150
1 IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST MERCIFUL

IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

1

IN THE NAME OF ALLAH

THE MOST BENEFICENT THE MOST MERCIFUL

Page 2: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

2

ASSESSMENT OF PRODUCTIVE POTENTIAL OF BROWSE SPECIES

AND THEIR MANAGEMENT STRATEGY IN THE DEGRADING

RANGELANDS OF CHOLISTAN DESERT

By

MUHAMMAD ABDULLAH

M.Sc. (Hons.) FORESTRY

A THESIS SUBMITTED IN ACCORDANCE WITH THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

FORESTRY

DEPARTMENT OF FORESTRY RANGE MANAGEMENT AND WILDLIFE

UNIVERSITY OF AGRICULTURE FAISALABAD PAKISTAN 2013

Page 3: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

3

The Controller of Examinations

University of Agriculture

Faisalabad

We the supervisory committee certifies that the contents and form of the thesis submitted by

Mr. Muhammad Abdullah, Registration No. 2001-ag-2617 have been found satisfactory and

recommend that it be processed for final evaluation by External Examiner(s) for the award of

degree.

SUPERVISORY COMMITTEE

1. PROF. DR. RASHID AHMAD KHAN .

(CHAIRMAN)

2. DR. SHAHID YAQOOB .

(MEMBER)

3. PROF. DR. MUNIR AHMAD .

(MEMBER)

Page 4: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

4

DECLARATION __ _______ _____________ ___

I Muhammad Abdullah declare that dissertation “ASSESSMENT OF PRODUCTIVE

POTENTIAL OF BROWSE SPECIES AND THEIR MANAGEMENT STRATEGY IN THE

DEGRADING RANGELANDS OF CHOLISTAN DESERT” hereby submitted for the requirement

of degree of doctor of philosophy is my original work. All the sources have been

acknowledged by the mean of complete references and the views expressed therein will

remain the responsibility of author. This work has not been submitted by me at any other

university/faculty in Pakistan or abroad. I further code the copyright of this thesis in favour

of University of Agriculture Faisalabad Pakistan.

SIGNATURE: .

MUHAMMAD ABDULLAH

DATE: .

Page 5: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

5

PREFACE __ _______ _____ ___________

All praise to Almighty ALLAH alone the most merciful, the most compassionate and Holy

Prophet MUHAMMAD (P.B.U.H) the most perfect and exalted among and even of ever born

on the surface of earth, who is far ever a torch of guidance and knowledge for the humanity. I

wish to thank the following persons, without whom the execution of this study would not

have been possible:

• My parents, for giving me the opportunity to make my dream a reality, amidst

difficult times, and my brothers, sisters, bhabies for all their support, unconditional

love and guidance during this study.

• My mentor and supervisor Prof. Dr. Rashid Ahmad Khan, for inspiring guidance,

constructive criticism and enlightened supervision especially his willingness to help

amidst a full program. Your support to promote the spirit of constant work and the

maintenance of professional integrity besides other invaluable words will always

serve as beacon of light in my life.

• My co-supervisor, Late Dr. Muhammad Arshad, for always sharing his expert

knowledge, dexterous guidance and for all his patience throughout the fieldwork. I

sincerely believe that without his patronage and assistance, this research work would

not have reached a successful culmination.

• My Supervisory Committee, Dr. Shahid Yaqoob, and Prof. Dr. Munir Ahmad, under

whose scholastic guidance and consistent encouragement, I have completed my work.

• My class fellows and friends (Rafay, Imran, Fahad, Usman, Akbar sab & Nadeen

bhae) who supported me at every step to accomplish this job. There are many other

individuals who supported me in various ways, although I cannot mention their

names here. I simply say thank you so much for your immense support.

• Higher Education Commission (HEC), Pakistan for sponsoring this research project

under the Indigenous Scholarship Scheme.

• All the staff of the Department of Forestry, Range management and wildlife for all

their support and encouragement throughout the study.

MUHAMMAD ABDULLAH

[email protected]

Page 6: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

6

DEDICATION __ _______ _____________ ___

This thesis is dedicated to my father (CH. WALAYAT ALI) whose proper guidance and effort

inspired a great interest of learning in my mind and to my mother who provides me all her love and

sacrificed her interests for my success that will be remembered forever.

Page 7: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

7

TABLE OF CONTENTS___ ___ ____ ________ _____ A. MINOR CONTENTS PAGE No.

TITLE 2

SUPERVISORY COMMITTEE 3

DECLARATION 4

PREFACE 5

DEDICATION 6

TABLE OF CONTENTS 7

LIST OF FIGURES, PLATES AND TABLES 10

LIST OF ACRONYMS 11

ABSTRACT 12

B. MAJOR CONTENTS CHAPTER 1: INTRODUCTION

1.1: BACKGROUND AND JUSTIFICATION 13

1.2: OBJECTIVES 16

1.2.1: GENERAL OBJECTIVE 16

1.2.2: SPECIFIC OBJECTIVES 16

CHAPTER 2: LITERATURE REVIEW 2.1: FLORISTIC COMPOSITION 17

2.2: PHYTOSOCIOLOGY 19

2.2.1: COMMUNITY STRUCTURE 19

2.2.2: MULTIVARIATE ANALYSIS 21

2.3: BROWSE FORAGE PRODUCTION 24

2.4: RANGE CARRYING CAPACITY 26

2.5: PALATABILITY CLASSIFICATION 29

2.6: NUTRITIONAL EVALUATION 30

2.6.1: PROXIMATE COMPOSITION 32

2.6.2: STRUCTURAL COMPOSITION 33

2.6.3: MINERAL COMPOSITION 35

CHAPTER 3: MATERIAL AND METHODS 3.1: DESCRIPTION OF STUDY AREA 3.1.1: GEOGRAPHICAL LOCATION 38

3.1.2: HISTORY OF CHOLISTAN DESERT 38

3.1.3: CLIMATE 38

3.1.4: SOIL 40

3.1.5: VEGETATION 40

3.1.6: SOCIOECONOMIC ASPECT 41

Page 8: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

8

3.2: DATA COLLECTION METHODS 3.2.1: RECONNAISSANCE SURVEY AND STUDY SITES 43

3.2.2: FLORISTIC ANALYSIS OF BROWSES 44

3.2.2.1: COLLECTION OF PLANTS 44

3.2.2.2: FLORISTIC COMPOSITION 44

3.2.2.3: PHENOLOGICAL PATTERNS 44

3.2.2.4: ECONOMIC USE CLASSIFICATION 45

3.2.2.5: STATISTICAL ANALYSIS 45

3.2.3: PHYTOSOCIOLOGICAL ANALYSIS 45

3.2.3.1: ANALYTIC PHASE (BOTANICAL SURVEY) 45

3.2.3.2: SYNTHETIC PHASE (DATA ANALYSIS) 45

3.2.3.3: COORDINATES 46

3.2.4: SOIL ANALYSIS 47

3.2.4.1: SOIL SAMPLING 47

3.2.4.2: PREPARATION OF SATURATED SOIL PASTE 47

3.2.4.3: SATURATION PERCENTAGE 47

3.2.4.4: SOIL pH AND ELECTRICAL CONDUCTIVITY 47

3.2.4.5: ORGANIC MATTER AND SOIL MOISTURE 47

3.2.4.6: AVAILABLE PHOSPHORUS, SODIUM AND POTASSIUM 48

3.2.5: BROWSE FORAGE PRODUCTION 48

3.2.6: RANGE CARRYING CAPACITY 48

3.2.7: PALATABILITY CLASSIFICATION OF BROWSES 49

3.2.8: NUTRITIONAL EVALUATION OF BROWSES 49

3.2.8.1: PROCUREMENT OF SAMPLES 49

3.2.8.2: PROXIMATE ANALYSIS 49

3.2.8.3: FIBER FRACTIONS 49

3.2.8.4: MINERAL PROFILE 50

3.2.8.5: STATISTICAL ANALYSIS 50

CHAPTER 4: RESULTS 4.1: FLORISTIC INVENTORY OF BROWSES 51

4.1.1: FLORISTIC COMPOSITION 51

4.1.2: PHENOLOGICAL PATTERNS 53

4.1.3: ECONOMIC USE CLASSIFICATION 54

4.2: PHYTOSOCIOLOGICAL STUDY OF BROWSES 54

4.2.1: COMMUNITY STRUCTURE 54

4.2.2: MULTIVARIATE ANALYSIS 63

4.2.2.1: CLASSIFICATION 63

Page 9: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

9

4.2.2.2: ORDINATION 66

4.3: FORAGE PRODUCTION OF BROWSES 69

4.4: RANGE CARRYING CAPACITY 70

4.5: PALATABILITY CLASSIFICATION OF BROWSES 72

4.5.1: DEGREE OF PALATABILITY 72

4.5.2: PALATABILITY BY PARTS GRAZED 72

4.5.3: PALATABILITY BY ANIMAL PREFERENCES 73

4.6: NUTRITIONAL EVALUATION OF BROWSES 74

4.6.1: PROXIMATE COMPOSITION 74

4.6.2: STRUCTURAL COMPOSITION 75

4.6.3: MINERAL COMPOSITION 76

CHAPTER 5: DISCUSSION 5.1: FLORISTIC INVENTORY OF BROWSES 78

5.1.1: FLORISTIC COMPOSITION 78

5.1.2: PHENOLOGICAL PATTERNS 79

5.1.3: ECONOMIC USE CLASSIFICATION 81

5.2: PHYTOSOCIOLOGICAL STUDY OF BROWSES 83

5.2.1: COMMUNITY STRUCTURE 83

5.2.2: MULTIVARIATE ANALYSIS 85

5.3: FORAGE PRODUCTION OF BROWSES 89

5.4: RANGE CARRYING CAPACITY 92

5.5: PALATABILITY CLASSIFICATION OF BROWSES 94

5.6: NUTRITIONAL EVALUATION OF BROWSES 98

5.6.1: PROXIMATE COMPOSITION 98

5.6.2: STRUCTURAL COMPOSITION 100

5.6.3: MINERAL COMPOSITION 101

CHAPTER 6: CONCLUSION AND MANAGEMENT STRATEGY 6.1: GENERAL CONCLUSIONS 109

6.2: MANAGEMENT STRATEGY 112

CHAPTER 7: LITERATURE CITED 115 CHAPTER 8: ANNEXURE

8.1: ECOLOGICAL ATTRIBUTES OF BROWSE SPECIES 144

8.2: PHENOLOGICAL PATTERNS OF BROWSE SPECIES 145

8.3: ECONOMIC USE CLASSIFICATION OF BROWSE SPECIES 146

8.4: NAME, LOCATION, AND TOPOGRAPHY OF EACH STAND 147

8.5: SEASONAL BROWSE PRODUCTION (kg/ha) AND GRAZING STATUS OF STANDS 148

8.6: PALATABILITY CLASSIFICATION OF BROWSE SPECIES 149

Page 10: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

10

LIST OF FIGURES, PLATES, AND TABLES __ ___ ____

FIGURES PAGE No.

FIGURE 3.1: MAP OF STUDY AREA; THE CHOLISTAN DESERT 43

FIGURE 3.2: LAYOUT OF DATA COLLECTION METHODS 46

FIGURE 4.1: PHENOLOGICAL PATTERNS OF BROWSE SPECIES 53

FIGURE 4.2: DENDROGRAM FROM CLUSTER ANALYSIS OF STANDS 64

FIGURE 4.3: DETRENDED CORRESPONDENCE ANALYSIS (DCA) OF STANDS 67

FIGURE 4.4: CCA BIPLOT OF STANDS WITH ENVIRONMENTAL (SOIL) VARIABLES 68

FIGURE 4.5: SEASONAL BROWSE FORAGE YIELD (kg/ha) AT THREE RANGE HABITATS 70

FIGURE 4.6: CLASSIFICATION OF BROWSES BASED ON PALATABILITY 72

FIGURE 4.7: CLASSIFICATION OF BROWSES BASED ON PARTS USED 73

FIGURE 4.8: CLASSIFICATION OF BROWSES BASED ON LIVESTOCK PREFERENCES 73

TABLES TABLE 3.1: MEAN MONTHLY METEOROLOGICAL DATA OF CHOLISTAN RANGELANDS 39

TABLE 4.1: FAMILY IMPORTANCE INDEX OF BROWSE SPECIES 51

TABLE 4.2: BROWSE SPECIES WITH FAMILY, BOTANICAL, AND VERNACULAR NAMES 52 TABLE 4.3: ECONOMIC USE CLASSIFICATION OF BROWSE SPECIES 54

TABLE 4.4: COMMUNITY STRUCTURE AND IMPORTANCE VALUE INDEX OF BROWSES 58

TABLE 4.5: SOIL PHYSIO-CHEMICAL ANALYSIS OF BROWSE COMMUNITIES 62

TABLE 4.6: MEAN IMPORTANCE VALUES OF PLANT SPECIES IN THREE ASSOCIATIONS 65

TABLE 4.7: MEAN VALUES OF SOIL ANALYSIS AT THREE ASSOCIATIONS 66

TABLE 4.8: SUMMARY OF DETRENDED CORRESPONDENCE ANALYSIS 67

TABLE 4.9: SUMMARY OF CANONICAL CORRESPONDENCE ANALYSIS 69

TABLE 4.10: SEASONAL CARRYING CAPACITY AT THREE RANGE HABITATS 71

TABLE 4.11: PROXIMATE COMPOSITION OF SELECTED BROWSE SPECIES (ON DM BASIS) 74

TABLE 4.12: STRUCTURAL COMPOSITION OF SELECTED BROWSE SPECIES (ON DM BASIS) 75

TABLE 4.13: MINERAL COMPOSITION OF SELECTED BROWSE SPECIES (ON DM BASIS) 77

PLATES PLATE 1.1: AERIAL VIEWS OF CHOLISTAN RANGELANDS (a, b) 16

PLATE 2.1: AUTHOR DURING CAMPING IN CHOLISTAN RANGELANDS (a, b) 37

PLATE 3.1: NOMADIC LIFE STYLE IN CHOLISTAN RANGELANDS (a, b, c, d) 42

PLATE 3.2: RAIN WATER HARVESTING PONDS IN CHOLISTAN RANGELANDS (a, b) 50

PLATE 5.1: ILLEGAL CUTTING AND BURNING OF BROWSE SPECIES (a, b, c, d) 82

PLATE 5.2: SANDUNAL (a, b) INTERDUNAL SANDY (c, d) AND CLAYEY SALINE (e, f) HABITATS 87, 88

PLATE 5.3: VEGETATION STRUCTURE IN DRY (a) AND WET SEASON (b) 91

PLATE 5.4: TYPES OF GRAZING LIVESTOCK IN CHOLISTAN RANGELANDS (a, b, c, d) 97

PLATE 5.5: NOMADIC HERDERS OF CHOLISTAN RANGELANDS (a, b, c, d) 108

PLATE 7.1: LIVESTOCK DEATH; A SEVERE EFFECT OF DROUGHT (a, b) 143

PLATE 8.1: SOME PICTURES TAKEN DURING FIELD WORK 150

Page 11: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

11

LIST OF ACRONYMS __ _______ _______ ______

A.O.A.C ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS

ADF ACID DETERGENT FIBER

ADL ACID DETERGENT LIGNIN

ANOVA ANALYSIS OF VARIANCE

CA CLUSTER ANALYSIS

Ca CALCIUM

CC CARRYING CAPACITY

CCA CANONICAL CORRESPONDENCE ANALYSIS

CP CRUDE PROTEIN

CRD COMPLETELY RANDOMIZED DESIGN

Cu COPPER

DCA DETRENDED CORRESPONDENCE ANALYSIS

DM DRY MATTER

EC ELECTRICAL CONDUCTIVITY

Fe IRON

FIV FAMILY IMPORTANCE VALUE

GPS GLOBAL POSITIONING SYSTEM

IVI IMPORTANT VALUE INDEX

K POTASSIUM

KPK KHYBER PAKHTON KHAWA

LSD LEAST SIGNIFICANT DIFFERENCE

Mg MAGNESIUM

Mn MANGANESE

MVSP MULTIVARIATE STATISTICAL PACKAGE

Na SODIUM

NDF NEUTRAL DETERGENT FIBER

OM ORGANIC MATTER

P PHOSPHORUS

SAS STATISTICAL ANALYSIS SYSTEM

SRM SOCIETY OF RANGE MANAGEMENT

Zn ZINC

Page 12: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

12

ABSTRACT __ _______ _______ __________________________________ The Cholistan rangelands have been on decline due to various stresses and their effects can be visualized on its flora particularly on browse species. Therefore, a baseline study was carried to determine the productivity potential of browses with specific objectives of investigating their floristic composition, vegetation structure, forage productivity, and nutritive evaluation. Total 25 browse species belonging to 12 families and 17 genera were identified whereas Chenopodiaceae, Mimosaceae, and Rhamnaceae were found as dominant families that were mainly contributing to browse cover. In the investigated area two phenological seasons were recorded, first from February to April and second from September to November, whereas December to January and May to August were almost dormant phases. Further, based on economic importance of browses, maximum species were observed to be used as forage/fodder that clearly indicated that this area could serve as potential rangeland. According to phytosociological study, twenty browse communities were documented on the basis of importance value index. Multivariate analysis of twenty stands has delineated three vegetation associations inhabiting the sandunal, interdunal sandy and clayey saline habitats. Soil physio-chemical analysis revealed that texture of sandunal habitat was sandy; interdunal was sandy loam while clayey saline was clayey. Results have exposed that organic matter, and soil nutrients were better at interdunal sandy habitat whereas pH, EC, Na, and soil moisture were high at clayey saline habitat. It was estimated that browse productivity was high (8029.1 kg/ha) in wet season as compare to dry season (5422.9 kg/ha), correspondingly carrying capacity was high during wet season (16 ha/AU/Y) than dry season (24 ha/AU/Y). Moreover, during dry season, mostly stands were observed to be overgrazed while in wet season maximum stands were moderately grazed. High carrying capacity and good grazing status of stands in wet season was due to better forage production. Based on palatability classification, 22 species were found to have palatability to varying degree and 03 species were non-palatable. In palatable species, leaves of 14 species; shoot/stem of 13 species, flower of 04 species, and fruit of 03 species were grazed by livestock, whereas cattle were observed to graze on 07 species; goat and sheep like 10 species each while camel prefer 20 species. Subsequently, nutritive evaluation revealed that browse species were good source of dry matter and protein whereas; concentration of almost all the minerals (micro and macro) was less than required level for ruminants grazing therein. The findings of this study indicate that the browse productivity of Cholistan rangelands was low and fluctuate according to seasons. Therefore, they need proper protection, management, and rehabilitation through ecological approaches. This would be possible with the participation of government and local peoples to make these range resources sustainable. Key words: Cholistan rangelands, Browse species, Floristic composition, Phenology, vegetation structure, Multivariate analysis, Biomass production, Carrying capacity, Palatability, Nutritive evaluation

Page 13: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

13

INTRODUCTION___ _________________ CHAPTER 1

1.1: BACKGROUND AND JUSTIFICATION

Rangelands can be defined as the areas on which natural vegetation is mainly grasses, forbs,

or shrubs suitable for browsing or grazing, which also include lands revegetated artificially or

naturally to provide forage that is managed like native vegetation (SRM., 1999). Rangelands

cover about 50% of world land surface and are essentially the larger tracts of natural

vegetation, used to support animal production (Friedel et al., 2000). Majority of these

rangelands are located in vegetation biomes such as grasslands, shrublands, savannas, and

deserts. These areas are often characterized by arid climate that experience low rainfall, large

daily and seasonal temperature extremities (Vetter et al., 2006).

Pakistan is a sub-tropical country, which consists of vast semi-arid and arid tracks of land,

stretches over 68 million hectares (Majeed et al., 2002). Out of total area of Pakistan (80

million ha) 49 million hectare has been classified as rangelands which are almost consisting

of arid to semiarid conditions. According to provincial position, Punjab constitutes 40%,

Sindh 55%, K.P.K. 60%, and Baluchistan 90% to rangeland sector. These rangelands

encompass alpine pastures in northern mountains, temperate and mediterranean ranges in

western mountains and arid to semi-arid desert ranges in Indus plains. The rangelands of

Pakistan show a great diversity of species composition, structure, productivity and eventually

their capacity to support livestock production (Mohammad & Naz, 1985).

Rangelands are very important from the environmental point of view because they provide

vegetation cover, protection for soil, which also ensures sustainable economic production of

feed for animals. Especially browse plants (shrubs & tree foliage) beside grasses compose

one of the cheapest sources of feed for animals in many parts of the World. Mostly the

browses have advantage of maintaining their nutritive value and greenness during the dry

season when grasses dry up and decline in both quantity and quality (Kibon & Orskov,

1993). This nutritious profusion and perennial performance of browse species afford round

the year provision of forage for grazing livestock (Aganga & Mosase, 2001).

