27
Incompresible Flow over Airfoils Ranggi Sahmura Revan Difitro

Incompresible Flow Over Airfoils

Embed Size (px)

Citation preview

Page 1: Incompresible Flow Over Airfoils

Incompresible Flow over Airfoils

Ranggi SahmuraRevan Difitro

Page 2: Incompresible Flow Over Airfoils

Road Map

Incompressible flow over airfoils

Singularity distribution over airfoil

surface

Singularity distribution

over camber line or

chord lineFundamental

s of airfoil (characteristics, the vortex sheet, Kutta

condition and Kelvins’s therem of starting vortex

Big Goal: Create method to lift and moment at airfoil to develop further design of

complete wing

Page 3: Incompresible Flow Over Airfoils

Definition

Page 4: Incompresible Flow Over Airfoils

Nomenclature β€œNACA WXYZ”

W = (Nilai Maks Camber/100) x Panjang ChordX = (Titik Maks Camber/10) x Panjang ChordYZ = (Ketebalan Maks/100) x Panjang Chord

Page 5: Incompresible Flow Over Airfoils

β€œNACA VWXYZ”V = [1.5(Koefisien Lift)/10]WX = (Nilai Maks Camber/200) x Panjang ChordYZ = (Ketebalan Maks/100) x Panjang Chord

β€œNACA UV-XYZ”U = Nomor SeriV = (Tekanan Min/10) x Panjang ChordX = Koefisien Lift/10YZ = (Ketebalan Maks/100) x Panjang Chord

Nomenclature

Page 6: Incompresible Flow Over Airfoils

Characteristics

Page 7: Incompresible Flow Over Airfoils

Angle of AttackVsLift Coefficient

Page 8: Incompresible Flow Over Airfoils

Angle of AttackVsDrag Coefficient

Page 9: Incompresible Flow Over Airfoils

Vortex Sheet Theorem

Ξ“=βˆ«π›Ύ 𝑑𝑠 𝐿′=πœŒβˆžπ‘‰ ∞ Ξ“

Page 10: Incompresible Flow Over Airfoils

Kutta Condition

This won’t be achieved in nature

𝛾 (𝑇𝐸 )=0

Page 11: Incompresible Flow Over Airfoils

Kelvin’s Circulation Theorem

Circulation

Kelvin’s Theorem of Circulation

The vortex sheet at instant of times becomes vortex sheet of all times

Page 12: Incompresible Flow Over Airfoils

Starting Vortex

Starting vortex explain how the Kutta condition achieved in nature

Page 13: Incompresible Flow Over Airfoils

Classical Thin Airfoil Theory

Classical thin airfoil

theory

Symmetric Airfoil

Cambered Airfoil

Chord lineCamber line

Singularity distribution

over camber line or

chord line

Page 14: Incompresible Flow Over Airfoils

Grand Step

1. Find that satisfies 2 condition

2. from , we get

3. from , by Kutta-Jokowski theorem, we get L’

Kutta condition satisfied (TE = 0)Body surface acts as streamline of the flow, Vn = 0

Page 15: Incompresible Flow Over Airfoils

The Symmetric Airfoil

Page 16: Incompresible Flow Over Airfoils

The Symmetric Airfoil

- For thin airfoil, vortex sheet over airfoil surface will look almost the same as vortex sheet on camber line

- Since airfoil is thin, camber line will be closed to chord line vortex will fall approximately over chord line

(x); to satisfy Kutta condition, (c) = 0

- In order to achieve this, camber line has to be streamline of the flow

- If camber line is streamline, velocity normal to camber line has to be zero

𝑉  βˆž ,𝑛+πœ”β€² (𝑠 )=0[ 4.12]

Page 17: Incompresible Flow Over Airfoils

The Symmetric Airfoil

𝑉 ∞,𝑛=𝑉 ∞ sin [𝛼+π‘‘π‘Žπ‘›βˆ’1( 𝑑𝑧𝑑π‘₯ )] [4.13]

𝑉 ∞,𝑛=𝑉 ∞(π›Όβˆ’ 𝑑𝑧𝑑π‘₯ )[ 4.14]

For small angle, sin ΞΈ = tan ΞΈ = ΞΈ

Page 18: Incompresible Flow Over Airfoils

The Symmetric Airfoil

- Since camber line close to chord line, w’(s) = w(x) [4.15]

- Elemental vortex strength , locate at distance , ()

- Velocity dw induced by elemental vortex at

𝑑𝑉=βˆ’ 𝛾 𝑑𝑠2πœ‹π‘Ÿ

using [4.16]

[4.17]

Page 19: Incompresible Flow Over Airfoils

The Symmetric Airfoil

- Recall [4.12]

𝑉 ∞(π›Όβˆ’ 𝑑𝑧𝑑π‘₯ )βˆ’βˆ«

0

𝑐 𝛾 (πœ‰ ) π‘‘πœ‰2πœ‹ (π‘₯βˆ’πœ‰ )

=0

or

12∫0

𝑐 𝛾 ( πœ‰ ) π‘‘πœ‰πœ‹ (π‘₯βˆ’πœ‰ )

