33
INSTITUT FÜR KOMMUNIKATIONSNETZE UND RECHNERSYSTEME Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kühn Universität Stuttgart Increasing Capacity of Cellular WiMAX Networks by Interference Coordination Marc Necker Institute of Communication Networks and Computer Engineering University of Stuttgart, Germany [email protected] ITG FG 5.2.1, Essen November 22, 2007

Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

INSTITUT FÜRKOMMUNIKATIONSNETZEUND RECHNERSYSTEME

Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kühn

Universität Stuttgart

Increasing Capacity of Cellular WiMAX Networks by Interference Coordination

Marc NeckerInstitute of Communication Networks and Computer Engineering

University of Stuttgart, [email protected]

ITG FG 5.2.1, EssenNovember 22, 2007

Page 2: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

• Introduction and motivation- Requirements and challenges in cellular networks- Introduction to OFDMA networks

• Interference mitigation techniques- Fractional Frequency Reuse (FFR)- Interference Coordination (IFCO)

• Coordinated Fractional Frequency Reuse- Concept and architecture- Algorithm description

• Performance Evaluation- Comparison with conventional systems

Outline

Page 3: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

Scenario• Cellullar OFDMA network according to

3GPP Long Term Evolution (LTE) or IEEE 802.16e (WiMAX)

Requirements• High aggregate throughput serve as many users as possible• High cell edge throughput good performance even with weak signal

Major problem: Inter-cellular interference

Motivation

Page 4: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

MAC frame

t

f

• Based on Orthogonal Frequency Division Multiplex (OFDM)- subdivision of frequency spectrum into subcarriers- well suitable for multi-path fading environments

• Basis of several emerging cellular standardse.g., 802.16e/m (WiMAX), 3GPP LTE

Orthogonal Frequency Division Multiple Access

Page 5: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

MAC frame

t

f

• Based on Orthogonal Frequency Division Multiplex (OFDM)- subdivision of frequency spectrum into subcarriers- well suitable for multi-path fading environments

• Basis of several emerging cellular standardse.g., 802.16e/m (WiMAX), 3GPP LTE

Example: 802.16e MAC Layer ("mobile WiMAX")• Frequency-diverse (PUSC zone, FUSC zone) and

frequency-selective modes (AMC zone)

Orthogonal Frequency Division Multiple Access

Page 6: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

MAC frame

t

f

Terminal 1

Ter

min

al 3

Terminal 2

Ter

min

al 4

Ter

min

al 5

T 7Terminal 6

• Based on Orthogonal Frequency Division Multiplex (OFDM)- subdivision of frequency spectrum into subcarriers- well suitable for multi-path fading environments

• Basis of several emerging cellular standardse.g., 802.16e/m (WiMAX), 3GPP LTE

Example: 802.16e MAC Layer ("mobile WiMAX")• Frequency-diverse (PUSC zone, FUSC zone) and

frequency-selective modes (AMC zone)• AMC zone (Adaptive Modulation and Coding)

- allocation of consecutive subchannels for the transmission to one terminal

- allocations have rectangular shapesallows frequency-selective schedulingwell suitable for interference coordination

Orthogonal Frequency Division Multiple Access

Page 7: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

• Major issue in OFDMA: inter-cellular interference

Interference in Cellular Networks

Page 8: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

• Major issue in OFDMA: inter-cellular interference- standard solution: frequency reuse pattern

disadvantage: waste of precious frequency resources

Interference in Cellular Networks Reuse 3

Page 9: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

Reuse 1 areaReuse 3 area

Reuse 1 area Reuse 3 area• Major issue in OFDMA: inter-cellular interference- standard solution: frequency reuse pattern

disadvantage: waste of precious frequency resources- optimization: Fractional Frequency Reuse (FFR)

Interference in Cellular Networks FFR

Page 10: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

• Major issue in OFDMA: inter-cellular interference- standard solution: frequency reuse pattern- optimization: Fractional Frequency Reuse (FFR)

Interference in Cellular Networks

Page 11: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

• Major issue in OFDMA: inter-cellular interference- standard solution: frequency reuse pattern- optimization: Fractional Frequency Reuse (FFR)