Rangelands of Pakistan sustain thirty million herds of grazing animals that provide 400

million US $ to annual export income (Anon., 2006). In Pakistan, small ruminants obtain

more than 60% of their feed necessities from arid and semi-arid rangelands (Khan et al.,

1990). Previous policies have always supported the crops production over livestock, leading

Page 14: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

14

in the misuse of lands having economically ineffectual productive potential. Livestock sector

play very significant role because it provides various services for humankind like milk and

meat, which are vital components of our diet. Livestock occupies a key position in the rural

economy of Pakistan for improving the living standard of small resource peoples (Khan et

al., 2005).

Rangelands, which constitute about 65% of the total area of Pakistan, are degrading and

facing many difficulties like short growth period, over grazing, droughts, soil erosion, and

marginal availability of productive perennial species. The herbaceous vegetation of these

rangelands only flourishes in the monsoon season, accordingly livestock herds show pitiable

health and produce very poor yield of meat and milk. These problems are common

everywhere in the world where arid or semiarid rangelands exist. Therefore, developing

countries like Pakistan face the similar situation in their rangelands productivity and health

(Ahmad & Hasnain, 2001).

Rangeland degradation is a worldwide issue, upsetting not only pastoralists who depend on

healthy rangelands for existence but also others who experience hydrological disturbances,

commodity scarcity and dust storms (Harris, 2010). The main causes for rangeland

degradation are low carrying capacity, unscientific livestock management, excessiveness of

unpalatable species, change in climate, and disturbance of soil by small mammals.

Overgrazing is a major land problem in arid and semi-arid areas, together with conversion of

lands to cultivated farms and because of spatial and temporal variability; it is very difficult to

quantify (Landsberg & Crowley, 2004).

The rangelands of Pakistan are in the process of deterioration due to extreme climatic

conditions, unplanned grazing, prolonged droughts, mismanagement in the utilization of

water resources and deforestation. The productivity of Pakistan rangelands is very poor and it

is not possible to utilize them for continued agriculture purposes, however graziers and

nomadic peoples are using these rangelands, which are providing 40-50% forage demand of

their animals (Mohammad, 1989). Information about vegetation and livestock grazing

behavior is important to understand and manage both plant and animal resources in order to

enhance the productivity of grazing areas (Papachristou, 1997). These vast natural resources

of Pakistan are not managed by scientific approaches and presently, only 10-15% of their

actual potential is being documented (Ali et al., 2001).

Page 15: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

15

The desertification of rangelands does not refer to the spreading out of existing deserts, but to

the process of land degradation in these natural ecosystems and is defined as the destruction

of the biological potential, caused by exceeding the carrying capacity of land (Van-Auken,

2000). Deserts are unique habitats, categorized by punishing temperature, extreme wind

velocity, lack of moisture, high solar radiations and coarse topography where very limited

species of animals and plants are adapted to stay alive (Bhandari, 1995). A good percentage

of human population in the subcontinent depend upon desert resources and increasing human

population and communication links has extended the human misuse of these biotic

resources, due to simplicity of the ecosystems (Fullen & Mitchell, 1994).

The Cholistan desert was formerly a thriving and prosperous area but now largely converting

into an abandoned patch. The productivity of its rangelands is degrading because the

livestock number is increasing; ultimately, carrying capacity of this area is decreasing.

Sustainability of life in this hot desert rotates around the annual rainfall. During summer

season, weather is tremendously severe and harsh; certain xeric plant species survive but

suffer high grazing pressure and leading to partial eradication. Resultantly, the palatable

species are diminishing slowly and unpalatable species with less nutritious properties are

becoming abundant. Continuous increase in human population for livelihood and multiplying

the number of livestock is adding towards the desertification (Akhter & Arshad, 2006).

In Cholistan rangelands during summer season, the nomadic pastoralists migrate with their

cattle, sheep, and goats towards nearby canal-irrigated areas. However, a few male members

of some clans remain in desert for the take care of their camel herds. These camels are seen

everywhere in the desert, browsing on different shrubs and tree species including Prosopis

cineraria, Tamarix aphylla, Acacia nilotica, Calligonum polygonoides, Sueda fruticosa,

Haloxylon salicornicum, Capparis decidua etc. These browse species are one of the most

important and nutritionally rich sources of feed for livestock in Cholistan rangelands (Akhter

& Arshad, 2006). Due to year round stress, the browses of Cholistan rangelands are under

severe threat and need detail assessment of their productivity potential.

Already no conservational measures have been made in Cholistan rangelands because of

unavailability of sufficient baseline data about their potential. In order to preserve the

optimum production and justifiable use of range resources in future, information about the

current range resources is very important. Therefore, this study was being planned to collect

Page 16: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

16

the base line data about the productivity potential of browses and on the bases of this

information to chalk out their management strategy in Cholistan rangelands.

1.2: OBJECTIVES OF THE STUDY

1.2.1: GENERAL OBJECTIVE To evaluate the productive potential and propose a management strategy for the browses of

Cholistan rangelands

1.2.2: SPECIFIC OBJECTIVES

The study had following six inter-related specific objectives

1. To compile the floristic inventory of browses

2. To investigate the vegetation structure of browse species

3. To measure the browse forage production and carrying capacity

4. To determine the palatability, parts used and animal preferences of browses

5. To analyze the nutritional value of selected browse species

6. To propose a management strategy for the browses of Cholistan rangelands

a b

PLATE 1.1: AERIAL VIEWS OF CHOLISTAN RANGELANDS (a, b)

Page 17: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

17

LITERATURE REVIEW_____ _____ ____________ CHAPTER 2

In this chapter the main topics, which have been discussed, include floristic composition,

phytosociology, browse forage production, carrying capacity, palatability classification, and

nutritive evaluation.

2.1: FLORISTIC COMPOSITION

The diversity of flora is an imperative foundation for most of our terrestrial ecosystems. A

significant character of plant life is the provision of various services for ecosystem including

the enrichment of soils, protection of watersheds, moderation of climate and setting up of

habitat for wild fauna. Human beings and most other animals are more or less entirely

dependent on plants, directly or indirectly. Whereas it is commonly accepted, that the

understanding of natural distribution of plants (floristic studies) is vital to conserving

biodiversity and managing the ecosystems for long-term sustainability (Yavari &

Shahgolzari, 2010).

The information about floristic composition and diversity of an area is precondition for any

phytogeographical, ecological studies and conservational actions. Floristic studies have

acquired increasing importance in recent years in response to the need of developing and

under developing countries to assess their plant wealth. Floristic studies of particular

geographic area are indispensible for all the plant-based researches. They make available

baseline information's about plant wealth. Further these baseline references are used by

several researchers for sustainable utilization of their potential for the comfort of humankind.

The significance of such studies has now established globally, particularly in the

documentation of plant diversity with the ultimate objective of conserving germplasm

(Alanso et al., 2001).

The compilation of floras inventory by plant taxonomists is a common activity in the world

in order to have information about various plant species. Flora is considered as documented

checklist of various plants growing in a particular geographic region. As our biosphere is

extremely diverse and a vast variety of floras are existing that can be used for correct

identification of all plant wealth therefore its usage could be carried on scientific basis. The

identification of native plants with details of their region is imperative since it can represent

plant species of specific area, their growing season, defining new species and effect of over-

grazing and drought on vegetation (Ali, 2008).

Page 18: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

18

Plant species lists not only make available information on the floristic composition of an area

but also its natural status as well as affinities with other areas. In Pakistan, a total of 1572

genera and 5521 species of flowering plants have been identified. Among which 1389 genera

and 4758 species are published in 215 families in the form of Flora of Pakistan and 5 families

with 183 genera and 763 species are yet to be published (Ali, 2008). Little literature is

available about the different taxa of Cholistan desert. Few years back Arshad & Rao (1994)

has documented the vegetation of Cholistan rangelands (list of trees, shrubs, herbs, and

grasses). Now this detailed floristic and ecological survey was undertaken as part of

productivity analysis of browses of this area.

Several floristic studies have been reported from different areas of Pakistan e.g., Qureshi et

al., (2011a) has compiled floristic inventory of arid agriculture university farm and recorded

130 plant species consisting of 105 genera and 37 families. Further Qureshi, et al., (2011b)

has explored the biodiversity of khunjerab national park and reported 62 plant species

including 45 genera and 25 families. Qureshi & Bhatti, (2010) reported total 93 plant species

with 67 genera and 30 families from Pai Forest, Sindh. Durrani, et al., (2010) has evaluated

the ecological features, floristic composition, and ethnobotanical summary of plants of

aghberg rangelands, Balochistan. Dar & Malik (2009) has compiled the floristic list and

phenology of plants of Lawat, Azad Jammu Kashmir. Qureshi (2008a) presented a floristic

inventory of Chotiari wetland complex, Nawab Shah, Sindh. Subsequently Parveen &

Hussain (2007) has recognized 74 plant species comprising of 62 genera and 34 families

from Gorakh hill (Khirthar range).

However, various floristic studies have been reported from the different areas of world e.g.,

some studies have been reported from Indian desert that is found on other side of Thar Desert

of Pakistan (Shetty & Singh, 1991). Pharswan, et al., (2010) explored the flora of Kedarnath

(Garhwal Himalaya) and found 80 species, belonging 36 families. A study was conducted by

Yavari & Shahgolzari (2010) who encountered 213 specimens belonging to 164 genera and

45 families at Khan-Gormaz in Iran. Filmalter, (2010) documented the Hondekraal vascular

plant species, which comprises 302 species represented by 204 genera and 71 families.

Similarly Costa et al., (2007) reported 133 plant species and categorized them as therophytes,

phanerophytes, chamaephytes, hemicrytophytes and cryptophytes on life form basis.

Page 19: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

19

2.2: PHYTOSOCIOLOGY

2.2.1: COMMUNITY STRUCTURE

Phytosociology visualize the existing vegetation structure, soil plant relationship, species

diversity and produce data on seasonal and temporal variation in accessible nutrients

(Mueller-Dumbois & Ellenberg, 1974). It also aims to classify and characterize the plant

communities in term of their structure and composition and therefore comes under the

umbrella of plant ecology (Hargreaves, 2008). Phytosociological studies are valuable means

to evaluate the vegetation of particular region, which in turn assist in planning, management,

and sustainable utilization of natural resource, because key links of food web viz., man,

livestock, soil organisms, and wild fauna are almost dependent on local vegetation. Data on

vegetation is considered a key source for habitat characterization e.g., in the assessment of

global biodiversity and for monitoring programs (Myers et al., 2000).

The plant communities of specific area are influenced by their phytogeographical positions,

human activities, climatic factors, and soil conditions. Plant communities are assemblage of

species living together, having homogeneous formations because they find similar

environmental conditions (Primack, 2002). Each plant species is classified based on

hierarchical system of identification and nomenclature by carefully applying the criteria of

growth structure and physiognomy. The presence or absence of specific plant species has

great importance because abundance of each species shows its significance (Kent & Coker,

1992). The diversity of species is dependent on a variety of biotic (e.g. competition,

symbiosis, predation) as well as abiotic factors, such as rainfall, temperature, fire, soil type

and many more (Tainton & Hardy, 1999). Species diversity of most herbaceous plants

normally increases when woody plants, which present competition for some of these biotic

and abiotic factors, are removed from the area (Dye & Spear, 1982).

The variations in the existing constituents of natural environment, particularly soil, and plants

leads to gradual change in the composition, structure and shape of plant communities. Thus,

analyzing the classification and the inter-relation between various plant communities in

response to environmental variables are necessary (Jafari et al., 2003). The influence of

environmental elements on different plant communities have remained the question of

numerous ecological studies. Jafari et al., (2004) have exposed that distribution of vegetation

in the rangelands of Yazd Province (Iran) was dependent on moisture and soil texture.

Page 20: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

20

Youssef et al., (2009a) have reported that vegetation in coastal areas of Saudi Arabia are

mostly determined by geomorphology, climate, and soil conditions. Similarly, Zegeye et al.,

(2006) revealed that the interdependence of vegetation with soil characteristics lead to the

diversity of species, types of vegetation and dispersal of plant communities.

Studies on the arid and semi-arid zones of Pakistan and India have generally remained

phytogeographical and floristical (Athar, 2005). New synecological methods have produce

the techniques for utilize at local and regional level, in order to compile the field data sets by

ordination and classification and then connecting the results to environmental information

(Ter-Braak, 1987). Such types of objective approaches have hardly been applied to the

vegetation data of Pakistan. In Pakistan, the importance of range management as a discipline

was not recognized until 1954 when a development project with the U.S. Government

technical and financial assistance was initiated in Baluchistan province (Rafi, 1965). The

government has now started focusing its attention on the long ignored, Cholistan desert.

Cholistan is the one of hottest desert of Pakistan, which is rich in biodiversity. In past, there

were only few studies to examine the phytosociology of Cholistan Desert. No actual

information was existing about plant communities of Cholistan rangelands though; Dasti and

Agnew (1994) documented six plant communities but they have scanned a small part of

desert. Arshad and Rao (1995) reported different vegetation forms in Cholistan area with

reference to phytogeographic conditions. Rao et al., (1989) examined the flora of Cholistan

and recognized eleven different phytosociological groups. Based on soil characteristic and

topography four basic phytosociological divisions were identified in Cholistan desert viz.,

sandy planes, sand dunes, compact soil areas with gravel and saline areas, each type have

specific set of indigenous plant species (Arshad & Rao, 1995).

In Cholistan desert four divisions of vegetation have been recognized viz. trees, shrubs,

grasses, and forbs and associated the vegetation structure with different physiographic factors

(Baig et al., 1980). Arshad & Akbar (2002) has described several types of landform divisions

and related plant communities in Cholistan desert. Out of sixteen plant communities, ten

were present in smaller Cholistan and remaining six plant communities were recognized in

greater Cholistan (Arshad & Akbar 2002). Akhter and Arshad, (2006) has reported eight

dominant vegetation types in the arid rangelands of Cholistan desert. Some species were

Page 21: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

21

associated with distinct habitat types; however, it is tough to describe different community

forms related with different habitats.

It was reported that there exist different types of dominant plant species and soils in

Cholistan desert (Arshad & Akbar, 2002; Arshad et al., 2007). Whereas during investigating

the inner part of Cholistan desert Rao et al., (1989) documented that phytosociological

divisions are representative of different soil types because soil effect the vegetation more

than other factors (Arshad et al., 2008). Baig et al., (1975) categorized the vegetation of

Cholistan desert based on edaphic factors into six plant communities as Prosopis specigera,

Haloxylon recurvum, Eleusine compressa, Dipterygium glaucum, Calligonum polygonoides

and Tribulus terrestris. The solid saline flats named ‘dahars’ were dominated by Suaeda

fruticosa, and Haloxylon recurvum however, Aeluropus lagopoides, Sporobolus ioclados,

Capparis decidua, Ochthochloa compressa, Salsola baryosma, Cymbopogon jwarancusa,

and Prosopis cineraria were found in ‘dahars’ with some sandy soil cover. In same way,

sand dunes were commonly covered by Lasiurus scindicus Calligonum polygonoides, Aerva

javanica, and Panicum turgidum (Chaudhary, 1992; Arshad & Akbar, 2002).

Similarly Hameed et al., (2002) and Arshad et al., (2002) conducted studies to explore the

diversity of plant species in Lal Sohanra national park Pakistan. Qureshi, (2008b) has

assessment the vegetation of Sawan Wari of Nara Desert Pakistan. Correspondingly, other

authors have done phytosociological surveys in different ecological zones of the world e.g.,

Abou Auda, et al., 2009 has evaluated phytosociological attributes in the arid and semi-arid

area of Wadi Gaza, in Palestine. Youssef et al., (2009b) has conducted the vegetation

analysis along Alamain-Wadi El-Natrun Desert Egypt. Atamov (2008) has performed a study

on the floristic, phytosociology, classification, and productivity of the vegetation of Caspian

shores in Azerbaian. Shaltout et al., (2008) has analyzed the vegetation of some desert

rangelands in United Arab Emirates.

2.2.2: MULTIVARIATE ANALYSIS

The application of computer based statistical and multivariate programs assist the ecologists

to ascertain structure in the data set and study the effects of environmental factors on entire

groups of species (Anderson et al., 2006). Statistical packages reduce the complexity of data

by classification and relating the results to abiotic (environmental) components (McCune &

Mefford, 1999). Quantitative community ecology is the most demanding branch of modern

Page 22: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

22

environmetrics. Community ecologists sometime need to investigate the effect of numerous

environmental factors on several species at once. Therefore, vegetation ecologists have

engaged several multivariate techniques to study the complex nature of plant communities

with the common objective of summarizing large data sets obtained from community

samples, assisting in the explanation of data and generation of hypotheses about community

structure (Gauch, 1982). Thus, the pattern of distribution and association of different plant

species is explained by using different multivariate techniques. Classifications and

ordinations can provide more comprehensive and detailed representation on the distributions

of vegetation.

Numerous studies have been reported that among the multivariate techniques classification is

one of the most important methods. Classification contributes considerably in elucidating the

complexities in plant communities. Thus, the selection of method to be used depends on the

ecological problem to be solved (Gauch, 1982). Classification aims at the placement of

species or sample units into groups. The members of each group have in common an

assemblage of attributes, which make them to set apart from members of another group.

Stands which are closely alike with one another form one category, which is separated from

other categories that also consist of similar stands (Greig-Smith, 1979). Classification or

putting sample units into (perhaps hierarchical) group is often helpful when one needs to

allocate names, or to plot ecological communities.

Classification of vegetation endeavor to categorize distinct, repeatable classes of

comparatively homogenous vegetation associations or communities about which consistent

statements can be made. There are various contrasting algorithms, which can be used for

classification of samples. Clustering approaches may be classified on the basis whether they

are hierarchical or nonhierarchical, polythetic or monothetic and divisive or agglomerative.

In non-hierarchical technique, samples are partitioned into a number of clusters but specify

no structure inter-relating the clusters. However, hierarchical clustering technique delineates

relationships between the clusters too (Gauch & Whittaker, 1981).

Cluster analysis is a common term, which includes many techniques used to make

classification. The thoughts of classification in ecological studies aim at grouping the

individual species or stands into homogenous clusters based on similarity with one another.

The stands which have similarity with one another form one class, that is separated from

Page 23: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

23

other such classes which also consists of similar stands. The features common to a cluster of

similar stands are then abstracted to serve as a description of that group. For practical and

scientific validity, the abstracted features should sufficiently illustrate the individual

members of each category (Digby & Kempton, 1996).

In classification, similar samples are combined in same class, but in ordination, the purpose

is to consider the sample differences rather than similarities, to set out the samples in a linear

or multi dimensional network that expose the associations between the samples and their

environment (Kumar, 1981). However, for practical purpose, it is necessary to consider the

quantity of more prominent species. This means that it provides a useful summary when

complemented by an ordination (Digby & Kempton, 1996). Ordination is a technique used to

sort a group of objects beside a given gradients (Kent & Coker, 1992). The common

objective of ordination in ecological studies is to make a hypothesis concerning the

relationship between the species composition at a site and the basic environmental factors

(Digby & Kempton, 1996).

Ecologists have recognized that environmental factors can control the distribution and

composition of plant species (Jafari et al., 2004). Ordination reviews the patterns of species

and samples along environmental attributes by plotting the data into a single graph that

similar species or samples are close together. In ordination, (correspondence analysis) DCA

ordination (indirect gradient analysis) and CCA ordination (direct gradient analysis)

procedure of multivariate statistical methods are used. DCA analysis of species or stands,

maintains the coherency with the vegetation groups identified by the cluster analysis (CA).

The current technique in ordination methods is the Canonical Correspondence Analysis

(CCA) established by Ter Braak (1986). CCA is the best method of direct ordination by

producing a final product of variability of species data as well as the variability of

environmental data.

Multivariate analysis is the most widely used method that characterizes the composition and

distribution of vegetation. Several studies have been reported from the different areas of

Pakistan about application of multivariate techniques as a useful tool e.g., A study was

carried by Ali & Malik (2010) to evaluate the vegetation communities and their

interrelationship with soil using CCA. Jabeen & Ahmed (2009) exhibited the grouping of

vegetation by edaphic features i.e., soil pH, EC and heavy metals by CCA analysis in Ayub

Page 24: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

24

National Park. Enright et al., (2005) has studied the vegetation and environmental

interactions in Kirthar National Park. Wazir et al., (2008) have identified five vegetation

groups by multivariate study of vegetation in Chapursan valley. Shaheen & Shinwari (2012)

reported that Twinspan and DCA showed moisture gradient as main aspect controlling the

vegetation distribution in chitral, hindukush-himalayas. Ali and Kauser (2006) reported the

presence of two main plant communities in the urban flora of Islamabad and soil EC,

moisture, pH, Ca+, heavy metals and Elevation were the key edaphic factors responsible for

vegetation distribution.