=𝑉 ∞(π›Όβˆ’ 𝑑𝑧𝑑π‘₯ )[ 4.18]

Since airfoil is thin, taken to be no cambered, dz/dx = 0

12∫0

𝑐 𝛾 (πœ‰ ) π‘‘πœ‰πœ‹ (π‘₯βˆ’πœ‰ )

=𝑉 βˆžπ›Ό[4.19 ]

πœ‰=𝑐2 (1βˆ’π‘π‘œπ‘ πœƒ)

π‘₯=𝑐2 (1βˆ’π‘π‘œπ‘  πœƒπ‘œ)

d

Transportation equation

Page 20: Incompresible Flow Over Airfoils

The Symmetric Airfoil

12∫0

𝑐 𝛾 (πœƒ )π‘ π‘–π‘›πœƒπ‘‘πœƒπ‘π‘œπ‘ πœƒβˆ’π‘π‘œπ‘  πœƒ0

=𝑉 βˆžπ›Ό [4.23 ]

𝛾 (πœƒ )=2𝛼𝑉 ∞(1+π‘π‘œπ‘ πœƒ)

π‘ π‘–π‘›πœƒ [4.24 ]

Calculation of lift

Ξ“=∫0

𝑐

𝛾 ( πœ‰ ) π‘‘πœ‰ [4.28 ]

Ξ“=𝑐2∫0

πœ‹

𝛾 (πœƒ )π‘ π‘–π‘›πœƒπ‘‘πœƒ [4.29]

Using transportation equation

Using equation [4.24]

Ξ“=𝛼𝑐𝑉 ∞∫0

πœ‹

(1+π‘π‘œπ‘ πœƒ ) π‘‘πœƒ=πœ‹π›Όπ‘π‘‰ ∞ [4.30]

Page 21: Incompresible Flow Over Airfoils

The Symmetric Airfoil

=Lift

Lift Coefficient

𝑐 𝑙=𝐿 β€²

π‘žβˆžπ‘†=

πœ‹π›Όπ‘ πœŒβˆžπ‘‰ ∞2

12πœŒβˆžπ‘‰ ∞2 𝑐

𝑐 𝑙=2πœ‹π›Ό 𝑑𝑐𝑙

𝑑𝛼=2πœ‹

β€œlift coefficient is linearly proportional to angle of attack”

Page 22: Incompresible Flow Over Airfoils

The Symmetric Airfoil

𝑀 β€² 𝐿𝐸=βˆ’βˆ«0

𝑐

πœ‰ (𝑑𝐿 )=βˆ’πœŒβˆžπ‘‰ ∞∫0

𝑐

πœ‰π›Ύ (πœ‰ ) π‘‘πœ‰

Using transforming equation and some mathematical relation, obtain

π‘π‘š , 𝑙𝑒=βˆ’π‘ 𝑙

4

π‘π‘š ,𝑐/4=π‘π‘š ,𝐿𝐸+𝑐 𝑙

4And since

π‘π‘š , 𝑐/4=0 β€œcenter of moment and aerodynamic center is at quarter-length of chord

Momentum coefficient

Page 23: Incompresible Flow Over Airfoils

The Cambered Airfoil

𝑐 𝑙=2πœ‹ [𝛼+ 1πœ‹βˆ«0

πœ‹ 𝑑𝑧𝑑π‘₯ (π‘π‘œπ‘ πœƒ 0βˆ’1 )π‘‘πœƒ0]

Lift coefficient

Equation for determining angle of attack that produce zero lift (Ξ±L=0)β€œlift coefficient is linearly proportional to angle of attack”

Momentum coefficient

π‘π‘š ,𝑐/4=πœ‹4 (𝐴2βˆ’π΄1)

β€œquarter-length of chord is aerodynamic centre but not centre of pressure

)

Page 24: Incompresible Flow Over Airfoils

Limitation of the classic theory

Thin airfoil theory Only of thin airfoil ( <12% ) Small angle of attack

Area of interest Low speed plane wings using airfoil

those are thicker than 12% High angle of attack for take off and

landing Generation of lift over other body

shape

Page 25: Incompresible Flow Over Airfoils

Vortex Panel Numerical Method

Vortex Panel Numerical Method

Singularity distribution over airfoil

surface

Page 26: Incompresible Flow Over Airfoils

Vortex Panel Numerical Method

- Determining using numerical method, using equation below

𝑉 βˆžπ‘π‘œπ‘  π›½π‘–βˆ’βˆ‘π‘—=1

𝑛 𝛾 𝑗

2πœ‹ 𝐽 𝑖 , 𝑗=0

𝛾𝑖=βˆ’π›Ύπ‘–βˆ’1

Ξ“=βˆ‘π‘—=1

𝑛

𝛾 𝑗𝑠 𝑗 𝐿′=πœŒβˆžπ‘‰ βˆžβˆ‘π‘—=1

𝑛

𝛾 𝑗𝑠 𝑗

Page 27: Incompresible Flow Over Airfoils

Classic – Modern Ways of

Classic Shape Aerodynamic Characteristics

Modern Characteristics wanted Shape