /DFF

)

RTAX4000D WSR8

RTAX4000D WSR0

RTAX2000 WSR8

RTAX2000 WSR0

RTAX4000D and RTAX2000 have better SEU performance than RTG4; but not by much.

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.

Page 31: Independent Single Event Upset Testing of the Microsemi ... · Static random access memory (SRAM ) • Static timing analysis (STA) • Triple modular redundancy (TMR) • Windowed

Acknowledgements

• Some of this work has been sponsored by the NASA Electronic Parts and Packaging (NEPP) Program and the Defense Threat Reduction Agency (DTRA).

• Thanks is given to the NASA Goddard Radiation Effects and Analysis Group (REAG) for their technical assistance and support. REAG is led by Kenneth LaBel and Jonathan Pellish.

31

Contact Information:Melanie Berg: NASA Goddard REAG FPGA

Principal Investigator:[email protected]

To be presented by Melanie D. Berg at the to 2016 Single Event Effects Symposium and Military and Aerospace Programmable Logic Devices Combined Workshop La Jolla, CA, May 23-26, 2016.