Similarly, numerous studies in different zones of the world reported the application of

multivariate techniques e.g., El-ghanim et al., (2010) reported seven vegetation groups with

the application of classification and ordination in hail region of Saudi Arabia. Abd el Ghani

& Fawzy (2006) explored the floristic composition in western desert of Egypt and found four

site groups by classification. Shaltout et al., (2008) reported ten vegetation groups by

classification whereas ordination indicated reasonable segregation among these groups along

axis in desert rangelands of United Arab Emirates. Abd el Ghani & Amer (2003) has

recognized five vegetation groups in coastal desert plains of southern Sinai, Egypt. Whereas

a study was carried out by Tonggui Wu et al., (2011) who documented five vegetation

groups in Hangzhou Bay coastal wetland, China. Subsequently Jeloudar et al., (2010)

investigated the relation of soil with plant species to conclude the operative factors

distributing the vegetation communities in Rineh rangeland Iran.

2.3: BROWSE FORAGE PRODUCTION

Browse species are very important in the feeding of animals especially in dry areas.

According to Baumer (1992), the usages of browses have been reported since the time of

Romans. It was observed that the use of fodder species in Mediterranean arid and semi-arid

regions was started in world wars one and two, afterward it was diversified (Le Houerou,

2000). The increasing demand of forages as animal feed was noticed particularly from harsh

and dry environments; therefore, almost all the research have been reported from arid and

semi-arid rangelands (Von Carlowitz, 1989). Forage species play multiple roles in balancing

the arid and semi-arid grazing systems exploited by man and animals. This role becomes

more significant as the dry season becomes longer (Heneidy, 2002).

Page 25: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

25

Biomass usually refers to the mass of organic matter in a unit area. The organic matter may

consist of newly growing herbage on ground, roots, wild animals and mature trees or dead

organic matter (Abule et al., 2007). In vegetation analysis, this is generally done by unit area

measurements that may be square centimeter or square meter. For large area, biomass of

plants is usually measured through multiplication. Measuring the biomass gives the

understandings of forage use by livestock with taking the measurements before and after

grazing or by calculating the measurements in paired plots where one is left as control and

other is grazed. The information of livestock forage utilization is essential to select the

number of animal species that can be permitted to browse in given area (Mengistu, 2006).

Above ground, herbaceous forage is estimated to regulate the available biomass for animals

and to measure the effects of vegetation management and to assess the health of rangelands

(Abule et al., 2007). Estimates of forage production potential of grazing lands are

fundamental in order to apply the most effective grazing practices. Measurements taken

according to spaced period, like seasons, makes the rangeland executives to calculate the

forage amount produced in various seasons and provide information essential in calculating

the stocking density (Mengistu, 2006). Furthermore, from grazing view, forage productivity

is one of the most important components used to evaluate the rangelands. Dry matter of

plants is commonly associated with livestock production whereas other factors are useful to

enumerate the plant population and successional trends and to evaluate the condition of

rangelands (Kassahun, 2006).

The relative biomass of plant species is very important for range managers however; this is a

tough job because it consists of exhausted work to know the weight of various species that

has been clipped together (Mengistu, 2006). Several researches have been conducted to find

out the production of different forages (Hein, 2006; Salis et al., 2006). There are numerous

methods in order to estimate the plant biomass i.e. destructive (clipping), semi-destructive

(visual estimation & double sampling) and nondestructive (height–diameter index)

(Cleemput et al., 2004). However, destructive sampling procedure is most accurate method

and nondestructive method is the basic objective of new researches (Thomson, Mirza &

Afzal, 1998). Formation of algometric equations concerning the volume and aerial biomass

of plants could make the method less damaging (destruction occurred only first time) (Salis

et al., 2006).

Page 26: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

26

In grasslands with high biomass turnover, the best technique to calculate aboveground net

primary production (ANPP) is to harvest biomass at the peak growing season. The changes in

this method contain many biomass harvests in the growing season that raise the fieldwork,

drop certain mistakes though increase others (Sala & Austin, 2000). Flombaum & Sala

(2007) perceived that non-destructive and quick process to estimate aboveground plant

biomass is to double the sampled vegetation and aboveground biomass. Regression is the

base for rapid non-destructive and low-cost way of computing the green biomass,

aboveground net primary production (ANPP) and availability of forage.

Forage production of rangelands might be defined in relation to quality and biomass yield of

the dominant species (Peden, 2005). Generally, the quality of forages is determined by the

aspects like amount and type of available nutrients, presence of unpalatable substances,

fibers, and moisture contents that varies with species. In fact, palatable plant species are

found in rangelands that are properly managed, and decrease with mismanagement like

overgrazing (Morris & Kotze, 2006). The growth period in pastures is increased, when the

gap between grazing and cutting is long enough (Humphreys, 1984). The association

between yield and percent digestible nutrients is vital in evaluation that how pasture

management may achieve maximum yield of digestible nutrients as compared to maximizing

dry matter (Roberts, 1987).

The main constraints to the herbage production may be moisture and temperature, which are

the necessary determinants of climatic regions. The secondary constraints upon forage

production are soil and topography, affecting nutrition and growth of plants in different

climatic regions (Roberts, 1987). Similarly, several factors including geography, climate and

plant factors can affects the growth rate of grazing land (Rossiter, 1966). Soils have an effect

on plant growth and dry matter production by influencing texture, structure, depth and

moisture availability (Roberts, 1987). Production of biomass is less in the sand dominated

rangelands than in silt and clay dominated rangeland. The estimation of plant biomass is of

great importance in order to devising the range management policies (O’Farrell et al., 2007).

2.4: RANGE CARRYING CAPACITY

Carrying capacity (CC) is one of the most confusing and common term used in wildlife

management and it represents the several senses and meanings (Wagner et al., 1995).

Caughley & Sinclair (1994) has defined the ecological carrying capacity as the accepted level

Page 27: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

27

of a population agreed by resources in a specific environment. It is an equilibrium point;

towards a population tend to move through density dependent effects from lack of food,

cover, space, or other resources (Caughley, 1979). For livestock production, carrying

capacity was referred mostly to the management of arid and semi-arid rangelands in world

and mainly to pastoral systems of Africa where animals are essentially dependent on range

resources (Stoddard et al., 1975).

Range managers have used the idea of CC from the start of this century and rests on the

concept of plant succession that was established in North America. This concept stated that

climax stage of vegetation that is based on climate and soil, potentially exists at a specific

site (Heady, 1975). The acceptability of CC is usually explained by a combination that

satisfies both objectives i.e. condition of vegetation and animal’s production, which are very

important for management. The range model developed on the concept of carrying capacity

in North America assumes that pastoralists of arid and semi-arid regions live on potentially

equilibrium grazing schemes. Overstocking by pastoralists triggered the deterioration of a

system (Bartels et al., 1990). In previous two eras, new concepts has been produced that

opportunistic carrying capacity permit the stocking rate to change over time to use maximum

vegetation without damaging the resources and accept the periodic destocking, in extremely

variable environments (Behnke & Scoones, 1993).

The theory of carrying capacity is based on the assumption that plants and livestock can be in

the state of balance (Bonham, 1989). It is predicted that livestock production is estimated

with the availability of forage and the availability of forage is a function of herbivory and

climate (Hary et al., 1996). The carrying capacity is influenced by several factors such as

rainfall, seasonality, vegetation accessibility and distribution (Smith, 1994). The productivity

parameters of the shrubs are main factors to estimate the potential and carrying capacity for

different grazing intensity. Height, compact circumference, and radius seem to be the most

parameters, which affect the production. Compact circumference has the highest efficiency to

predict productivity (Salah & Din, 1994).

Carrying capacity is calculated from annual productivity of consumable vegetation,

connected with livestock feed requirements. Annual forge production can be estimated by

measuring the standing biomass, using remote sensing, with empirical relationships of

primary productivity to rainfall or from complex relationship between soils, soil water,

Page 28: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

28

fertility, and rainfall. These estimations are mostly accurate for available biomass that is the

actual available fraction of vegetation to livestock (Bartels et al., 1993). Number of animals

is generally described in substitution unit, such as tropical livestock units that use different

substitution ratios for various livestock classes. Feed requirements of livestock are

considered based on intake of feed as dry matter (DM) percentage of live weight (De Leeuw

& Tothill, 1990).

The unprotected open grazing areas show decline in carrying capacity. The carrying capacity

of open grazing areas can be increased by providing protection and improving the system of

grazing management (Ahmad et al., 2006). Grazing lands production and nutritious quality

are determined by biotic and abiotic factors comprising of topographic features such as

aspect, slope, and altitude along soil properties, botanical composition, climatic regime, and

range improvement operations (Mutanga et al., 2004). In open rangelands, the quantity and

quality of forages differs considerably with climate change and frequently leads to

inadequacy of nutrition (Ramirez, 1996).

The significance of browses in determining the carrying capacity of Mediterranean pastures

cannot be ignored. However, it is very challenging to describe the factors that explain the

carrying capacity of shrubby vegetation (Walker, 1980). These factors consisted of annual

production of individual species, amount of annual useable browse for dry matter production,

and the effect of grazing on dry matter production (Hardesty & Box, 1988). Consequently,

the available values for the productivity of shrubby rangeland are greatly variable. Le

Houérou (1980) noted 200–1500 kg/ha of consumable feed per year for shrubby range in

North Africa, with 600–1200 kg/ha in humid woodlands. Walker (1980) describes that

seasonal above ground DM production in arid shrub and tree savannah varies between 1000

and 2347 kg/ha in a year.

In Australia and Africa, commercial ranches have used the strategy to manage suitable

stocking rates, and African government has done the destocking interventions by calculating

the intermittent carrying capacity (Scoones, 1992). The desertification control program of

United Nation states that assessing sustainable carrying capacity of rangelands is necessary to

restore environment (Pearce, 1992). Research has proved that in Africa severe drought spells

are main component of long-term dynamics. Various evidences indicate a climate made

changes in Saharan vegetation, however there is no sign to validate that livestock are causal

Page 29: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

29

agent. As the area has abandoned because of poor utilization by pastoralists, but it quickly

restore as the rains come back. The explanation of pastoralists as instigators rather than

victims and the concept of livestock driven desertification has made the planners and

organizations to move away from pastoralists for rangelands development (Sandford, 1983).

2.5: PALATABILITY CLASSIFICATION

Palatability can be defined, as the selection or proportional choice by animals among two or

more forages, and is considered as forage quality parameter. Although high nutrient

concentrations, low palatability may lower the forage feeding value (Marten et al., 1987).

Palatability is basically a relish by which animals consume the feed as stirred by sensory

impulses (Heath et al., 1985). Several experiments have been performed to organize the

procedural information of how palatability is determined. However, no reliable detail is

available about the application of such procedure on forages in particular environment

neither its usage as a tool in range management has been determined (Atiq-ur-Rehman,

1995).

Units of lands are comprising of a complex system of different habitats or specific grouping

of plant species in communities e.g. there may be spotted trees with grasses less than one

meter of height in contrast to shrub lands with dense shrubs over three meters height.

Habitats may be delineated into patches, which consist of homogeneous grouping of species.

When the animal enters such a complex environment, it forms a feeding station along its

grazing path, and then it will select the individual plant species and at the last individual

plant part (Stuth, 1993). The most important property of a plant that should govern

herbivores is the nutritional suitability of plant. The main variables, influencing the

suitability, apart from anti nutritional factors are protein contents, mineral composition, and

its water contents (Mc Naughton, 1983).

The palatability of shrubs depends upon a number of interacting factors connected to animals

as well as to its environment (Heneidy, 2002). In various arid and semi arid states of the

world, shrubs have long been accepted as main rangeland resources. Compared to grasses,

fodder shrubs have comparatively higher contents of crude protein and minerals (Ibrahim,

1981). Palatability is the outcome of the factors sensed by grazing animals in searching and

utilizing the feed. It consists of appearance, smell, taste, and texture of food (Ensminger &

Olantine, 1978). Preference involves proportional selection of one plant species among two

Page 30: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

30

or more species by grazing animals. Preference frequently changes as abiotic factors (Stuth,

1993).

Palatability might influence the composition and selection of food in most of animals (Baile

& Della fera, 1988). The palatability and digestibility of forage will decide the quantity of

food that the grazing animal will consume and convert into products (Etgen & Reaves, 1978).

The consequences of eating particular plants species can be both immediate and delayed. The

immediate consequences are related with the smell, taste, and texture of the plant. After

sampling the plant, the animal may decide to increase or decrease its consumption based on

its sensory experiences (Malechek & Balph, 1987). Grazing animals try to select the food

that promotes high level of feed intake. Selectivity is the grazing of particular plant species

by excluding the other species. Therefore, when animal selects a certain plant species as

compare to others, it can be considered that it is more palatable than the other that is not

selected (Cooper et al., 1996).

Biochemical compounds and morphological parameters control the probability and severity

of grazing by changing the accessibility of tissue. This may consist of mechanical or

biochemical mechanism. In addition, there may be avoidance mechanism known as escape

mechanism or tolerance mechanism may also recognize as leaf replacement mechanism. The

ability of a plant species to survive from grazing, definitely results from any combination of

these mechanisms. Avoidance mechanism mainly affects the plant palatability to particular

herbivores. Mechanical deterrents like spines and epidermal characteristics directly influence

palatability. Biochemical secondary compounds also contribute to grazing avoidances. The

association of palatable plant species with less palatable species may affect the frequency and

intensity of plant defoliation. Shrub species may form a "hedged" appearance with regular

grazing through the initiation of numerous shoots, which form mechanical barrier protecting

leaves and meristem with in the canopy (Briske, 1993).

2.6: NUTRITIONAL EVALUATION

Rangelands are very significant to the economy of many countries and still afford about 70%

of feed requirements of domestic ruminants and 95% of wild ruminants (Holechek et al.,

1995). The daily nutrient requirement of stock fluctuates in according to the physiological

functions of grazing livestock and therefore growth, gestation, lactation, and fattening play

key roles in determining daily nutrient demands (Cook & Harris, 1977). In contrast, the

Page 31: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

31

chemical composition of plants and plant communities in rangelands varies according to

species, soil type, climate, phenology, and abiotic factors (Greene et al., 1987).

The most important objective in range management is animal production that is based on

nutritional composition of accessible forages (Stoddart et al., 1975). Ganskopp and Bohnert

(2003) projected that wildlife or livestock expert must know the nutritive properties of forage

species to maintain reproduction and growth of animals, and assure the reasonable

importance of grazing land. Quality of feed is defined as the sum of nutrients that animals

can attain from a feed in minimum time (Walton, 1983). Vallentine (1990) assumed that

stability of nutrients in animals, whether penfed or grazing is dependent on four essential

factors consisting of animals’ nutrient requirement, composition of feedstuff, quantity of feed

consumed and digestibility of feeding material. Understanding of widespread nutrient ratios

in forages available to livestock will support in attaining their appropriate consumption,

assist to determine nutrient deficiencies and propose supplementation requirements.

The nutritive value of forages is a comprehensive term that is used to include all nutritional

parameters with respect to its overall significance to grazing livestock. Nutritional value

encompasses the thoughts of both the chemical components of feeding matter and capability

for sustaining the physiological functions of livestock (Huston & Pinchak, 1993). Many

analytical methods have been designed but laboratories are using few to evaluate the nutritive

composition. It will assist in the selection of good forage species for propagation in order to

sustain better animal feeding and production (Shenk & Barnes, 1985).

Nutritional evaluation of pastures is mostly related with the provision of protein, minerals,

and energy. Generally, in chemical determination of plant materials; DMD, ME and CP are

mostly measured for the assessment of forage value (Rhodes & Sharrow, 1990; Arzani et al.,

2001, 2004). Walton (1983) confirmed that digestibility is commonly measured because of

the important estimation of forage quality and is closely linked with livestock production.

Digestibility can be associated with energy, dry matter, or to any component of material

accessible in feeds (Van Soest, 1982). Knowledge about vegetation of grazing lands and

livestock grazing responses is vital to understand animal productivity and our skill to handle

both plant and animal resources to optimize the production of grazing areas (Papachristou,

1997).

Page 32: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

32

Studies (Bergstrom, 1992; Woolnough & Du Toit, 2001) have revealed that there are

physical (thorns and spines) and chemical (tannins) defenses against grazing animals for

protection of plants, mainly at juvenile stages when plants species must defend themselves

until first reproduction. Browse species (tree & shrubs foliage) are very important in the

provision of forage for ruminants in many zones of the World. Browses are major fodder

constituent in tropical dry regions particularly in dry season when accessible forage is not

enough in quality and quantity to fulfill the requirements of animals (Aganga & Mosase,

2001). Majority of browses have advantage of sustaining their nutritive value and greenness

all over the dry season when grasses become dry and degrade both in quantity and in quality.

Tree foliage’s are usually rich in minerals and protein and are used during dry season as

supplement in poor grazing lands (Kibon & Orskov, 1993).

Several studies have evaluated the nutritive composition of forages in natural rangelands

(Kalmbacher, 1983; Vallentine, 1990; Islam et al., 2003; Nasrullah et al., 2003). Previous

reports have shown that the importance of forages varies with change in season, rainfall, soil,

and age of the plant species, which may affects palatability, and health of grazing livestock

(Wahid, 1990; Liu, 1993; Robles & Boza, 1993; Saleem, 1997; Theunissen, 1995; Ganskopp

& Bohnert, 2001).

2.6.1: PROXIMATE COMPOSITION

Moisture contents are very significant in order to evaluate forages as animal nutrient

requirements are assessed on a dry matter basis (Shenk & Barnes, 1985). Protein is essential

for the production of muscles, milk, hair, and wool and to restore the protein that is lost

during maintenance (Minson, 1990). Likely, ash is estimated to assess the crude value for the

whole of inorganic mineral concentration in feed. Forage consist of variety of nitrogenous

constituents including protein peptides, amides, amino acids, nitrate, ammonia and nucleic

acid, all these components are included in crude protein (Jones & Wilson, 1987). About 20%

of nitrogen generally present in fodder is in the form of non-protein (Shenk & Barnes, 1985).

High level of protein concentration is mostly associated with low dry matter production and

less contents of soluble carbohydrates (Jones & Wilson, 1987). The contents of CP in forage

material decreased by high intensity of light, due to increased forage production and dilution

of obtainable crude protein (Minson, 1990).

Page 33: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

33

Holecheck et al., (1998) has described that high crude protein occur at vigorously growing

stage as compared to dormant stage in forages. Sultan et al., (2007) recommended that there

is a requirement of 13.5 and 110.3 m tons of crude protein and total digestible nutrients for

livestock sustainability whereas current feeds are only providing 40% and 75% of crude

protein and total digestible nutrients (Anon., 2006). The insufficiency of nutrients causes the

low productivity and poor nourishment, which prompts animals to epidemics parasitism, and

breeding harms. The inappropriate consumption of rangelands has caused huge changes in

ecosystems (Younas & Yaqoob, 2005).

In tropical dry Africa, crude protein (CP) in fruits and leaves of majority fodder shrubs and

trees have been reported more than 10%, even in dry season when it inclines to decrease. CP

in browses of Sudanian and Sahelian areas of West Africa was observed to be 150 g/kg DM,

with variations from 100 to 206 g/kg DM (Dicko & Sikena, 1992). Estimation of chemical

composition is an insufficient indicator of nutritive importance, since nutrients availability

from forages is variable. The feed nutritional value is not only described by chemical

composition but it also depends upon intake rate and extraction of nutrients during digestion

(Mandal, 1997). A survey of the literature shows only scanty reports about the biochemical

analysis of browse flora of Cholistan deserts is available. Proximate chemical composition of

Suaeda fruticosa (Kali Lani) showed 0.66% carbohydrates, 87.9% moisture, and 6.0% ash

(Rashid et al., 2000). Similarly Iqbal et al., (1981) has also determined the chemical

composition of Haloxvlon recurvum collected from Cholistan desert.

2.6.2: STRUCTURAL COMPOSITION

In plants, fibers generally characterize the cell wall and vascular system. Chemically fibers

mostly comprise of cellulose, hemi cellulose, pectin, lignin, silica, and cutin (Shenk &

Barnes, 1985). The productivity of forages as source of nutrients for grazing animals is a

function of non-structural component and the extent to which cell wall nutrients can be

release through fermentation process (Jones & Wilson, 1987). At early growth stages of'

plants, cell wall's plasticity and elasticity are very important for the organized development

of wall (Labavitch, 1981). The relationships occurring at this time are different from those

occurring during secondary wall development (Selvenderan, 1983).