Interference in Cellular Networks

Page 12: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

• Major issue in OFDMA: inter-cellular interference- standard solution: frequency reuse pattern- optimization: Fractional Frequency Reuse (FFR)- Usage of directional antennas to lower inter-cellular interference

Additional coordination necessary interference coordination (IFCO)

Interference in Cellular Networks

Page 13: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

Reuse Partition 1

Reuse Partition 2

Reuse Partition 3

AMC zone

Reuse 3 Area

All Resources

AMC zone

Reuse 1 Area

f

t t

Conventional Fractional Frequency Reuse (FFR)

• Assignment of mobiles to reuse 1 or 3 based on position or SINR

• Reuse 1 & reuse 3 areas may or may not be on same frequency range

• Power levels may or may not be adjusted depending on area

Page 14: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

Reuse Partition 1

Reuse Partition 2

Reuse Partition 3

AMC zone

Reuse 3 Area

All Resources

AMC zone

Reuse 1 Area

f

t t

Conventional Fractional Frequency Reuse (FFR)

• Assignment of mobiles to reuse 1 or 3 based on position or SINR• Choice of reuse partition depending on cell sector (static)

• Reuse 1 & reuse 3 areas may or may not be on same frequency range

• Power levels may or may not be adjusted depending on area

Page 15: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

Reuse Partition 2

Reuse Partition 3

Reuse Partition 4

Reuse Partition 1

Reuse Partition 6

Reuse Partition 7

Reuse Partition 8

Reuse Partition 5

Reuse Partition NC

Reuse Partition NC−1

Reuse Partition NC−2

Reuse Partition NC−3

...

AMC zone AMC zone AMC zone

Reuse 3 Area

virtual frame duration

All Resources

AMC zone

Reuse 1 Area

f

Idea: Reduce interference by optimized and coordinated dynamic choiceof reuse partition (semi static or dynamic)

interference coordination

Coordinated Fractional Frequency Reuse

Page 16: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

Coordinator

base station

• Base stations communicate relevant information to central coordinator• Central coordinator assigns mobile terminals to resource partitions in

a coordinated fashion

System Architecture

Page 17: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

• Approach- construction of an interference graph G in central coordinator

• nodes • edges (non-directional)

- assignment of resource partitions based on interference graph- communication of resource partitions to base stations

• Interference graph- based on global knowledge

collected from all base stations- edges represent critical

interference relations in-between terminals

connected terminals should not be served on the same resource(time/frequency slot)

mi M∈eij E∈

Coordination of Resource 3 Partitions

Page 18: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

Creation of Interference Graph

mobile terminal m5

Interference by Mobile Terminal

Interference Level

m5 -83 dBm

m8 -89 dBm

m10 -91 dBm

m9 -92 dBm

m42 -94 dBm

mobile terminal m2

cell border

mobile terminal m12

mobile terminal m10

interference

Page 19: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

Creation of Interference Graph

Interference by Mobile Terminal

Interference Level

m2 -80 dBm

m12 -93 dBm

m8 -94 dBm

m20 -99 dBm

m42 -99 dBm

m35 -99 dBm

mobile terminal m5

Interference by Mobile Terminal

Interference Level

m5 -83 dBm

m8 -89 dBm

m10 -91 dBm

m9 -92 dBm

m42 -94 dBm

m30 -98 dBm

mobile terminal m2

cell border

mobile terminal m12

mobile terminal m10

interference

• Calculation of signal strength of interferers for a particular mobile terminal mj

Page 20: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

Creation of Interference Graph

Interference by Mobile Terminal

Interference Level

m2 -80 dBm

m12 -93 dBm

m8 -94 dBm

m20 -99 dBm

m42 -99 dBm

m35 -99 dBm

mobile terminal m5

Interference by Mobile Terminal

Interference Level

m5 -83 dBm

m8 -89 dBm

m10 -91 dBm

m9 -92 dBm

m42 -94 dBm

m30 -98 dBm

mobile terminal m2

cell border

mobile terminal m12

mobile terminal m10

interferencebloc

ked

by in

terf

eren

ce g

raph

blocked by interference graph

• Calculation of signal strength of interferers for a particular mobile terminal mj