Lignin is generally produced from a sugar that comes out during photosynthesis. It is very

important constituent of coarse fibers and can play important role in rumen, as compare to its

Page 34: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

34

leading function in decreasing the digestibility (Van Soest & Robertson, 1990). In plants

structural integrity, lignin act as a protective cover for cellulose and hemi cellulose from

enzymatic and microbial attacks (Theander & Aman, 1984). The intake of browses is

reduced by lignin and anti-nutritional elements that may be poisonous for grazing animals.

Tannin is also an important anti-nutritional component, which decreases digestibility in

browses. The tannin types (condensed or hydrolysable) and actions in browse species are

different leading to various effects in lowering the digestibility (Ebong, 1995). However

McSweeney et al., (1999) stated that tannin is not a consistent measure in nutritional

evaluation.

Major purposes of lignin is to actually stop the availability of' digestive enzymes (Van Soest,

1973). Stems contain high fraction of lignin as compare to other portions of the plant.

Therefore, stem enlargement will uplift the lignin in whole plant (Chemey et al., 1990). In

order to separate the fiber into numerous fractions, Detergent procedures have been

developed e.g. neutral detergent fibers (cellulose, hemi cellulose, and lignin) and acid

detergent fibers (cellulose and lignin) (Goering & Van Soest, 1970). The neutral detergent

soluble (NDS) covers almost all cell contents like sugars, lipids, proteins and starches and

showing 98% average digestibility. Acid detergent fiber (ADF) is used to analyze the lignin,

cellulose, acid detergent insoluble (ADIN), acid detergent lignin (ADL), and silica but it is

not an authentic way for nutritional purposes (Van Soest & Robertson, 1990).

ADF is mostly found high in stem than in sheath and blade. ADF and NDF are lower in

inflorescence than other morphological plant parts. Stems usually consist of higher

concentration of lignin and cellulose as compare to leaf blade and leaf sheath being in-

between them (Chemey et al., 1990). NDF; cellulose and hemi cellulose from vegetative

stem were easily digested than reproductive stems (Sanderson et al., 1989). Usually, the soil

with low moisture capacity forms the stems with more NDF and lignin (Bohn, 1990). Shrubs

were normally high in ash, CP, EE, N, GE, ADL concentration than grasses. Generally, DM,

NDF, CF, ADF, ADL, carbohydrate, and hemicellulose increased with the maturity in plants.

Some parameters like NFE, GE, DE, and TDN did not differ among various phenological

stages. The nutritional quality in forages is mostly declined by the progression of

phenological stages in various plants (Hussain & Durrani, 2009a).

Page 35: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

35

2.6.3: MINERAL COMPOSITION Minerals are compulsory for both animals and plants in significant amount and balance. The

inadequacy of minerals greatly affects the vegetation growth and livestock development.

Mineral analysis is very important because it provides information about the actual amount

of minerals taken up by plants. Its weak point is that it usually provides only qualitative

information while recommendations must be described in quantities per plant. This

quantitative measurement is easily supplied by soil analysis, by using depth of soil sampling

and apparent soil density to change concentrations to weight per hectare (Martin-Prevel et

al., 1987). When a nutrient is lacking in soil or not properly utilized, the efficiency of other

nutrients is reduced and plant nutrition as whole suffers. At high nutrients levels, there is an

inefficient consumption and may be toxicities.

Plants require minerals readily at early stages, but as growth proceeded, dry matter

production become high than minerals take-up and concentration of minerals decrease with

increase in maturity (Jones & Wilson, 1987). Numerous varieties growing in the same soil

rarely had different nutrient contents, but they have the difference in their capacity to take up

individual nutrients. It is very difficult to define standard nutrient concentrations because of

differences due to species, variety, plant growth stage, climate, crop management, and soil

(Sprague, 1979). The growth of distinctive group of plants on uncultivated meadows is

mainly dependent on types of soil and biological competition between different plant

varieties (Georgievskii, 1982). Species with large and deep root system remains in advantage

in competition for nutrient uptake (Humphreys, 1984). Further occurrence and movement of

grazing livestock is very important because the return of excreta maintains the nutrient cycle

and therefore forage mineral levels are maintained (Jones & Wilson, 1987). The details of

some minerals are discussed as follows.

The satisfactory level of Ca in plants is 0.4-0.6% and level above 1.0% is regarded as high

(Georgievskii, 1982). The average Ca contents in temporary lays consist of 0.63% (Blowey,

1990). Ca in leaf portion is twice than in stem and with the increase in maturity there is

decrease in Ca both in stem and leaf parts (Skerman & Riveros, 1990). The concentration of

calcium in forages also depends on the amount of exchangeable Ca in soil and level of

potassium and nitrogen. Ca contents in forages are usually less at the stage of active growth

and high when moisture deficiency and higher temperatures slows down the growth (Minson,

Page 36: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

36

1990). The vegetative part of' the plant species consist of more Ca than their reproductive

portions (Georgievskii, 1982).

Phosphorus is usually low in rangelands soil of semi arid and sub humid zones and

resultantly in forage species growing there (Sprague, 1979). The mean phosphorus contents

in forages are 0.29% of DM (Minson, 1990). The concentration of phosphorus becomes high

in plants during wet season. The leaves of shrubs and trees can be poor in P especially in the

areas of sporadic rainfall. Phosphorus contents usually decreases as plant increase in size and

move toward maturity at different rates with different species. Severe drought conditions also

lower P concentration (Humphreys, 1984).

Potassium plays an important role in the activation of many enzymes in plants (Humphreys,

1984). The concentration of K reduces from 3.25% from 3rd Week of age to 2.05% at 8th

week of age (Gohl, 1981). The decrease in soil moisture concentration leads to increase in

nitrogen contents in plant tissues and lower the K concentration (Wadleigh & Richards,

1951). With Ca deficiency in plants, potassium started to seep out from root zone mainly at

lower pH (Kinzel, 1983).

Magnesium deficiencies are present usually more in animals grazing in temperate than

tropical pastures. Mg is found almost in the same percentage in leaf and stem portions

(Skerman & Riveros, 1990). Decrease in Mg concentration was observed in leaves and stem

with the plant maturity (Jones & Wilson, 1987). If there is a deficiency of Mg in the soil, it

will greatly affect the vegetative organs of plants. Mg is very important for heart muscles,

nervous tissue and for the activation of several enzymes. The high level of crude protein in

the diet reduces the absorption of Mg (Georgievskii, 1982).

Copper is a vital element for all living organisms, as an important component of enzymes,

which catalyze oxidative reactions in several metabolic pathways. Copper plays an important

role in protein synthesis (Humphreys, 1984). The vegetative portion of plant consists of more

Cu than the reproductive portion (Georgievskii, 1982). The prominent symptom of Cu

toxicity is a decrease in chlorophyll concentration and causing yellowish coloration over leaf

surface.

Zinc is necessary for plant growth and in body high contents of Zn is present in skin, hair,

horns, and wool. Zn deficiency disturbs the metabolism of protein and voluntary intake

decrease up to 39%. Higher concentration of Ca in feed may reduces the Zn absorption. Zinc

Page 37: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

37

is comparatively non-hazardous to ruminants and ruminants show a relatively high tolerance

to Zn (Mills, 1974). The concentration of Zn in fodder varies from 7 ppm to more than 100

ppm of DM with mean value 36 ppm. Zn contents in the pasture are not affected by maturity

of fodder or by climatic change but are increased with the application of fertilizer; zinc and

nitrogen and by decrease in pH of soil (Minson, 1990).

Among the trace elements in the earth's crust Mn is second in abundance. The availability of

Mn is mostly decreased by draining of soil. Poor concentrations of Mn in fodder generally

occur only in neutral or alkaline soils. The concentration of Mn remained constant as the

forage moves towards the maturity. Manganese play an important role as co factor for

various enzymes, with widespread actions including the production of mucopolysaccharides,

required for the organic matter of bones and teeth, usage of glucose and for synthesis of

steroid hormones and gluconeogenesis (Minson, 1990).

a b

PLATE 2.1: AUTHOR DURING CAMPING IN CHOLISTAN RANGELANDS (a, b)

Page 38: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

38

MATERIAL AND METHODS_______________ ____ CHAPTER 3

3.1: DESCRIPTION OF STUDY AREA

3.1.1: GEOGRAPHICAL LOCATION This study was conducted in Cholistan desert, which is located in southern part of Punjab

Pakistan. Cholistan desert is a part of Great Indian desert that comprises of Thar desert in

Sindh, Pakistan and Rajastan desert in India. It extends between longitudes 69o 52′ and 75o

24′ E and latitudes 27o 42′ and 29o 45′ N covering an area of about 2.6 million hectares

(FAO, 1993; Arshad et al., 2008). The width of this desert varies from 32 to 192 km while

the length is about 480 km (Chaudhry, 1992). Based on parent material, topography,

vegetation and soil this desert can be divided into two geomorphic parts; the southern part is

called Greater Cholistan that stretches over about 18,130 km2 and northern part is called

Lesser Cholistan that is along canal irrigated areas and covers about 7,770 km2 (Akbar et al.,

1996; Akbar & Arshad, 2000).

3.1.2: HISTORY OF CHOLISTAN DESERT

Cholistan desert of Pakistan was a cradle of civilization commonly known as Hakra valley

civilization around 4000 B.C. It was time when Hakra River flowed through this area. Until

1200 B.C river was a permanent source of water. Around 600 B.C. river changed its flow and

subsequently vanished within a century or so. The Hakra civilization, which prospered here,

was one of the longest in history of world and was earliest civilization in Indian subcontinent.

According to cultural advancement, it can be compared with Mesopotamian, Anatolian,

Egyptian, and Babylonian civilizations. Nothing is assured that how this great Aryan

civilization has ended. Most probably, a range of problems such as change in the direction of

river flow, hostile invading tribes, and decrease in irrigation services have added to the final

disappearance of Hakra valley civilization (FAO, 1993; Akbar et al., 1996).

3.1.3: CLIMATE

Cholistan desert is found in arid subtropical continental monsoonal zone. It is an arid sandy

desert where mean annual rainfall varies from less than 100 mm in west to 200 mm in east,

mostly received in monsoon season (July to September). Rainfall is unpredictable in

Page 39: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

39

TABLE 3.1: MEAN MONTHLY METEOROLOGICAL DATA (2001-2010) OF CHOLISTAN RANGELANDS

January February March April May June July August September October November December Annual mean

Mean Monthly Minimum Temperature (⁰C)

6.47 9.70 15.98 21.51 26.72 29.15 29.30 27.85 25.56 19.87 12.41 7.58 19.34

Mean Monthly Maximum Temperature(⁰C)

21.93 25.90 32.83 39.24 43.15 43.14 40.27 38.90 38.66 36.51 30.15 24.40 34.59

Mean Monthly Average Temperature(⁰C)

14.32 17.76 24.40 30.77 34.93 35.86 34.80 33.37 31.80 28.23 21.19 15.99 26.95

Mean Monthly Rainfall (mm)

7.50 12.50 5.20 2.00 13.20 17.20 44.60 70.00 14.60 0.20 - 3.70 17.34

Mean Monthly Relative Humidity (%)

48.92 42.27 38.09 28.86 25.92 28.67 48.80 52.85 48.28 40.54 42.84 45.95 40.99

Mean Monthly Evaporation (mm)

71.70 92.00 191.80 276.40 362.60 490.00 431.20 336.00 292.90 253.00 167.00 110.70 256.28

Mean Monthly Wind Speed (KPH)

4.90 6.09 7.36 8.34 10.94 13.02 12.24 11.17 9.25 6.01 4.70 4.40 8.20

Source: Pakistan Council of Research in Water Resources (PCRWR)

Page 40: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

40

duration and quantity, and mostly occurs in heavy showers. Prolonged drought spells are

common after each 10 years (FAO, 1993; Akbar et al., 1996). Rainwater is collected in

locally made water pools called 'tobas'. Tobas are built in clayey flat areas called dahars with

a vast catchment to lower the loss of water percolation and runoff. There are some factors

like less rainfall, high water infiltration into sands, and more evaporation rate stop the natural

accumulation of surface water. Underground water is at depth of 30-50 m that with some

exceptions is brackish containing salts 9,000-24,000 mgLP

-1P. Cholistan is one of the hottest

deserts in Pakistan. Temperature is high in summer and mild in winter without frost. The

mean summer temperature (May-July) is 34-38 P

oPC with the highest reaching over 51.6 P

oPC

(Arshad et al., 2003; Akhter & Arshad, 2006).

3.1.4: SOIL

The soil of Cholistan desert is mostly alkaline, saline, and gypsiferous composed of schists,

gneiss, granites, and slates. Sand dunes are common in Cholistan and reach an average height

of about 30 m in Lesser Cholistan and about 100 m in Greater Cholistan (Akbar et al., 1996;

Akbar & Arshad, 2000). Lesser Cholistan contains large alluvial saline flats (locally called

dahars) alternating with low sandy ridges. The clayey flat areas in Lesser Cholistan are

usually homogenous to a depth from 30 to 90 cm. These soils are classified as either saline or

saline sodic, with pH ranging from 8.2 to 8.4 and from 8.8 to 9.6, respectively (Arshad et al.,

2008).

3.1.5: VEGETATION

Phytogeographically, the vegetation of Cholistan desert belongs to Nubo-Sindhian Province

of Sudanian Region and is typical of arid regions (Akbar et al., 1996). The vegetation of this

desert consists of xerophytes, adjusted to low moisture, extremely high temperature, and

more salinity with wide variation of edaphic factors. The scarce vegetation of Cholistan

commonly comprises perennial shrubs with dispersed small trees. Several ephemeral and

annual species emerge after rains, complete life cycle in short duration and dry up after

producing seeds. Mostly trees and shrubs are leafless or have short leaf like structures. Many

species have surprising capacity to reproduce even with minimum rainfall. The seeds are also

solid enough to survive in high temperature and aridity conditions. Lesser Cholistan is

dominated by numerous species of shrubs and perennial grasses scattered by few species of

small trees. Conversely, in Greater Cholistan, trees are mostly absent, shrubs are spars, and

Page 41: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

41

species diversity is low. Generally, vegetation is less on sand dunes and unstable sand dunes

are deficient of vegetation. However, certain interdunal sites are good in vegetation,

depending on soil water holding capacity (Akhter & Arshad, 2006; Arshad et al., 2008).

3.1.6: SOCIOECONOMIC ASPECT

The total human population in Cholistan desert is around 110,000 nomadic pastoralists. Most

of them live on the periphery of desert whereas interior of desert is sparsely populated. The

economy of this area is mainly pastoral and people have been living as nomadic life style

from centuries. The pastoralists have smaller to large herds of cattle, camels, sheep, and

goats. The inner of desert is devoid of modern communication systems and camels or jeeps

are used for traveling in sandy tracks (Akbar et al., 1996; Arshad et al., 1999). The

pastoralism in Cholistan is described by mass movement of people and animals through the

year for searching of food and water. The movement pattern of nomadic herders is mostly

dictated by the start and distribution of monsoon rains (Akhter & Arshad, 2006).

Approximately, in the months of March or April, nomadic households, and their herds started

to move nearby irrigated areas due to shortage water and feed resources in the interior of

desert. In irrigated agriculture fields, the nomadic peoples found free grazing, drinking water

and markets for livestock and their by-products. In return, farmers get adequate labour for

farming operations, crop harvesting, and animal manure to improve soil fertility by camping

of livestock on bare fields (Akbar et al., 1996). These pastoralist returns to desert around July

or August with the start of monsoon rains. In desert, natural vegetation is an ultimate source

of feed and tobas serve as source of water for both nomadic peoples and their livestock

(Arshad et al., 1999). These nomadic peoples live below poverty line due to lack of basic

human needs like clean water, food, education and medical facilities for their children. The

economy of pastoralists generally depends on insufficient natural resources that ultimately

depend on unpredictable rains (Akhtar & Arshad, 2006).

Page 42: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

42

a b

c d

PLATE 3.1: NOMADIC LIFE STYLE IN CHOLISTAN RANGELANDS (a, b, c, d)

Page 43: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

43

3.2: DATA COLLECTION METHODS 3.2.1: RECONNAISSANCE SURVEY AND STUDY SITES

A reconnaissance survey was conducted in January 2009, in order to have an impression of

site conditions, to collect information about accessibility, to do an overview of plant

assemblages and to determine the sampling and data collection methods. According to

schedule, whole research project was carried for two consecutive years i.e. 2009 and 2010.

After going through the topographic map of area followed by frequent visits during initial

stages of study, research area was divided into 20 stands to cover the variations of

physiognomy and physiography. Homogeneity of stands was noted according to

physiographic and edaphic features. These stands were almost located over transition zone

between lower Cholistan and greater Cholistan on the bed of old Hakra River.

FIGURE 3.1: MAP OF STUDY AREA; THE CHOLISTAN DESERT

MAP OF CHOLISTAN DESERT

: REPRESENTING THE SAMPLING STANDS

Page 44: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

44

3.2.2: FLORISTIC ANALYSIS OF BROWSES

3.2.2.1: COLLECTION OF PLANTS Floristic surveys were conducted in different seasons to collect and identify the browse

species of Cholistan Desert. Complete specimens of each species were collected in triplicate,

dried, preserved, and mounted on herbarium sheets by conventional method. The plants were

identified with the help of Flora of Pakistan and available literature (Ali & Nasir, 1990-1991;

Ali & Qaiser, 1993-2007; Arsahd & Rao, 1994; Qureshi, 2004). The determined specimens

were checked and confirmed from National Agricultural Research Council (NARC) Pakistan

and Cholistan Institute of Desert Studies (CIDS) Islamia University Bahawalpur. The

voucher specimens were deposited in the Herbarium of Cholistan Institute of Desert Studies

(CIDS).

3.2.2.2: FLORISTIC COMPOSITION

A complete floristic list along with families, genera, and vernacular names was compiled

about browse species that came under vegetation sampling or observed at any range site. The

native peoples were interviewed to get local names of plant species. Information and

observations about the growing season (monsoon, spring, winter, and whole year), habit

(climber, herb, subshrub, shrub, and tree), and abundance (v. common, common, rare) were

recorded on spot during plant collection and vegetation analysis. Life form was determined

by Raunkiaer (1934) approach.

3.2.2.3: PHENOLOGICAL PATTERNS

The information about phenological events of browses was noted at periodic intervals

(fortnightly/monthly) during study period for two full calendar years from January 2009 to

December 2010. The phenological behaviour of plant species was determined according to

method of Opler et al., (1980). The phenological activity of each species was determined as

the sum of species with different phenological stages every month. For each plant, four

phenological events were recorded. These were; Seedling stage (vegetatively young and pre-

flowering); Flowering stage (only flowers seen); Fruiting stage (mature where both flowering

and fruiting can be seen); Dormant stage (life cycle completed or fruiting completed. A

starting date of particular event was assigned when two or more individuals of a species were

found to be in it. Likewise, the final date was assigned when only two or fewer species

remained in the phase.

Page 45: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

45

3.2.2.4: ECONOMIC USE CLASSIFICATION

Plants were classified based on known local economic uses in order to know their

ethnobotanical importance. These economic uses of browse species were as forage,

medicinal, timber and fuel wood uses. Information about economic and beneficial value of

plant species was gathered by direct observation in field and from nomads and local

inhabitants during field visits in the study area.

3.2.2.5: STATISTICAL ANALYSIS

Microsoft Excel spreadsheet analysis (MS OFICE, 2010) was conducted to determine simple

averages, percentiles and mean values and to make needful tables and graphs (McCullough &

Heiser, 2008).

3.2.3: PHYTOSOCIOLOGICAL ANALYSIS

3.2.3.1: ANALYTIC PHASE (BOTANICAL SURVEY)

This phase concerned with acquisition of all relative vegetation data, present in the stands.

During surveys, stands were sampled in areas where the botanical composition was

homogenous and were representative of specific area that needed to be surveyed.

Phytosociological parameters consisting of frequency, density and plant cover are considered

necessary for complete analysis of vegetation. Data was collected after monsoon season from

September to November 2009. In order to calculate the quantitative vegetation parameters,

Line Transect and Quadrate methods were used (Mueller-Dumbois & Ellenberg, 1974; Chul

& Moody, 1983; Hussain, 1989). The importance Value (IV) for each species was calculated

by direct summation of relative density, relative frequency, and relative cover. Based on

importance value, sampled vegetation was delineated into different plant communities (Chul

& Moody, 1983). At each stand five transect, each of 100 meter in length with quadrates of

1x1 meter square were used to sample the vegetation. Data collection layout is shown in the

figure 3.2.