• Blocking of strongest interferers such that a desired minimum SIR DS is achieved

Page 21: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

Creation of Interference Graph

Interference by Mobile Terminal

Interference Level

m2 -80 dBm

m12 -93 dBm

m8 -94 dBm

m20 -99 dBm

m42 -99 dBm

m35 -99 dBm

mobile terminal m5

Interference by Mobile Terminal

Interference Level

m5 -83 dBm

m8 -89 dBm

m10 -91 dBm

m9 -92 dBm

m42 -94 dBm

m30 -98 dBm

mobile terminal m2

cell border

mobile terminal m12

mobile terminal m10

interferencebloc

ked

by in

terf

eren

ce g

raph

blocked by interference graph

• Calculation of signal strength of interferers for a particular mobile terminal mj

• Blocking of strongest interferers such that a desired minimum SIR DS is achieved

• Blocked terminals are connected by edge in interference graph

Page 22: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

t

f

frame frame

• Treat resource partitions as colors of graph• Resource partitions can be assigned to mobile terminals by coloring

of the interference graph- graph coloring is NP hard- large number of heuristics: genetic algorithms, simulated annealing,

tabu search, other heuristics (e.g., Dsatur)

Assignment of Resource Partitions

Example of resource mapping

Page 23: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

Reuse Partition 1 Farbe c0,1

Reuse Partition 2 Farbe c0,2

Reuse Partition 3 Farbe c0,3

Reuse Partition 0 Farbe c0,0

...

MAC frame MAC frame MAC frame

virtual frame duration

......Reuse

Partition 5 Farbe c1,1

Reuse Partition 6 Farbe c1,2

Reuse Partition 7 Farbe c1,3

Reuse Partition 4 Farbe c1,0

Reuse Partition NC-3

Farbe cn,1

Reuse Partition NC-2

Farbe cn,2

Reuse Partition NC-1

Farbe cn,3

Reuse Partition NC-4

Farbe cn,0

Reuse Partition 1 Farbe c0,1

Reuse Partition 2 Farbe c0,2

Reuse Partition 3 Farbe c0,3

Reuse Partition 0 Farbe c0,0

Reuse Partition NC-3

Farbe cn,1

Reuse Partition NC-2

Farbe cn,2

Reuse Partition NC-1

Farbe cn,3

Reuse Partition NC-4

Farbe cn,0

Virtual frame duration must be adapted to number of colors

Mapping of colors to Resource Partitions

Page 24: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

BasestationBasestation

Basestation

Coordinator

TC

,del

ay

TC

,per

iod

colo

ring

valid

tt

local state information

global coloring

local state information

global coloring

proc

essi

ngpr

oces

sing

colo

ring

valid

Procedure• Communication of all required

information to central coordinator• Calculation of interference graph• Graph Coloring• Communication of colors to base

stations• Mapping of colors to resource

partitions

Important Parameters• update period: TC,period• delay: TC,delay

Signaling-Time-Diagram

Page 25: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

• Event-driven simulation model implemented using IKR SimLib• Hexagonal scenario described before with wrap-around• mobility model

- 9 mobile terminals per cell sector- 30 km/h, random direction mobility model

• Traffic model- greedy traffic sources in downlink direction- throughput measured at IP level

• Detailed MAC and Physical layer model with path loss and shadowing• Metrics:

Performance Evaluation Scenario

• Aggregate sector throughputdoes not take into account fairness towards cell edge users

• 5 % quantile of the individual throughputs of all mobiles- terminals close to cell center have high throughput- terminals close to cell edge have low throughput

corresponds to throughput of terminals close to cell edge

Page 26: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

800 900 1000 1100 1200 1300 1400 1500aggregate sector throughput [kBit/s]

150

200

250

300

350

400

450

500

5% th

roug

hput

qua

ntile

[kB

it/s]

Frequency reuse 3 system

• Reuse 3 system achieves good aggregate performance andgood cell edge performance

Throughput Performance

Page 27: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

800 900 1000 1100 1200 1300 1400 1500aggregate sector throughput [kBit/s]

150

200

250

300

350

400

450

500

5% th

roug

hput

qua

ntile

[kB

it/s]

Frequency reuse 3 system

Frequency reuse 1 system

• Reuse 1 system achieves better aggregate performance butfalls short with respect to cell edge performance

Throughput Performance

Page 28: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

800 900 1000 1100 1200 1300 1400 1500aggregate sector throughput [kBit/s]

150

200

250

300

350

400

450

500

5% th

roug

hput

qua

ntile

[kB

it/s]

Frequency reuse 3 system

Frequency reuse 1 system

Fractional Frequency Reuse

• Conventional Fractional Frequency Reuse, locally coordinated- achieves great increase in aggregate performance- falls short with respect to cell edge performance

Throughput Performance

Page 29: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

800 900 1000 1100 1200 1300 1400 1500aggregate sector throughput [kBit/s]

150

200

250

300

350

400

450

500

5% th

roug

hput

qua

ntile

[kB

it/s]

Frequency reuse 3 system

Frequency reuse 1 system

Fractional Frequency Reuse

Coordinated Fractional Frequency Reuse

• Coordinated Fractional Frequency Reuse- achieves good increase in aggregate and cell edge performance- allows to trade off cell edge and aggregate performance on a high level

Throughput Performance

Page 30: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

Impact of Signaling Delays

0 500 1000 1500 2000 2500 3000 3500 4000TC,period [ms]

180

200

220

240

260

280

300

320

340

5% th

roug

hput

qua

ntile

[kB

it/s]

TC,delay= 0 ms

• Increased signaling delay TC,period- leads to graceful degradation of cell edge performance- has much less impact on aggregate performance (not shown here)

Page 31: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

Impact of Signaling Delays

0 500 1000 1500 2000 2500 3000 3500 4000TC,period [ms]

180

200

220

240

260

280

300

320

340

5% th

roug

hput

qua

ntile

[kB

it/s]

TC,delay= 0 ms

TC,delay = 1000 ms

TC,delay = 2000 ms

TC,delay = 4000 ms

• Increased signaling delays TC,period and TC,delay- lead to graceful degradation of cell edge performance- have much less impact on aggregate performance (not shown here)

Page 32: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

• Big increase close to base stations• Good coverage at cell edge with coordinated FFR

Area Throughput

0

500

1000

1500

2000

2500

3000

3500

4000

x[Pixel]

y[P

ixel

]

0 20 40 60 80 100 120 140 160 0

20

40

60

80

100

120

140

160 kBit/s

0

500

1000

1500

2000

2500

3000

3500

4000

x[Pixel]

y[P

ixel

]

0 20 40 60 80 100 120 140 160 0

20

40

60

80

100

120

140

160 kBit/s

Reuse 3 Coordinated FFR

TC,period = 2s, TC,delay = 1sDS,o = 0dB, DS,i = 20dB

Page 33: Increasing Capacity of Cellular WiMAX Networks by ...content.ikr.uni-stuttgart.de/Content/Publications/... · Interference Level m2-80 dBm m12-93 dBm m8-94 dBm m20-99 dBm m42-99 dBm

© Institut für Kommunikationsnetze und Rechnersysteme Universität Stuttgart

• Frequency spectrum is one of the most precious resourcesoperators strive to get maximum performance out of limited spectrum

• Possible solutions- denser planning of base station grid

high additional cost- deployment of advanced algorithms, such as interference coordination

capacity improvements achievable by much lower cost

• Coordinated Fractional Frequency Reuse- algorithm for distributed and dynamic interference coordination- low complexity scheme based on central coordinator

communication with central coordinator in intervals in the order of 500 ms- performance improvements of about 50% (compared to Reuse 3)

• with respect to aggregate throughput (maintaining cell edge throughput)• with respect to cell edge throughput (maintaining aggregate throughput)

Conclusion