3.2.3.2: SYNTHETIC PHASE (DATA ANALYSIS)

The synthetic phase follows the classification of data to obtain groupings of communities

based on floristic and structural similarities. The arrangement of surveyed data and

mathematical classification was obtained by using the multivariate statistical program MVSP

Ver. 3.2 (Kovach, 1985-2002). The aim of this process was to identify and classify various

vegetation units present in the study area. Many studies have pointed out that among the

Page 46: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

46

multivariate approaches; ordination and classification are two main methods. The choice of

method to be used depends on the ecological question to be answered (Gauch, 1982).

Classification by means of cluster analysis is most common multivariate technique to analyze

community data (Kershaw, 1973). The vegetation classification was made using IVI based

data and name of communities were given after two or three dominant species with higher

synoptic values. The ordination techniques (DCA, CCA) were also applied to dataset in order

to provide evidence for possible gradients in and between communities and to detect habitat

gradients that may be associated with vegetation analyses, and to identify environment plant

interactions. Finally, results were presented using tables, charts, and graphs. 3.2.3.3: COORDINATES

The specific stand position was determined by a GPS (Global Positioning System) named

Garmin eTrex. The geographic coordinate's latitude, longitude, and altitude were taken from

the center of each stand.

FIGURE 3.2: LAYOUT OF DATA COLLECTION METHOD (05 transect of each 100 m length with quadrat of 1x1 mP

2 Pon 10 m interval)

100

m

m 100

1x1 m2

Page 47: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

47

3.2.4: SOIL ANALYSIS

3.2.4.1: SOIL SAMPLING

Soil sample of 1 kg was collected along each transect from the depth of 0-30 cm. Five soil

samples are collected from each stand. These samples were pooled together to form one

composite sample, air-dried, thoroughly mixed, and passed through 2 mm sieve to liberate it

from gravel and boulders. The collected samples were stored in polythene bags and labeled

for physical and chemical analysis in soil laboratory (Jackson, 1967; Allen & Stainer, 1974).

Soil analysis was done according to the methods of Hand Book No. 60 (U.S. Salinity Lab.

Staff, 1954) unless otherwise mentioned. Brief descriptions of analytical methods are as

follows.

3.2.4.2: PREPARATION OF SATURATED SOIL PASTE

Saturated soil paste was prepared by taking soil (250 g) in plastic beaker and slowly adding

distilled water and mixing with a spatula until the paste glistened and slid off the spatula with

lacking of free water on paste surface (Richards, 1954). Extract of saturated soil paste was

obtained with pressure by the help of filter press. Solution of Sodium hexametaphosphate

(1%) was added at the rate of one drop per 25 mL extract to stop precipitation of salts during

storage.

3.2.4.3: SATURATION PERCENTAGE (SP)

A small part of saturated soil paste was taken in a tared china dish. It was weighed then dried

to constant weight at 105°C and was weighed again. Saturation percentage was calculated by

using (Method 27a) given formula.

Saturation percentage = UMass of wet soil-Mass of oven dry soil Ux 100 Mass of oven dry soil 3.2.4.4: SOIL pH AND ELECTRICAL CONDUCTIVITY (ECReR)

The soil pH was noted by using saturated soil paste as prepared before in 3.2.4.2 and

stabilized over night (Kent Eil 7015) (Method 21a).

Electrical conductivity was determined with digital Jenway conductivity meter model 4510

(Method 3a and 4b).

3.2.4.5: ORGANIC MATTER AND SOIL MOISTURE

Soil (1g) sample was mixed thoroughly with 10 mL 1N potassium dichromate solution and

20 mL concentrated sulphuric acid. Then 150 mL of distilled water and 25 mL of 0.5 N

Page 48: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

48

ferrous sulphate solution were added and the excess was titrated with 0.1 N potassium

permanganate solution to pink end point (Moodie et al., 1959).

In soil samples, moisture contents were measured with the help of ScalTec Moisture analyzer

with 110 ºC.

3.2.4.6: AVAILABLE PHOSPHORUS, SODIUM AND POTASSIUM

Phosphorus was determined by taking 2.50 g soil and adding 0.50 M NaHCOR3R solution

adjusted to pH 8.5 (with the help of 50 % w/w NaOH) according the methods of Page et al.,

(1982).

Flame photometer (Jenway PFP7) was used to estimate the Sodium and Potassium (Rhoades,

1982).

3.2.5: BROWSE FORAGE PRODUCTION

Biomass is a commonly measured vegetation attribute that refers to the weight of plant

material within a particular area. Only plants that are available and palatable to grazing

animals are classified as forage (Pieper, 1988; SRM, 1989). Data was collected in wet

(August) and dry season (April) both. Biomass was calculated by Direct Harvest method

(Moore & Chapman, 1986) using 100-meter line transect with 1x1 meter square quadrate. At

each stand five transect were laid out and quadrate were placed systematically at 10-meter

interval on each transect (Figure 4.2). Clipping was done at grazed-height, because it gives

more pertinent measure of forage biomass. The harvested material was packed and labeled in

paper bags immediately and weighed in the field to get fresh weight and then oven dried at

65 P

oPC for 72 hours in laboratory and re weighed. The dry weight of all the quadrates was then

combined and averaged to get the total dry matter production (kg/ha), at each stand (Hussain,

1989; Bonham, 1989). Grazing status was estimated by direct observation at each stand and

categorizes them as overgrazed, moderately grazed, slightly grazed and no grazing.

3.2.6: RANGE CARRYING CAPACITY

Carrying capacity is an important management tool that connects forage supply with forage

consumption. Carrying capacity was estimated based on 40% allowable grazing material.

The one animal unit (AU) was taken as, a cow having 350 kg weight, demanding 7 kg dry

matter forage per day, 2555 kg/year (Bonham, 1989).

Carrying capacity (ha/AU/Year) = UAnimal forage requirement kg /yearU Forage production kg /ha

Page 49: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

49

3.2.7: DEGREE OF PALATABILITY

Classification of browse species based on palatability, parts used and animal's preferences

was recorded by direct observing the grazing livestock (cattle, sheep, goats & camel) in field

for two consecutive years from 2009-2010. These field observations were further confirmed

from knowledge gathered from graziers and nomadic peoples at different range sites of

Cholistan desert.

In order to calculate the degree of palatability, following palatability classes were used.

i) Highly palatable ii) Moderately palatable iii) Less palatable iv) Non-palatable

The palatable species were classified into four categories based on parts used by livestock.

i) Leave grazed ii) Shoot grazed iii) Flower grazed and iv) Fruit grazed

The livestock mostly differ in their selection of browsing species at different range sites. In

present case, browsing species were classified whether grazed by cattle, sheep, goat, or

camel.

3.2.8: NUTRITIONAL EVALUATION OF BROWSES 3.2.8.1: PROCUREMENT OF SAMPLES

The samples of selected browse species were collected in spring seasons (February) 2010

from the different range sites of Cholistan desert. The collected browse samples were mostly

consisting of mixture of leaves, twigs, and inflorescence. The samples were air dried under

shade then pooled for ground using Willey mill with 2 mm sieve for laboratory analysis.

Ground samples were stored in plastic whirl-pack sample bags until put to use for further

analysis. All the chemical analyses were done in triplicate.

3.2.8.2: PROXIMATE ANALYSIS

The collected browse samples were subjected to proximate analysis for dry matter (DM),

crude protein (CP), crude fibre (CF), ether extract (EE) and total ash according to official

methods of Association of Official Analytical Chemists (AOAC, 2005). Nitrogen-free extract

was determined on dry matter basis as; %NFE = 100 – (%crude protein + %crude fiber +

%ether extract + %Ash).

3.2.8.3: FIBER FRACTIONS

The fiber fractions, neutral detergent fiber (NDF), acid detergent fiber (ADF), and lignin

were estimated by the methods followed by (Van Soest et al., 1991). Hemicellulose was

determined by difference of NDF and ADF.

Page 50: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

50

3.2.8.4: MINERAL PROFILE

In order to determine the mineral profile the labeled ground samples were subjected to wet

digestion (nitric acid and perchloric acid). Following the wet digestion the Phosphorus (P)

was determined by spectrophotometer (U 1100, Hitachi), whereas the concentration of

sodium (Na) and potassium (K) was determined with flame photometer (Jenway PFP7).

Subsequently, concentration of Calcium (Ca), Magnesium (Mg), Manganese (Mn), Copper

(Cu), Zinc (Zn) and ferrous (Fe) were calculated by Atomic absorption spectrometer (Hitachi

Polarized Zeeman, Z-8200).

3.2.8.5: STATISTICAL ANALYSIS

The data collected regarding proximate composition, fiber fractions, and mineral contents

was analyzed for variance analysis (ANOVA) in completely randomized design. Significance

between means was tested using the least significance difference (LSD) (Steel et al., 1997).

Significance was accepted at 5% level of probability. All the statistical procedures were

performed using Statistical Analysis System Computer Package (SAS, 2000).

a b

PLATE 3.2: RAIN WATER HARVESTING PONDS IN CHOLISTAN RANGELANDS (a, b)

Page 51: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

51

URESULTS _ ________________________ CHAPTER 4

4.1: FLORISTIC INVENTORY OF BROWSES

4.1.1: FLORISTIC COMPOSITION

In this baseline study, total 25 browse species belonging to 17 genera and 12 families were

identified and documented from the arid rangelands of Cholistan desert. Family importance

index showed that Chenopodiaceae and Mimosaceae were most dominant families with 4

species each (16%) followed by Rhamnaceae with 3 species (12%), Amaranthaceae,

Asclepiadaceae, Capparaceae, Papilionaceae, Tamaricaceae, with 2 species each (08%) and

Compositae, Malvaceae, Polygonaceae, Salvadoraceae with 01 species each (04%)

respectively (Table 4.1). For the ease of identification, local name of species were also noted

from the study area as given in the table 4.2. The recorded browse species were composed of

07 species of trees (28%) and 18 species of shrubs (72%). According to life span and

Raunkiaerian life form, all the identified species were found as perennials and phanerophytes

respectively. Abundance of browse species showed that out of total species, 10 species (40%)

were considered as very common, 08 species (32%) were common, and 07 species (28%)

were rare in Cholistan rangelands (Annexure 8.1). TABLE 4.1: FAMILY IMPORTANCE INDEX OF BROWSE SPECIES

Sr. No. Family No. of Genera No. of Species Percentage

1 Amaranthaceae 1 2 8

2 Asclepiadaceae 2 2 8

3 Capparaceae 1 2 8

4 Chenopodiaceae 3 4 16

5 Compositae 1 1 4

6 Malvaceae 1 1 4

7 Mimosaceae 2 4 16

8 Papilionaceae 2 2 8

9 Polygonaceae 1 1 4

10 Rhamnaceae 1 3 12

11 Salvadoraceae 1 1 4

12 Tamaricaceae 1 2 8

Total 17 25 100

Page 52: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

52

TABLE 4.2: BROWSE SPECIES WITH FAMILY, BOTANICAL, AND VERNACULAR NAMES

Sr. No. Family Botanical Name Vernacular Name

1 Amaranthaceae Aerva javanica (Burm. f.) Merill. Bui

2 Amaranthaceae Aerva pseudotomentosa ssp. bovei. Clarke. Bui

3 Asclepiadaceae Calotropis procera (Aiton.) Aiton. Ak

4 Asclepiadaceae Leptadenia pyrotecnica (Forssakal.) Decne. Khip

5 Capparaceae Capparis decidua (Forsskal.) Edgew. Karir

6 Capparaceae Capparis spinosa Linn. Kubber

7 Chenopodiaceae Haloxylon recurvum Bunge. ex. Boiss. Khar, Sajji

8 Chenopodiaceae Haloxylon salicornicum (Moq.) Bunge. Lana

9 Chenopodiaceae Salsola baryosma (Roem. et. Scult.) Dany. Lani

10 Chenopodiaceae Suaeda fruticosa (Linn.) Farsskal. Kali Lani

11 Compositae Pulicaria rajputanae Blatt. & Hall. Bui

12 Malvaceae Abutilon muticum (Del. ex. DC.) Sweet. Gidarwar, Akari

13 Mimosaceae Acacia jacquemontii Benth. Banwali

14 Mimosaceae Acacia nilotica (Linn.) Del Kiker, Babul

15 Mimosaceae Prosopis cineraria (Linn.) Druce. Jand, Kanda

16 Mimosaceae Prosopis juliflora DC. Mesquite, Vilate Kiker

17 Papilionaceae Crotalaria burhia Ham. Ex. Bth. Chag

18 Papilionaceae Tephrosia uniflora Pers. Jill

19 Polygonaceae Calligonum polygonoides Linn. Phog

20 Rhamnaceae Zizyphus mauritiana Lam. Beri

21 Rhamnaceae Zizyphus nummularia (Burm. f.) Wifht & Arn. Mallah

22 Rhamnaceae Zizyphus spina christi ( Linn.) Wild. Beri

23 Salvadoraceae Salvadora oleoides Decne. Pelu

24 Tamaricaceae Tamarix aphylla (Linn.) Karst. Frash, Ukan

25 Tamaricaceae Tamarix dioica Roxb. Ukan

Page 53: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

53

4.1.2: PHENOLOGICAL PATTERNS

There was a great diversity in phenological behaviour of browse species in Cholistan

rangelands. Overall, two phenological seasons were recorded from the investigated area. The

first season was from February to April and the second was from September to November.

May to August and December to January were almost dormant seasons. Out of total species,

12 species (48%) were observed in first season (Feb-Apr), in which 04 species were trees and

08 species were shrubs. In the second season, (Sep-Nov) 16 species (64%) were noted which

consisted of 04 species of trees, 12 species of shrubs. Whereas 06 (24%) species were

observed in both phenological seasons, which consist of 02 species of trees, 04 species of

shrubs. There was also some species, which showed a great variation in their phenological

stages as compared to others. It included 03 species (12%) in which 01 species was of tree

and 02 species were of shrubs (Figure 4.1).

The peak seasonal periods in which maximum species were observed in seedling form was

September with 23 species followed by February with 12 species. Whereas maximum browse

species were observed at flowering in October (12 species) followed by March (11 species).

The peak time for fruiting was April and November with 12 species each. The last

phenological stage was dormant season and maximum browse species were observed to

become dormant in May (11 species) and December (12 species). Generally, the dormant

season was observed from May to August and December to January, but the activity of some

species was also noted in these periods (Annexure 8.2). FIGURE 4.1: PHENOLOGICAL PATTERNS OF BROWSE SPECIES

Feb-Apr Sep-Nov Both season OthersTrees 4 4 2 1Shrubs 8 12 4 2Total 12 16 6 3

02468

1012141618

No.

of s

peci

es

Page 54: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

54

4.1.3: ECONOMIC USE CLASSIFICATION Out of total identified browse species in Cholistan rangelands, 24 species were found to be

useable while for remaining 01 species, no current use was discovered (Annexure 8.3). These

useable species were divided into four categories (Firewood, Timber wood, Forage/Fodder &

Medicinal) which have total 67 different uses. Based on total uses there were 19 species that

were being used as firewood, 07 species were as timber wood, 22 species were as

forage/fodder and 19 species were as medicine as given in the table 4.3. TABLE 4.3: ECONOMIC USE CLASSIFICATION OF BROWSE SPECIES

Sr. No. Economic Use Classification No. of Species Percentage

1 Fire wood 19 28.36

2 Timber wood 07 10.45

3 Forage/Fodder 22 32.83

4 Medicinal 19 28.36

Total 67 100

4.2: PHYTOSOCIOLOGICAL STUDY OF BROWSES

4.2.1: COMMUNITY STRUCTURE

Based on Importance value index of each plant species, 20 types of browse communities

were identified on different landforms in Cholistan rangelands. The structure of these

communities is being described along with their habitat and edaphic features (Table 4.4 &

4.5).

1. Haloxylon-Calligonum-Leptadenia community (HCL)

At stand one Haloxylon salicornicum (IV=67.09), Calligonum polygonoides (IV=40.55) and

Leptadenia pyrotechnica, (IV=15.43) browse community was present. It was a sandunal

habitat consisting of 3-5 m high sandunes. Total 12 species were recorded in this stand, out

of which 03 species were shrubs, 05 species were herb and 04 species were grasses. The total

importance value contributed by shrubs was 123.07, by herbs 82.28 and by grasses 94.65,

while importance value contributed by three dominant browse species was 123.07. Based on

soil analysis, texture of this community was sandy with soil moisture 0.48% and organic

matter 0.26%. While other features of soil were as pH 7.89, EC 2.08, Na 22.07 ppm, K 30.12

ppm, P 4.2 ppm.

Page 55: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

55

2. Haloxylon-Suaeda-Pulicaria community (HSP)

Haloxylon recurvum (IV=79.41) Suaeda fruticosa (IV=65.54) and Pulicaria rajputanae

(IV=29.10) community was present at stand two. It was flat clayey saline area. This

community was composed of total 11 species in which, 01 species was of tree, 03 species of

shrubs, 05 species of herb, and 02 species of grasses. In this stand, contribution towards total

importance value was 3.85 by trees, 174.05 by shrubs, 45.57 by herbs, and 76.53 by grasses.

The importance value contributed by three dominant browse species was 174.05. Soil texture

of this habitat was clayey and concentration of soil moisture and organic matter was 0.92%

and 0.21% respectively. Other constituents of soil in this community were as pH 8.45, EC

10.43, Na 76.43 ppm, K 25.43 ppm, P 2.12 ppm.

3. Leptadenia-Aerva-Crotalaria community (LAC)

At stand three Leptadenia pyrotechnica (IV=74.71) Aerva javanica (IV=54.53) and

Crotalaria burhia (IV=40.51) community was existed. It was interdunal sandy area. This

community was composed of 01 species of tree, 06 species of shrubs, 03 species of herbs,

and 04 species of grasses. The importance value of three dominant browse species (LAC)

was 169.75 and overall contribution to total importance value by trees was 5.04, by shrubs

216.18, by herbs, 5.79 and by grasses 72.99. Physio-chemical analysis of soil showed that

texture of this community was sandy loam, consisting of 0.71% soil moisture and 0.85%

organic matter. Whereas, contents of pH were 8.25, EC were 2.68 and Na, K, and P were as

29.17 ppm, 70.22 ppm and 5.21 ppm respectively.

4. Crotalaria-Leptadenia-Haloxylon community (CLH)

Crotalaria burhia (IV=60.31), Leptadenia pyrotechnica (IV=49.09) and Haloxylon

salicornicum (IV=38.21) community was situated at stand four. Overall 16 plant species

were recorded, out of which 02 were trees, 06 were shrubs, 03 were herbs and 05 were

grasses. This community was located on interdunal sandy area. In this stand, importance

value added by three dominant (CLH) browse species was 147.61; overall, importance value

contributed by trees was 03.18, shrubs 195.24, herbs 6.4 and grasses 95.18. Soil texture of

this community was sandy loam with pH 08.14 and EC 04.41. The concentration of Na, K,

and P in this community was 36.25 ppm, 41.64 ppm, and 04.32 ppm respectively. While, the

concentration of soil moisture was 0.54% and organic matter was 0.49%.

Page 56: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

56

5: Calligonum-Haloxylon-Crotalaria community (CHC)

At stand five Calligonum polygonoides (IV=100.06), Haloxylon salicornicum (IV=52.91)

and Crotalaria burhia (IV= 14.12) community was dominant. It was generally sandunal area.

This community was consisting of 15 plant species, which included 01 tree, 04 shrubs, 06

herbs, and 04 grasses. In this stand, total importance value contributed by trees 01.02, shrubs

169.76, herbs 53.91 and grasses 75.31. The contribution of importance value of three

dominant browse species (CHC) was 167.09. Based on soil analysis texture of this

community was sandy with pH 08.11 and EC 01.97. The contents of Na, K, P, were 15.76

ppm, 27.98 ppm, and 4.12 ppm, respectively whereas organic matter and soil moisture were

0.38% and 0.32%.

6. Suaeda-Haloxylon-Salsola community (SHS)

Stand six was located on clayey saline area. Suaeda fruticosa (IV=80.41), Haloxylon

recurvum (IV =59.54) and Salsola baryosma (IV= 20.43) community was composed of total

14 plant species in which 01 was tree, 07 were shrubs, 03 were herbs and 03 were grasses.

The contribution to total importance value by trees was 01.32, by shrubs 187.91, by herbs

19.64 and by grasses 91.13. Overall, the contribution of importance value by three dominant

browse species (SHS) was 160.38. Physio-chemical analysis of soil showed that this

community was located on clayey texture with pH 8.37 and EC 12.13. The concentration of

Na was 90.18, K was 21.95, and P was 1.98, while soil moisture and organic matter were as

0.76% and 0.19% respectively.

7. Haloxylon-Calligonum-Aerva community (HCA)

In stand seven, Haloxylon salicornicum (IV=72.35), Calligonum polygonoides (IV=46.08)

and Aerva javanica (IV=15.54) community was dominating. This area was covered by

sandunes. This community was comprised of 05 species of shrubs, 05 species of herbs and 04

species of grasses. The contribution to total importance value by shrubs was 145.02, by herbs

63.08 and by grasses 91.90. However, importance value of three dominant browse species

was 133.97. Soil texture of this stand was sandy with pH 08.08 and EC 01.33. The

concentration of Na was 18.35, K was 32.76, and P was 3.87, whereas, concentration of soil

moisture and organic matter was 0.35% and 0.27% respectively.

Page 57: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

57

8. Crotalaria-Aerva-Haloxylon community (CAH)

Crotalaria burhia (IV=38.31) Aerva javanica (IV=37.22) and Haloxylon salicornicum

(IV=32.16) community was present at stand eight. It was mainly interdunal sandy area. Total

17 plant species were recorded in sampling, out of which 02 were trees, 04 were shrubs, 05

were herbs and 06 were grasses. Importance value of three dominant browse species was

107.69. Overall, contribution to total importance value by trees was 8.62, by shrubs 122.79,

by herbs 76.87, and by grasses 91.72. In this community, texture of soil was sandy loam with

pH 8.28 and EC 2.34. The concentration of Na was 28.32, K was 62.43, and P was 7.68,

while the soil moisture and organic matter was 0.65% and 0.66% respectively.

9. Calligonum-Haloxylon-Aerva community (CHA)

At stand nine, Calligonum polygonoides (IV=74.43) Haloxylon salicornicum (IV=55.32),

and Aerva javanica (IV=13.32) community was dominant. It was sandunal area. In this

community, total 12 plant species were recorded in which 04 species were shrubs, 06 were

herbs and 02 were grasses. Importance value of three dominant plant species was 143.07

while contribution to total importance value by shrubs was 148.71, by herbs 106.9 and by

grasses 44.39. Soil texture of this community showed that it was sandy soil with pH 7.91 and

EC 1.45. The contents of soil Na, K, P, were 17.45, 26.53, and 04.08 respectively, while soil

moisture was 0.34% and organic matter was 0.29% respectively.

10. Aerva-Crotalaria-Calligonum community (ACC)

Aerva javanica (IV=51.29) Crotalaria burhia (IV=33.97) and Calligonum polygonoides

(IV= 26.65) community was located on interdunal sandy area. In this stand, total 17 plant

species were recorded in which 05 were shrubs, 08 were herbs and 04 were grasses. The total

importance value added by three dominant browse species was 111.91, while importance

value contributed by shrubs was 156.25, by herbs 56.86 and by grasses 86.89. Texture of soil

was sandy loam with pH 8.31 and EC 4.21. The values of Na, K, P, was 35.12, 65.28, and

6.54 respectively, while soil moisture was 0.72% and organic matter was 0.92%.

Page 58: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

58

TABLE 4.4: COMMUNITY STRUCTURE AND IMPORTANCE VALUE INDEX (IVI) OF BROWSES

Stand Browse Communities No. of Species IV Contributed by

No. Trees Shrubs Herbs Grasses Total species Trees Shrubs Herbs Grasses Total IV Three dominant Browses

1 Haloxylon-Calligonum-Leptadenia 0 3 5 4 12 0 123.07 82.28 94.65 300 123.07

2 Haloxylon-Suaeda-Pulicaria 1 3 5 2 11 3.85 174.05 45.57 76.53 300 174.05

3 Leptadenia-Aerva-Crotalaria 1 6 3 4 14 5.04 216.18 5.79 72.99 300 169.75

4 Crotalaria-Leptadenia-Haloxylon 2 6 3 5 16 3.18 195.24 6.4 95.18 300 147.61

5 Calligonum-Haloxylon-Crotalaria 1 4 6 4 15 1.02 169.76 53.91 75.31 300 167.09

6 Suaeda-Haloxylon-Salsola 1 7 3 3 14 1.32 187.91 19.64 91.13 300 160.38

7 Haloxylon-Calligonum-Aerva 0 5 5 4 14 0 145.02 63.08 91.9 300 133.97

8 Crotalaria-Aerva-Haloxylon 2 4 5 6 17 8.62 122.79 76.87 91.72 300 107.69

9 Calligonum-Haloxylon-Aerva 0 4 6 2 12 0 148.71 106.9 44.39 300 143.07

10 Aerva-Crotalaria-Calligonum 0 5 8 4 17 0 156.25 56.86 86.89 300 111.91

11 Suaeda-Salsola-Haloxylon 2 4 4 3 13 3.69 212.28 14.25 69.78 300 209.08

12 Calligonum -Haloxylon-Leptadenia 0 3 5 3 11 0 122.11 128.98 48.91 300 122.11

13 Haloxylon-Suaeda-Tephrosia 1 4 4 3 12 3.31 221.19 11.15 64.35 300 200.95

14 Salsola-Crotalaria-Haloxylon 0 7 5 3 15 0 189.54 33.93 76.53 300 144.75

15 Haloxylon-Suaeda-Calotropis 1 5 4 2 12 3.32 205.81 7.54 83.33 300 187.26

16 Salsola-Leptadenia-Capparis 1 5 3 3 12 1.43 201.88 21.48 75.21 300 158.71

17 Leptadenia-Salsola-Haloxylon 2 7 3 2 14 5.68 163.47 36.21 94.64 300 111.69

18 Haloxylon-Calligonum-Crotalaria 1 3 7 4 15 1.92 138.1 62.34 97.64 300 138.10

19 Aerva-Salsola- Calotropis 1 4 6 2 13 1.76 140.11 23.27 134.86 300 127.59

20 Suaeda-Haloxylon-Abutilon 0 3 6 2 11 0 175.85 40.25 83.90 300 175.85

Page 59: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

59

11. Suaeda-Salsola-Haloxylon community (SSH)

In stand eleven Suaeda fruticosa (IV=110.15), Salsola baryosma (IV=58.32) and Haloxylon

recurvum (IV=40.61) community was dominant. Habitat of this community was clayey

saline area. This community was composed of 02 species of trees, 04 species of shrubs and

herbs each and 03 species of grasses, overall 13 species were recorded during sampling.

Importance value contributed by trees was 03.69, by shrubs 212.28, by herbs 14.25 and by

grasses 69.78. However, contribution of three dominant browse species was 209.08.

According to soil analysis of this stand, texture of soil was clayey with pH 8.53 and EC

11.45. The contents of Na, K, P, were 82.17 ppm, 20.54 ppm and 2.57 ppm respectively,

while soil moisture was 0.91% and organic matter was 0.18%.

12. Calligonum-Haloxylon-Leptadenia community (CHL) Calligonum polygonoides (IV=55.87) Haloxylon salicornicum (IV=44.12) and Leptadenia

pyrotechnica (IV=22.12) community was dominant at stand twelve. This community was

located over sandunal area. Total 11 plant species were identified in which 03 were shrubs,

05 were herbs and 03 were grasses. Total importance value added by shrubs was 122.11, by

herbs 128.98 and by grasses 48.91. While importance value contributed by three dominant

browse species was 122.11. According to soil analysis of this area, texture of soil was sandy

with pH 07.96 and EC 0.92. The contents of Na, K, P, were 14.67 ppm, 28.65 ppm, and

03.86 ppm respectively, while soil moisture and organic contents were as 0.46% and 0.37%.

13. Haloxylon-Suaeda-Tephrosia community (HST)

This stand was located on clayey saline area. Haloxylon recurvum (IV=98.34) Suaeda

fruticosa (IV=76.96) and Tephrosia uniflora (IV=25.65) community was composed of total

12 plant species out of which 01 was tree, 04 were shrubs, 04 were herbs and 03 were

grasses. Importance value contributed by three dominant browse species was 200.95, while

total importance value contributed by trees was 3.31, by shrubs 221.19, by herbs 11.15 and

by grasses 64.35. Texture of soil in this community was clayey with pH 8.49 and EC 9.84.

The values of Na, K, P, were 62.64 ppm, 24.99 ppm, and 2.78 ppm respectively, whereas soil

moisture was 0.87% and organic contents was 0.22%.

14. Salsola-Crotalaria-Haloxylon community (SCH)

At stand fourteen Salsola baryosma (IV=65.29) Crotalaria burhia (IV=52.14) and Haloxylon

salicornicum (IV=27.32) community was present. It was interdunal sandy area. This

Page 60: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

60

community was composed of 07 species of shrubs 05 species of herbs and 03 species of

grasses. Total importance value contributed by shrubs was 189.54, by herbs 33.93, by grasses

76.53, while importance value added by three dominant browses was 144.75. Texture of soil

was sandy loam with pH 8.11 and EC 3.86. The contents of Na, K, P, were 31.27 ppm, 54.21

ppm, and 5.52 ppm respectively while concentration of soil moisture was 0.69% and organic

matter was 0.73%.

15. Haloxylon-Suaeda-Calotropis community (HSC)

Haloxylon recurvum (IV=100.25) Suaeda fruticosa (IV= 55.87) and Calotropis procera (IV=

31.14) community was present on clayey saline patch. This community was consisting of 01

species of trees 05 species of shrubs 04 species of herbs and 02 species of grasses. Total 12

plants species were recorded in this stand. Total importance value contributed by trees was

03.32, by shrubs 205.81, by herbs 07.54 and by grasses 83.33, while importance value added

by three dominant browses was 187.26. In this stand, texture of soil was clayey with pH 8.36

and EC 10.06. The values of Na, K, P, were 69.21 ppm, 20.05 ppm, and 2.54 ppm

respectively, while soil moisture was 0.75% and organic contents was 0.18%.

16. Salsola-Leptadenia-Capparis community (SLC)

In this stand Salsola baryosma (IV=74.38) Leptadenia pyrotechnica (IV=55.12) and

Capparis deciduas (IV=29.21) community was dominating. It was interdunal sandy area. Out

of total recorded species, 01 was tree, 05 were shrubs, 03 were herbs and 03 were grasses.

Importance value added by three dominant browses was 158.71. While importance value of

trees was 01.43, by shrubs 201.88, by herbs 21.48 and by grasses 75.21. Soil texture of this

community was sandy loam with pH 8.33 and EC 3.98. The concentration of Na, K, P, was

33.12 ppm, 46.75 ppm, and 6.04 ppm respectively, while soil moisture was 0.64% and

organic matter was 0.81%.

17. Leptadenia -Salsola-Haloxylon community (LSH)

At stand seventeen Leptadenia pyrotechnica (IV=47.43) Salsola baryosma (IV=41.84) and

Haloxylon salicornicum (IV=22.42) community was dominating. It was interdunal sandy

area. During sampling in this stand, total 14 plant species were recorded in which 02 were

trees, 07 were shrubs 03 were herbs and 02 were grasses. In this community, contribution to

total importance value by trees was 5.68, by shrubs 163.47, by herbs 36.21, and by grasses

94.64; however, importance valued of three dominant browses was 111.69. In this

Page 61: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

61

community, texture of soil was sandy loam with pH 8.26 and EC 2.84. The values of Na, K,

P, were 27.26 ppm, 68.76 ppm, and 7.08 ppm respectively, while soil moisture was 0.58%

and organic matter was 0.56%.

18. Haloxylon-Calligonum-Crotalaria community (HCC)

Haloxylon salicornicum (IV=67.32) Calligonum polygonoides (IV=47.66) Crotalaria burhia

(IV=23.12) community was located on sandunal habitat. In this stand 15 plant species were

recorded out of which 01 was tree 03 were shrubs 07 were herbs and 04 were grasses. Total

importance value by trees was 1.92, by shrubs 138.1, by herbs 62.34 and by grasses 97.64.

The importance value contributed by three dominant browser species was 138.10. At this

stand, texture of soil was sandy with pH 8.05 and EC 2.04. The concentration of Na, K, P,

was 20.59 ppm, 31.22 ppm, and 3.42 ppm respectively, while soil moisture 0.37% and

organic matter was 0.34%.

19. Aerva-Salsola-Calotropis community (ASC)

At stand nineteen Aerva javanica (IV=53.12) Salsola baryosma (IV=48.04) and Calotropis

procera (IV= 26.43) community was located. It was interdunal sandy habitat. In this

community total 13 plant species were recorded, in which 01 species was tree, 04 were

shrubs, 06 were herbs and 02 were grasses. In this stand importance value contributed by

three dominants, browse species was 127.59. Overall, Importance value contributed by trees

was 1.76 by shrubs 140.11, by herbs 23.27 and by grasses 134.86. Soil texture of this

community was sandy loam with pH 8.3 and EC 4.57. The values of Na, K, P, were as 37.24

ppm, 43.54 ppm, and 5.34 ppm respectively, however soil moisture was 0.53% and organic

matter was 0.87%.

20. Suaeda-Haloxylon-Abutilon community (SHA)

Suaeda fruticosa (IV= 85.17) Haloxylon recurvum (IV=73.34) Abutilon muticum (IV=17.34)

community was located on clayey saline area. In this stand, total 11 plant species were

recorded in which 03 were shrubs, 06 were herbs and 02 were grasses. Total importance

value contributed by shrubs was 175.85, by herbs 40.25 and by grasses 83.90. Whereas,

importance value added by three dominant browse species was 175.85. In this community,

soil texture was clayey with pH 8.55 and EC 11.98. The contents of Na, K, P, were 83.09

ppm, 22.72 ppm, and 2.96 ppm respectively, while soil moisture was 0.83% and organic

contents were 0.23%.

Page 62: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

62

TABLE 4.5: SOIL PHYSIO-CHEMICAL ANALYSIS OF BROWSE COMMUNITIES

Stand

No.

Browse Community Depth

cm

pH EC

ds/m

Na

ppm

K

ppm

P

ppm

Soil Moisture

%

Organic matter

%

Saturation

%

Texture

1 Haloxylon-Calligonum-Leptadenia 0-30 7.89 02.08 22.07 30.12 4.2 0.48 0.26 17 Sandy

2 Haloxylon-Suaeda-Pulicaria 0-30 8.45 10.43 76.43 25.43 2.12 0.92 0.21 61 Clayey

3 Leptadenia-Aerva-Crotalaria 0-30 8.25 02.68 29.17 70.22 5.21 0.71 0.85 27 Sandy Loam

4 Crotalaria-Leptadenia-Haloxylon 0-30 8.14 04.41 36.25 41.64 4.32 0.54 0.49 28 Sandy Loam

5 Calligonum-Haloxylon-Crotalaria 0-30 8.11 01.97 15.76 27.98 4.12 0.32 0.38 19 Sandy

6 Suaeda-Haloxylon-Salsola 0-30 8.37 12.13 90.18 21.95 1.98 0.76 0.19 63 Clayey

7 Haloxylon-Calligonum-Aerva 0-30 8.08 01.33 18.35 32.76 3.87 0.35 0.27 17 Sandy

8 Crotalaria-Aerva-Haloxylon 0-30 8.28 02.34 28.32 62.43 7.68 0.65 0.66 29 Sandy Loam

9 Calligonum-Haloxylon-Aerva 0-30 7.91 01.45 17.45 26.53 4.08 0.34 0.29 16 Sandy

10 Aerva-Crotalaria-Calligonum 0-30 8.31 04.21 35.12 65.28 6.54 0.72 0.92 27 Sandy Loam

11 Suaeda-Salsola-Haloxylon 0-30 8.53 11.45 82.17 20.54 2.57 0.91 0.18 61 Clayey

12 Calligonum -Haloxylon-Leptadenia 0-30 7.96 0.92 14.67 28.65 3.86 0.46 0.37 18 Sandy

13 Haloxylon-Suaeda-Tephrosia 0-30 8.49 09.84 62.64 24.99 2.78 0.87 0.22 63 Clayey

14 Salsola-Crotalaria-Haloxylon 0-30 8.11 03.86 31.27 54.21 5.52 0.69 0.73 28 Sandy Loam

15 Haloxylon-Suaeda-Calotropis 0-30 8.36 10.06 69.21 20.05 2.54 0.75 0.18 62 Clayey

16 Salsola-Leptadenia-Capparis 0-30 8.33 03.98 33.12 46.75 6.04 0.64 0.81 28 Sandy Loam

17 Leptadenia-Salsola-Haloxylon 0-30 8.26 02.84 27.26 68.76 7.08 0.58 0.56 29 Sandy Loam

18 Haloxylon-Calligonum-Crotalaria 0-30 8.05 02.04 20.59 31.22 3.42 0.37 0.34 19 Sandy

19 Aerva-Salsola- Calotropis 0-30 8.30 04.57 37.24 43.54 5.34 0.53 0.87 27 Sandy Loam

20 Suaeda-Haloxylon-Abutilon 0-30 8.55 11.98 83.09 22.72 2.96 0.83 0.23 61 Clayey

Key words: EC=Electrical conductivity, Na=Sodium, K=Potassium, P=Phosphorus

Page 63: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

63

4.2.2: MULTIVARIATE ANALYSIS In multivariate analysis, classification and ordination techniques were used to analyze the

data. Multivariate analysis has produced almost similar results as obtained in previous section

(4.2.1) by tabular data of Importance value index.

4.2.2.1: CLASSIFICATION

Cluster analysis was used to classify the vegetation of Cholistan rangelands into relatively

homogeneous groups of stands using importance value index of species in each stand. Here

results have been presented in form of dendrogram as shown in figure 4.2. Cluster analysis of

twenty stands has delineated three vegetation associations inhabiting the sandunes, interdunal

sandy patch, and clayey saline flats as described below.

Sandunal association (Cluster A)

In this cluster, six stands were included i.e., 1, 5, 7, 9, 12, and 18, as shown in the figure 4.2.

This association was comprised of six browse communities while the habitat of these stands

was sandunal. Total 21 plant species were recorded in this association out of which there

were six browse species. In sandunal association dominant browse species were Calligonum

polygonoides (IV=60.78) and Haloxylon salicornicum (IV=59.85) while Aerva javanica

(IV=14.43) Crotalaria burhia (IV=12.79) and Leptadenia pyrotechnica (IV=10.75) were

associated species (Table 4.6). Physio-chemical analysis of soil showed that texture of this

association was sandy with pH 8, EC 1.63, soil moisture 0.39% and organic matter was

0.32%. The concentration of Na, K, P, was calculated as 18.15 ppm, 29.54 ppm and 3.93

ppm respectively (Table 4.7).

Interdunal sandy association (Cluster B)

This association was consisting of eight stands including 3, 4, 8, 10, 14, 16, 17, and 19

(Figure 4.2.) The habitat of these stands was interdunal sandy. In this cluster, total 38 plant

species were present out of which 13 species were browses. This association was comprised

of eight browse communities, whereas most dominant browse species was Leptadenia

pyrotechnica (IV=46.40) followed by Aerva javanica (IV=42.14) Crotalaria burhia

(IV=41.33) and Salsola baryosma (IV=37.82) respectively. However Haloxylon

salicornicum (IV=26.36) Capparis deciduas (IV=22.85) Calotropis procera (IV= 20.81)

Calligonum polygonoides (IV=20.68) were considered as associated species (Table 4.6). Soil

texture of this association was sandy loam with pH 08.25 and EC 03.61. The contents of Na,

Page 64: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

64

K, P, were calculated as 32.22 ppm, 56.60 ppm and 5.97 ppm respectively, whereas soil

moisture was 0.63% and organic matter was 0.74% (Table 4.7).

Clayey saline association (Cluster C)

Cluster C, was consisting of six stands i.e. 2, 6, 11, 13, 15, 20, as shown in figure 4.2. This

association was comprised of six browse communities and habitat of these stands was clayey

saline. Total 23 plant species were observed in this association in which 11 species were

browses, whereas dominant browse species were Suaeda fruticosa (IV=79.02) and Haloxylon

recurvum (IV=75.25) while Salsola baryosma (IV=39.38) Calotropis procera (IV=20.68)

Pulicaria rajputanae (IV=15.60), Abutilon muticum (IV=13.79) Tephrosia uniflora

(IV=13.24) were associated species (Table 4.6). Based on soil analysis of these stands, soil

texture was clayey with pH 8.46 and EC 10.98. The concentration of Na, K, P, was 77.29

ppm, 22.61 ppm and 2.49 ppm respectively, whereas soil moisture was 0.84% and organic

matter was 0.20% (Table 4.7).

FIGURE 4.2: DENDROGRAM FROM CLUSTER ANALYSIS OF STANDS

Key words: A=Sandunal association, B=Interdunal sandy association, C=Clayey saline association

WPGMA

Squared Euclidean

S1 S18 S5 S7 S9 S12 S3 S4 S16 S17 S8 S10 S14 S19 S2 S20 S13 S6 S15 S11

36000 30000 24000 18000 12000 6000 0

Cluster C

Cluster B

A Cluster

Page 65: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

65

TABLE 4.6: MEAN IMPORTANCE VALUES OF PLANT SPECIES IN THREE ASSOCIATIONS

Sr. No. Plant Species A B C 1 Abutilon muticum 0 12.52 13.79 2 Acacia nilotica 0 2.74 0 3 Aeluropus lagopoides 0 0 28.26 4 Aerva javanica 14.43 42.14 0 5 Aristida adscensionis 0 5.20 0 6 Calligonum polygonoides 60.78 20.68 0 7 Calotropis procera 0 20.81 20.68 8 Capparis decidua 0 22.85 10.97 9 Cenchrus biflorus 5.99 0 0 10 Cenchrus ciliaris 28.84 10.14 0 11 Cenchrus setigerus 0 7.89 0 12 Chrozophora plicata 4.00 3.12 0 13 Citrulus colocynthis 3.19 2.23 0 14 Convolvulus microphyllus 0 0 3.13 15 Corchorus depressus 0 2.32 4.55 16 Crotalaria burhia 12.79 41.33 0 17 Cymbopogon jwarancusa 0 29.67 40.89 18 Dipterygium glaucum 62.74 44.41 0 19 Euphorbia prostrata 2.03 1.84 2.50 20 Fagonia cretica 0 7.94 10.90 21 Farsetia hamiltonii 15.15 1.54 0 22 Gisekia pharnaceoides 0 1.87 0 23 Glinus lotoides 0 0 1.68 24 Haloxylon recurvum 0 0 75.25 25 Haloxylon salicornicum 59.85 26.36 0 26 Heliotropium crispum 0 11.18 10.34 27 Lasiurus scindicus 29.22 19.91 0 28 Leptadenia pyrotechnica 10.75 46.40 0 29 Limeum indicum 10.14 3.32 0 30 Mollugu cerviana 2.16 1.13 0 31 Ochthochloa compressa 0 41.03 9.25 32 Panicum devisum 0 25.64 0 33 Panicum turgidum 44.14 30.67 0 34 Polygala erioptera 1.36 1.34 0 35 Prosopis cineraria 1.47 2.91 0 36 Pulicaria rajputanae 0 0 15.60 37 Salsola baryosma 0 37.82 39.38 38 Salvadora oleoides 0 0 2.59 39 Sesuvium sesuvioides 2.62 2.22 0

Page 66: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

66

40 Solanum surattense 0 2.07 4.16 41 Sporobolus iocladus 0 31.51 41.26 42 Stipagrostis plumosa 10.13 11.20 0 43 Suaeda fruticosa 0 2.14 79.02 44 Tamarix aphylla 0 0 2.62 45 Tephrosia uniflora 0 2.21 13.24 46 Tribulus longipetalus 1.81 2.45 0 47 Zaleya pentendra 0 0 2.47 48 Zizyphus mauritiana 0 0 2.54

TABLE 4.7: MEAN VALUES OF SOIL ANALYSIS AT THREE ASSOCIATIONS

Association Depth cm

pH EC ds/m

Na ppm

K ppm

P ppm

Soil moisture %

Organic matter %

Saturation %

Texture

A 0-30 8 1.63 18.15 29.54 3.92 0.39 0.32 17.67 Sandy

B 0-30 8.25 3.61 32.22 56.60 5.97 0.63 0.74 34.87 Sandy Loam

C 0-30 8.46 10.98 77.29 22.61 2.49 0.84 0.20 61.83 Clayey

Key words: A=Sandunal association, B=Interdunal sandy association, C=Clayey saline association EC=Electrical conductivity, Na=Sodium, K=Potassium, P=Phosphorus

4.2.2.2: ORDINATION

In ordination, (correspondence analysis) DCA ordination (indirect gradient analysis) and

CCA ordination (direct gradient analysis) procedures of multivariate statistical methods were

used.

DETRENDED CORRESPONDENCE ANALYSIS (DCA)

The distribution of 20 stands along first axis and second axis of detrended correspondence

analysis is represented in the figure 4.3. DCA analysis of stands has maintained the

coherency with vegetation groups identified by cluster analysis (CA). However, scatter graph

is easily interpretable in ecological terms. Stands situated to the left of diagram were

representing the sandunal association (A) and stands situated more to the right of diagram

were showing the clayey saline association (C). While the stands in-between them were

showing the interdunal sandy association (B). This graph illustrate a gradient along

ordination axes 1 which could be related to high pH, EC, Na and soil moisture in right side at

association C and low in left side with association A. Summary of detrended correspondence

analysis is given in the table 4.8.

Page 67: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

67

TABLE 4.8: SUMMARY OF DETRENDED CORRESPONDENCE ANALYSIS Axis Axis 1 Axis 2 Axis 3 Axis 4 Eigenvalues 0.823 0.157 0.084 0.052 Percentage 34.193 6.526 3.482 2.152 Cum. Percentage 34.193 40.719 44.201 46.353

FIGURE 4.3: DETRENDED CORRESPONDENCE ANALYSIS (DCA) OF STANDS

Key words: A=Sandunal association, B=Interdunal sandy association, C=Clayey saline association

CANONICAL CORRESPONDENCE ANALYSIS (CCA)

To determine the overall pattern of plant species and stands distribution based on

environmental factors, CCA ordination was performed on a medium containing importance

values of species (n=48 species) in 20 stands. In biplot (Figure 4.4), points were representing

individual stands and arrow representing soil variables. The length and direction of an arrow

representing a given environmental factor provide a sign of importance and direction of

gradient of environmental change for that factor. Long arrow was more closely correlated in

ordination than those with short arrow and was much significant in influencing the variations

in community. Perpendicular vegetation associations near to or beyond the tip of arrows will

be strongly correlated and influenced by an arrow while those at opposite end will be less

affected.

DCA case scores

Axis 2

Axis 1

S1

S2

S3

S4 S5

S6

S7 S8

S9

S10

S11

S12

S13 S14 S15

S16

S17

S18

S19 S20

0.0

0.9

1.9

2.8

3.8

4.7

0.0 0.9 1.9 2.8 3.8 4.7

A B C

Page 68: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

68

The angle between an arrow and each axis is a reflection of its degree of correlation with

axis. The eigenvalues of CCA axis are given in the table 4.9. The first two axes are most

important in elucidating the variations in floristic data because these explain 100% variation.

As first two axes are standards for determining the variation in data, hence variables that

strongly correlate with these axes were considered as most important environmental factors.

The continuous decrease of the eigenvalues along the CCA axes has stated a well-structured

data set. In CCA of stands EC, Na, OM, P, K, were most important variables influencing the

stands distribution. While going through the axis 1 and 2, some stands were assembled on

negative side of axis 1 away from the origin of the axis under the effect of EC and Na.

Whereas some stands were scattered on positive side of axis 2 under the influence of OM, P,

and K. It was observed, electrical conductivity and sodium were more towards the long arrow

having strong correlation and portraying some significant role in grouping of stands.

FIGURE 4.4: CCA BIPLOT OF STANDS WITH ENVIRONMENTAL (SOIL) VARIABLES

Key words: A=Sandunal association, B=Interdunal sandy association, C=Clayey saline association EC=Electrical conductivity, Na=Sodium, K=Potassium, P=Phosphorus, OM=Organic matter, M=Moisture

CCA case scores

Axis 2

Axis 1

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

S18

S19

S20 -0.5

-0.9

-1.4

0.5

0.9

1.4

1.9

2.4

-0.5 -0.9 -1.4 0.5 0.9 1.4 1.9 2.4

pH

EC Na

K P

M

MO

Vector scaling: 2.00

A

B

C

Page 69: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

69

TABLE 4.9: SUMMARY OF CANONICAL CORRESPONDENCE ANALYSIS Axis Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Eigenvalues 0.77 0.355 0.08 0.069 0.065 Percentage 31.958 14.734 3.324 2.846 2.695 Cum. Percentage 31.958 46.693 50.016 52.862 55.557 Cum. Constr. Percentage 54.266 79.284 84.928 89.76 94.336 Spec.-env. correlations 0.974 0.918 0.883 0.768 0.788

4.3: FORAGE PRODUCTION OF BROWSES Browse forage production was estimated during wet (August) and dry season (April) in the

arid rangelands of Cholistan desert. Our study focused on the aboveground productivity of

browses and its belowground counterpart was not explored.

WET SEASON

In Cholistan rangelands during wet season, total fresh browse productivity from all stands

was 14034.6 kg/ha and dry forage productivity was 8029.1 kg/ha. The highest quantity of dry

phytomass was attained at stand 8 (554.4 kg/ha) and minimum at stand 20 (321.5 kg/ha). The

average fresh forage yield recorded from all stand was 701.73 kg/ha and dry forage yield was

401.46 kg/ha. On the basis of habitats, maximum dry matter production (3681.3 kg/ha) was

observed at interdunal habitat, followed by sandunal habitat (2298.5 kg/ha) and then clayey

saline habitat (2049.3 kg/ha). However, average dry forage production of browses at

interdunal habitat was 460.16 kg/ha followed by sandunal habitat with 383.08 kg/ha then

clayey saline habitat with 341.55 kg/ha (Figure 4.5). Based on grazing intensity in wet

season, maximum stands (45%) were observed to be moderately grazed followed by

overgrazed (40%) and then slightly grazed (15%) (Annexure 8.5).

DRY SEASON In Cholistan rangelands during dry season the total fresh biomass productivity was 8865.8

kg/ha while dry matter production was 5422.9 kg/ha. The average fresh productivity of all

stands was 443.29 kg/ha and dry matter was 271.145 kg/ha. The maximum dry matter of

browses was attained at stand 4 (376.5 kg/ ha) while minimum was at stand 20 (161 kg/ha).

Along habitats, maximum dry biomass was recorded at interdunal sandy habitat (2633 kg/ha)

followed by sandunal habitat (1496.5 kg/ha) and then at clayey saline habitat (1293.4 kg/ha).

The average dry forage productivity of interdunal habitat was 329.13 kg/ha followed by

Page 70: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

70

sandunal habitat with 249.42 kg/ha then clayey saline habitat with 215.57 kg/ha (Figure 4.5).

In this season maximum stands were observed to be over grazed (75%), followed by

moderately grazed (25%) and there was no stand without grazing effects (Annexure 8.5). FIGURE 4.5: SEASONAL BROWSE FORAGE YIELD (kg/ha) AT THREE RANGE HABITATS

4.4: RANGE CARRYING CAPACITY

Carrying capacity or grazing capacity is a common term, used when we are defining the

stocking rates. In this study, carrying capacity was calculated in the rangelands of Cholistan

desert with respect to browse production. The detail description of carrying capacity in both

wet and dry seasons has been presented as below.

WET SEASON

As given in the table (4.10) overall average dry browse production during wet season was

394.93 kg/ha while available forage production was 157.97 kg/ha. The proper use factor

(PUF) has been taken as 40% to estimate available forage. Over three range habitats in

Cholistan desert, maximum available forage was observed at interdunal sandy (184.06 kg/ha)

followed by sandunal (153.23 kg/ha) and least at clayey saline (136.62 kg/ha). However,

carrying capacity (CC) during wet season was calculated as 16 ha/AU/Y while at interdunal

was 14/ha/AU/Y; at sandunal was 17 ha/AU/Y and at clayey saline habitat was 19 ha/AU/Y.

It was estimated that Cholistan desert cover an area of 2.6 million hectare out of which

01000200030004000500060007000

FreshBiomass

DryBiomass

FreshBiomass

DryBiomass

Wet season Dry seasonSandunal 4062.2 2298.5 2543.6 1496.5Interdunal sandy 6677.8 3681.3 4484 2633Clayey saline 3294.6 2049.3 1838.2 1293.4

Kg/

ha

Page 71: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

71

1300000 ha has been considered as rangelands. Based upon this factor, the stocking rate

during wet season was calculated as 80376 AU/Y in Cholistan rangelands.

DRY SEASON

In dry season overall average dry matter production was 264.71 kg/ha while the available

forage was 105.88 kg/ha (Table 4.10). Across the three range habitats in Cholistan desert,

maximum available forage was recorded at interdunal habitat (131.65 kg/ha) followed by

sandunal habitat (99.77 kg/ha) and then at clayey saline habitat (86.23 kg/ha). Based on

available forage overall carrying capacity in dry season was calculated as 24 ha/AU/Y

whereas carrying capacity of interdunal was 19 ha/AU/Y, sandunal was 26 ha/AU/Y and at

clayey saline habitat was 30 ha/AU/Y. In this season, the stocking density of Cholistan

rangelands was calculated as 53872 AU/Y.

TABLE 4.10: SEASONAL CARRYING CAPACITY (CC) AT THREE RANGE HABITATS

Season Range Habitat Aveg. Browse Production

(kg/ha)

Available Forage

(kg/ha)

Carrying Capacity

(ha/AU/Y)

Wet season Sandunal 383.08 153.23 17

Interdunal sandy 460.16 184.06 14

Clayey saline 341.55 136.62 19

Overall aveg. CC 394.93 157.97 16

Dry season Sandunal 249.42 99.77 26

Interdunal sandy 329.13 131.65 19

Clayey saline 215.57 86.23 30

Overall aveg. CC 264.71 105.88 24

Page 72: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

72

4.5: PALATABILITY CLASSIFICATION OF BROWSES

4.5.1: DEGREE OF PALATABILITY

This classification was based on palatability of browses in the arid rangelands of Cholistan

desert. Out of total species, 22 (88%) species were found to have palatability to varying

degree and 03 (12%) species were found non-palatable. Among palatable species, 07 species

(31.82%) were highly palatable, 09 species (40.91%) were moderately palatable, and 06

species (27.27%) were less palatable. In highly palatable class, there were 05 species of trees

and 02 species of shrubs. Moderately palatable species were consisting of 02 species of trees

and 07 species of shrubs. Less palatable class was composed of 06 species of shrubs while

non-palatable class was consisting of only 03 species of shrubs (Figure 4.6). There were total

07 species of trees in which 71.43% were highly palatable and 28.57% moderately palatable.

Out of 18 species of shrubs, 11.11% species were highly palatable, 38.89% were moderately

palatable, 33.33% were less palatable, and 16.67% species were unpalatable (Annexure 8.6). FIGURE 4.6: CLASSIFICATION OF BROWSES BASED ON PALATABILITY

4.5.2: PALATABILITY BY PARTS USED

This classification was based on the type of plant parts, used by livestock in Cholistan

rangelands (Figure 4.7). It was observed that among palatable species, leaves of 14 species

(63.64%), shoot/stem of 13 species (59.09%), flower of 04 species (18.18%), and fruit of 03

species (13.64%) were grazed by livestock. The first class in which leaves were used, was

consisting of 06 species of trees and 08 species of shrubs. In second class in which

shoot/stem was used, there were 04 species of trees and 09 species of shrubs. Flower use

0

5

10

15

20

25

Nonpalatable

Palatable Highlypalatable

Moderatlypalatable

Lesspalatable

Total species 3 22 7 9 6Trees 0 7 5 2 0Shrubs 3 15 2 7 6

No.

of s

peci

es

Page 73: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

73

class, was consisting of 02 species of trees and shrubs each. In fruit class, there were only 03

species of trees (Annexure 8.6). FIGURE: 4.7: CLASSIFICATION OF BROWSES BASED ON PARTS USED

4.5.3: PALATABILITY BY LIVESTOCK PREFERENCES

According to results (Figure 4.8) out of total palatable browse species, 07 species (31.82%)

were grazed by cattle, which comprised of 05 species of trees and 02 species of shrubs. Goats

were observed to prefer 10 species (45.45%) which consisted of 06 species of trees and 04

species of shrubs. Sheep grazed on 10 species (45.45%) which were composed of 06 species

of trees and 04 species of shrubs. Whereas, 20 species (90.91%) were preferred by camel

which consisting of 07 species of trees and 13 species of shrubs (Annexure 8.6). FIGURE 4.8: CLASSIFICATION OF BROWSES BASED ON LIVESTOCK PREFERENCES

0

2

4

6

8

10

12

14

Leave Shoot Flower FruitTotal species 14 13 4 3Trees 6 4 2 3Shrubs 8 9 2 0

No.

of s

peci

es

02468

101214161820

Cattle Goat Sheep CamelTotal species 7 10 10 20Trees 5 6 6 7Shrubs 2 4 4 13

No.

of s

peci

es

Page 74: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

74

4.6: NUTRITIONAL EVALUATION OF BROWSES 4.6.1: PROXIMATE COMPOSITION

Proximate composition of selected browse species of Cholistan rangelands is presented in

table 4.11. The contents of dry matter (DM) varied significantly (p<0.05) among species

from 92.41 to 94.59%. The highest value of dry matter was observed in Haloxylon recurvum

and lowest in Calotropis procera. The concentration of crude protein (CP) was ranging from

08.25 to 17.46% and highest (p<0.05) contents of CP were observed in Suaeda fruticosa and

lowest in Prosopis cineraria. Ether extract (EE) was significantly (p<0.05) varied from 01.03

to 03.44% with maximum in Suaeda fruticosa and minimum in Haloxylon salicornicum.

Highest value (p<0.05) of crude fiber (CF) was observed in Calotropis procera (33.45%) and

lowest in Haloxylon recurvum (13.45%) that ranged from 13.45 to 33.45% among the

species. Similarly, maximum contents of ash (TA) were present in Suaeda fruticosa and

lowest in Prosopis cineraria and concentration of ash was significantly (p<0.05) varied from

08.24 to 18.60%. Subsequently mean concentration of nitrogen free extract (NFE) was

48.79% that was highest (p<0.05) in Haloxylon recurvum and lowest in Suaeda fruticosa. TABLE 4.11: PROXIMATE COMPOSITION OF SELECTED BROWSE SPECIES (ON *DM BASIS)

Sr. No. Species Name DM CP EE CF TA NFE (%) (%) (%) (%) (%) (%) Shrubs 1 Calligonum polygonoides 93.64P

bc 11.54P

d 1.47P

d 23.37P

e 09.48P

e 54.17P

b 2 Suaeda fruticosa 94.43P

ab 17.46P

a 3.44P

a 25.52P

d 18.60P

a 34.98P

g 3 Salsola baryosma 94.33P

ab 12.27P

c 1.08P

def 20.69P

f 16.40P

b 49.56P

de 4 Haloxylon recurvum 94.59P

a 12.21P

cd 1.04P

ef 13.45P

i 16.55P

b 56.75P

a 5 Haloxylon salicornicum 93.42P

c 13.18P

b 1.03P

f 19.51P

g 15.24P

c 51.04P

cd 6 Capparis decidua 94.44P

ab 08.98P

f 1.50P

d 32.34P

b 08.59P

fg 48.60P

e 7 Calotropis procera 92.41P

d 12.52P

bc 2.49P

b 33.45P

a 14.35P

d 37.18P

f Trees 8 Tamarix aphylla 92.57P

d 08.65P

fg 1.46P

de 18.39P

h 17.81P

a 53.69P

b 9 Prosopis cineraria 93.48P

c 08.25P

g 2.04P

c 31.45P

c 08.24P

g 50.02P

de 10 Acacia nilotica 92.52P

d 10.29P

e 3.11P

a 25.48P

d 09.18P

ef 51.91P

c Mean 93.58 11.54 1.87 24.36 13.44 48.79 SEM 0.27 0.24 0.14 0.30 0.29 0.51

Mean values based on 03 replicates; SEM: Standard error of means Means in same column with different superscript (a, b, c, d, e, f, g) are significantly different (P<0.05) *DM=Dry matter, CP=Crude protein, EE=Ether extract, CF=Crude fiber, TA=Total ash, NFE=Nitrogen free extract

Page 75: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

75

4.6.2: STRUCTURAL COMPOSITION

The structural constituents of selected browses from Cholistan rangelands are presented in

table 4.12. In this study contents of fiber fractions (NDF, ADF, Hemicellulose & Lignin)

were showing significant (p<0.05) differences among species. The concentration of neutral

detergent fibers (NDF) were varied (p<0.05) from 29.33 to 44.00% with mean value 40.17%.

The highest NDF was observed in Prosopis cineraria and Acacia nilotica besides lowest was

observed in Haloxylon recurvum. The acid detergent fibers (ADF) were ranged from 12.33 to

33.67% with mean value 23.47%. Calligonum polygonoides was found to have maximum

(p<0.05) value of ADF and Haloxylon recurvum has lowest value. Wheras, the concentration

of hemicelluloses was significantly varied (p<0.05) from 10.00 to 21.67%. Highest contents

of hemicellulose were observed in Haloxylon salicornicum (21.67%) and lowest in

Calligonum polygonoides (10.00%). Similarly, mean concentration of lignin was 07.22% that

was highest in Prosopis cineraria (09.87%) and lowest in Calotropis procera (05.40%). TABLE 4.12: STRUCTURAL COMPOSITION OF SELECTED BROWSE SPECIES (ON *DM BASIS)

Sr. No. Species name NDF ADF Hemicellulose Lignin (%) (%) (%) (%)

Shrubs 1 Calligonum polygonoides 43.67P

a 33.67P

a 10.00P

f 8.80P

b 2 Suaeda fruticosa 33.00P

c 21.00P

de 12.00P

f 5.73P

ef 3 Salsola baryosma 41.67P

ab 21.00P

de 20.67P

a 6.60P

de 4 Haloxylon recurvum 29.33P

c 12.33P

f 17.00P

cde 5.73P

ef 5 Haloxylon salicornicum 42.33P

ab 20.67P

de 21.67P

a 6.27P

def 6 Capparis decidua 42.67P

a 24.33P

cd 18.33P

bc 6.70P

cd 7 Calotropis procera 38.67P

b 19.00P

e 19.67P

ab 5.40P

f Trees 8 Tamarix aphylla 42.33P

ab 27.33P

bc 15.00P

e 7.53P

c 9 Prosopis cineraria 44.00P

a 28.67P

b 15.33P

de 9.87P

a 10 Acacia nilotica 44.00P

a 26.67P

bc 17.33P

cd 9.57P

ab Mean 40.17 23.47 16.70 7.22 SEM 1.33 1.27 0.68 0.31

Mean values based on 03 replicates; SEM: Standard error of means Means in same column with different superscript (a, b, c, d, e, f) are significantly different (P<0.05) NDF=Neutral detergent fiber, ADF=Acid detergent fiber, *DM=Dry matter

Page 76: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

76

4.6.3: MINERAL COMPOSITION

MACRO MINERALS The contents of macro-minerals (P, K, Na, Ca & Mg) in selected browses from Cholistan

rangelands are presented in the table 4.13. In this study, the concentration of phosphorus (P)

was varied (p<0.05) from 0.011 to 0.024% with mean value 0.016%. The highest value of P

was noted in Calligonum polygonoides and lowest in Haloxylon recurvum. The concentration

of potassium (K) was was ranging from 0.22 to 0.42% that was highest (p<0.05) for Salsola

baryosma and lowest for Prosopis cineraria. Sodium (Na) was considerably varying

(p<0.05) among species from 0.22 to 1.82% and their mean value was 1.15%. Maximum Na

contents were observed in Haloxylon recurvum and lowest in Calligonum polygonoides.

Similarly, maximum concentration of calcium (Ca) was noted in Capparis deciduas (0.37%)

and lowest in Suaeda fruticosa (0.22%) with the mean value 0.30% among the selected

species. The mean concentration of magnesium (Mg) was 0.021% that was highest in

Prosopis cineraria (0.030%) and lowest in Salsola baryosma (0.014 %).

MICRO MINERALS

The concentration of micro minerals (Mn, Cu, Zn & Fe) in selected browse species of

Cholistan rangelands are presented in table 4.13. According to results, concentration of

manganese (Mn) was ranging (p<0.05) from 01.60 to 08.46 ppm among browse species with

mean value 04.83 ppm. The contents of Mn were highest in Acacia nilotica (08.46 ppm) as

compare to other browse species. The concentration of copper (Cu) was found to be highest

in Calotropis procera (02.24 ppm) and lowest in Haloxylon recurvum (0.66 ppm) and

Haloxylon salicornicum (0.66 ppm), with mean 01.39 ppm in the analyzed species.

However, contents of zinc (Zn) were varied (p<0.05) from 0.81 to 03.44 ppm with mean

value 02.14 ppm. Zn was observed to be highest in Acacia nilotica (03.44 ppm) and lowest in

Haloxylon salicornicum (0.81 ppm). Similarly, concentration of ferrous (Fe) was found to be

significantly (p<0.05) high in Calotropis procera (10.41 ppm) and lowest in Haloxylon

salicornicum (01.42 ppm) with mean value 06.37 ppm.

Page 77: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

77

TABLE 4.13: MINERAL COMPOSITION OF SELECTED BROWSE SPECIES (ON *DM BASIS) Sr. No. Species Name Macro minerals Micro minerals P K Na Ca Mg Mn Cu Zn Fe % % % % % ppm ppm ppm ppm

Shrubs

1 Calligonum polygonoides 0.024P

a 0.34P

bc 0.22P

d 0.27P

bc 0.017P

c 3.60P

e 1.44P

c 2.32P

b 9.50P

b

2 Suaeda fruticosa 0.017P

cd 0.29P

cd 1.73P

a 0.22P

c 0.016P

c 4.39P

d 1.60P

c 1.33P

e 9.62P

b

3 Salsola baryosma 0.019P

bc 0.42P

a 1.23P

b 0.23P

c 0.014P

c 3.54P

e 1.29P

c 3.39P

a 3.22P

e

4 Haloxylon recurvum 0.011P

e 0.25P

de 1.82P

a 0.25P

bc 0.018P

c 3.78P

de 0.66P

d 1.82P

cd 3.46P

e

5 Haloxylon salicornicum 0.014P

de 0.33P

bc 0.95P

c 0.36P

a 0.027P

ab 6.61P

b 0.66P

d 0.81P

f 1.42P

g

6 Capparis decidua 0.014P

de 0.29P

cd 0.81P

c 0.37P

a 0.025P

b 1.60P

g 2.14P

ab 3.11P

a 2.06P

f

7 Calotropis procera 0.012P

e 0.36P

b 0.97P

c 0.31P

ab 0.024P

b 8.39P

a 2.24P

a 1.80P

cd 10.41P

a

Trees

8 Tamarix aphylla 0.021P

ab 0.25P

de 1.33P

b 0.27P

bc 0.015P

c 2.45P

f 0.78P

d 1.47P

de 6.81P

d

9 Prosopis cineraria 0.018P

bc 0.22P

e 1.26P

b 0.35P

a 0.030P

a 5.52P

c 1.44P

c 1.92P

bc 8.60P

c

10 Acacia nilotica 0.012P

e 0.27P

de 1.18P

b 0.36P

a 0.024P

b 8.46P

a 1.68P

bc 3.44P

a 8.65P

c

Mean 0.016 0.30 1.15 0.30 0.021 4.83 1.39 2.14 6.37

SEM 1.233 0.02 0.07 0.02 1.716 0.26 0.16 0.15 0.19

Mean values based on 03 replicates; SEM: Standard error of means Means in same column with different superscript (a, b, c, d, e, f, g) are significantly different (P<0.05) P=Phosphorus, K= Potassium, Na= Sodium, Ca= Calcium, Mg=Magnesium, Mn=Manganese, Cu=Copper, Zn=Zinc, Fe=Ferrous *DM=Dry matter

Page 78: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

78

UDISCUSSION _ ________________________ CHAPTER 5

5.1: FLORISTIC INVENTORY OF BROWSES

5.1.1: FLORISTIC COMPOSITION

A rich flora would definitely signify high floristic composition and diversity in a particular

area. The information about floristic composition of an area is important for any

phytogeographical, ecological, and conservational studies. Pakistan has a great diversity of

flora due to large variety of habitats and ecological zones. Our first objective of this study

was to compile the floristic inventory of browses from Cholistan rangelands. The results

revealed that floristic list was comprised of twenty-five browse species that were distributed

among twelve families. Based on Family Importance Value (FIV) Chenopodiaceae,

Mimosaceae and Rhamnaceae were regarded as dominant families, which mainly contributed

to browse flora of Cholistan rangelands. The vegetation of these rangelands was

characterized of arid climate mostly comprising of xerophytes that were adapted to low

humidity, high temperature and wide variations in edaphic conditions (Arshad & Akbar,

2002).

Further based on abundance of browses, 40% species were found to be very common that

composed the major vegetation cover of Cholistan rangelands. These species were consisting

of Aerva javanica, Leptadenia pyrotecnica, Capparis deciduas, Haloxylon recurvum,

Haloxylon salicornicum, Salsola baryosma, Suaeda fruticosa, Calligonum polygonoides,

Crotalaria burhia and Prosopis cineraria. The vegetation of Cholistan desert was mostly

consisting of bushy perennial shrubs with dotted small trees. On the basis of results it was

observed that 28% browse species are rare in Cholistan desert including Capparis spinosa,

Prosopis juliflora, Tephrosia uniflora, Zizyphus mauritiana, Zizyphus spina christi,

Salvadora oleoides and Tamarix dioica. Verbal information from nomadic peoples and

experts showed that climatic extremities, overgrazing, and exploitation by local inhabitants

were mainly contributing to the degradation of vegetation in Cholistan rangelands (Akbar &

Arshad, 2000; Akhtar & Arshad, 2006).

The individual plant species of particular community can be categorized into various life

forms based on their growth performance and physiognomy (Asmus, 1990). Raunkiaerin

approach is very helpful in understanding and explaining the diversity of vegetation in

relation to prevailing eco-biological conditions (Al-Yemeni & Sher, 2010). Results showed

Page 79: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

79

that all the identified browses were Phanerophytes and perennials. The dominancy of

Phanerophytes reflects the climax stage of vegetation while dominance of perennials species

is an evident of arid area, with poor rainfall. Cholistan is a hot arid sandy desert whose

productivity depends upon monsoon rains (July to September). Mostly annuals species come

out with the onset of rain, complete their life cycle within few days, and become vanish.

Therefore, it gives us a clear indication that most of vegetation cover in Cholistan rangelands

is made up of perennial species (Akbar et al., 1996; Akhtar & Arshad, 2006).

There was little published material about the flora of Cholistan desert. Previously Arshad &

Rao (1994) has done preliminary survey to provide the base line about the flora of Cholistan

Desert. Since then, no further study has been carried out in this area. Therefore, this study

was designed to explore the current status of browse species in Cholistan rangelands. Several

floristic studies have been reported from in and out of the country. Some related work has

been carried in Indian desert that is on other side of Cholistan Desert (Shetty & Singh, 1991).

Similarly, A research project was carried by Bhatti et al., (1998-2001) for the floristic study

of Nara desert. Few studies have been reported from other adjoining areas (Qureshi, 2008a;

Hussain & Perveen, 2009; Qureshi & Bhatti, 2010; Durrani & Razaq, 2010; Qureshi et al.,

2011a).

5.1.2.: PHENOLOGICAL PATTERNS The information about phenological behavior represents a relation between climate and

growing seasons of plants species of an area (Hamann, 2004). Such types of studies are very

important for planning, conservation, and regeneration in forestry and range management

(Malik, 2005). The results of this study indicate that there were two phenological seasons in

the investigated area, first from February to April and second from September to November.

The both seasons were observed to be dependent on the availability of moisture from

rainfalls which usually occur in monsoon (July to September) and in winter and spring

(January through February) (Akbar & Arshad, 2000). Therefore, two seasons-early spring

and late summer-were characterized by high growth or reproductive activities of many

species. Furthermore, maximum species were recorded in second phenological season as

compare to first one because most of rainfall in desert was received during monsoon. Some

species were showing the dual behavior because they were observed in both phenological

seasons. There were also some species, which were not following this pattern due to great

Page 80: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

80

variation in their phenological events. These species mostly consist of perennial shrubs and

trees, which are not wholly dependent on rainfall.

The first phenological season (Feb-Apr) was directly related with winter rainfall, though

winter rain is less than summer rainfall but lower evaporation during the winter increases the

effectiveness of this rain. It was observed that with the availability of moisture in soil and

low temperature in desert, the seedlings start to appear and maximum seedlings were noted in

February. Due to favorable climatic conditions in spring, maximum species were observed at

flowering stage in March. At this time, temperature start to increase day by day in desert, so

species initiate their fruiting in order to complete their lifecycle and maximum fruiting was

observed in April. In May climatic conditions become very severe and species started to

become dormant or dead. May to August was dormant period due to extreme temperature

and severe shortage of water and but few growth and reproductive activities of perennials

were also observed in this period.

The second phenological season was triggered with the onset of monsoon rain that mostly

occurs July through September. In extreme climatic condition of Cholistan rangelands,

monsoon rains provide sufficient water and lower overall temperature to some extent. These

favourable conditions promote the germination, seedlings start to appear from soil, and

maximum seedlings were observed in September. As growth continuous flowering starts and

maximum flowering was noted in October. Next stage is fruit formation that was observed in

November. In December, maximum plants started to become dormant/dead due to shortage

of water and decrease in temperature. Furthermore, due to continuous decrease in

temperature, deficiency of water and short photoperiod in desert, most of plat functions

remain dormant from December to January.

Different studies from various parts of the world have revealed that climatic factors are

generally responsible for reproductive and vegetative phenology at both species and

community level. The scarce and unpredictable nature of moisture in deserts is well known

but response of desert vegetation to this limiting resource is not well documented. The

present study revealed that sporadically maximum moisture is used at specific times by

particular groups of species and annual species are closely related to periods of abundant

moisture. Based on results rainfall has been recommended as the main source of variation in

the onset of flowering in communities with distinct dry weather. It has been observed that in

Page 81: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

81

tropics and desert environments, variations in precipitation are more important than

temperature to control phenological patterns (Borchert et al., 2004; Brearley et al., 2007).

Our findings agreed with Kemp (1983) who have studied phenological behavior in

Chihuahuan desert in relation to availability of water. Similarly, Beatley (1974) has noted the

Phenological stages and their environmental triggers in Mojave Desert. Most of the dominant

species of the Chihuahuan, Mojave, and Sonoran deserts were found to be dependent on

seasonal availability of soil moisture for initiation of flowering and fruiting in order to

complete their life cycle (Beatley, 1974; Simpson, 1977; Kemp, 1983). Many studies have

revealed considerable variations in the onset of flowering because of climatic changes.

Therefore, long-term studies have been found compulsory for better understanding of the

phenological behaviour (Bowers, 2007).

5.1.3: ECONOMIC USE CLASSIFICATION Plants have remained important for human life since the history of humankind. It is very

difficult to think of any human activity in which plants are not involved in one way or other.

The present study deals with traditional uses of various browses in Cholistan rangelands. For

this purpose, twenty-five browse species belonging to twelve families were investigated and

information was collected for their local uses related to firewood, timber wood,

forage/fodder, and medicinal value. Results showed that study area was rich in browse

species of various economic uses. Maximum species were observed to have forage/fodder

value that clearly indicates that this area can serve as a big rangeland.

Further, uses of plants for treatment of various diseases in man and livestock are very

significant. These medicines perform an important role in life of nomadic peoples due to easy

accessibility. In Pakistan, major sources of medicinal plants are forest and rangelands. It has

been observed that homeopathic and traditional medicines are cheaper and usually more

accepted by local peoples (William & Zahoor, 1999). It was found that there is an increasing

trend of exploitation of medicinal plants of Cholistan rangelands due to increase in human

population, local hakims, and pharmaceutical industry. Subsequently, browse species were

also exploited as fuel wood and timber wood in Cholistan rangelands. Both of above uses

were consisting of those perennial species, which were making the maximum vegetation

cover but their ruthless cutting and unchecked utilization is increasing pressure on this area.

Page 82: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

82

There was little published information about the uses of flora of Cholistan desert. Arshad, et

al., (2003) and Hameed et al., (2011) has reported the medicinal importance of plants in this

area. It was observed that lack of awareness in local peoples and over exploitation of flora

leading towards the degradation of this area. The results suggested that the major use of this

natural ecosystem could be as rangeland; therefore, effort should be made for the

improvement of this area. a b

c d

PLATE 5.1: ILLEGAL CUTTING AND BURNING OF BROWSE SPECIES (a, b, c, d)

Page 83: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

83

5.2: PHYTOSOCIOLOGICAL STUDY OF BROWSES

5.2.1: COMMUNITY STRUCTURE

Phytosociology is generally concerned with methods for recognizing and defining plant

communities, and is collectively termed as classification. The major purpose of classification

is to make a set of plant communities for a particular area under investigation (Kent & Coker,

1997). In Cholistan rangelands flora differs greatly in species composition, hence dynamic

rhythm of plant life was seen changing in magnitude as one passed through desert; whereas

sharp changes were there with reference to topographic features, variability of soil and

distances among habitats.

The phytosociological classification of vegetation of Cholistan rangelands is summarized in

table 4.4. A total 25 browse species were recorded, not all of identified species were used in

the classification of plant communities. There were total twenty browse communities

recognized in the rangelands of Cholistan desert. It has been observed that sampling time and

seasonal activities change the structure of communities. In the studied area, woody and

perennial species almost remained same whereas shape of community changed due to the

prevalence of annuals (Therophytes) during monsoon, which shows seasonal aspect. Several

authors (Coetzee, 1993; Bredenkamp & Brown, 2003) agreed that the differences in

floristically defined plant communities were mostly linked with habitat variables such as

topography (landform, aspect, & slope), geology, and altitude, although soil texture,

rockiness, and depth are also necessary components.

Vegetation assessments are a prerequisite for any ecological or habitat related research (Van

Rooyen et al., 1981). Based on vegetation diversity, investigated area can be divided into

three different habitats including sandunal, interdunal sandy and clayey saline habitats.

Sandunal habitat was consisting of medium to high, generally unstabalized shifting dunes

and was highly sandy. At sandunal habitat six browse communities were observed including

the Haloxylon salicornicum, Calligonum polygonoides Leptadenia pyrotechnica (HCL),

Calligonum polygonoides, Haloxylon salicornicum,Crotalaria burhia (CHC), Haloxylon

salicornicum, Calligonum polygonoides, Aerva javanica (HCA), Calligonum polygonoides,

Haloxylon salicornicum, Aerva javanica (CHA), Calligonum polygonoides, Haloxylon

salicornicum Leptadenia pyrotechnica (CHL) and Haloxylon salicornicum, Calligonum

polygonoides, Crotalaria burhia (HCC) (Arshad & Akbar, 2002; Akhter & Arshad, 2006).

Page 84: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

84

Interdunal sandy habitat was consisting of small sandy hummocks of sandy loam soil. Eight

browse communities were located at interdunal habitat, consisting of Leptadenia

pyrotechnica, Aerva javanica, Crotalaria burhia (LAC), Crotalaria burhia, Leptadenia

pyrotechnica, Haloxylon salicornicum (CLH), Crotalaria burhia, Aerva javanica, Haloxylon

salicornicum (CAH), Aerva javanica, Crotalaria burhia, Calligonum polygonoides (ACC),

Salsola baryosma, Crotalaria burhia, Haloxylon salicornicum (SCH), Salsola baryosma,

Leptadenia pyrotechnica, Capparis deciduas (SLC), Leptadenia pyrotechnica, Salsola

baryosma, Haloxylon salicornicum (LSH) and Aerva javanica, Salsola baryosma, Calotropis

procera (ASC) (Arshad & Akbar, 2002; Akhter & Arshad, 2006).

Whereas, clayey saline habitat was consisting of plain hard crust of soil called dahar,

impervious to water and remain plant less. It was flattened habitat shape up by the flow of

water through the area or after the removal of upper deposit of fine silt. Whereas at clayey

saline habitat six browse communities were observed including the Haloxylon recurvum,

Suaeda fruticosa, Pulicaria rajputanae (HSP), Suaeda fruticosa, Haloxylon recurvum,

Salsola baryosma (SHS), Suaeda fruticosa, Salsola baryosma, Haloxylon recurvum (SSH),

Haloxylon recurvum, Suaeda fruticosa, Tephrosia uniflora (HST), Haloxylon recurvum,

Suaeda fruticosa, Calotropis procera (HSC) and Suaeda fruticosa, Haloxylon recurvum,

Abutilon muticum (SHA) (Arshad & Akbar, 2002; Akhter & Arshad, 2006).

The species variations in plants from site to site may be due to composition of soil, elevation

of selected sites, nature of disturbances like human interferences, grazing pressure, distance

of study sites from population areas etc. All the factors determine the category of species in

which the species fall (Ahmad et al., 2007). Within Cholistan rangelands, a number of

different soil types and dominant plant species are found (Arshad et al., 2007). Based on

results the most dominant browse species at sandunes were Calligonum polygonoides and

Haloxylon salicornicum. At interdunal habitat Aerva javanica, Salsola baryosma Leptadenia

pyrotechnica and Crotalaria burhia, species were common. Whereas at compact saline

‘dahars’ without any soil cover are dominated by Suaeda fruticosa and Haloxylon recurvum

(Arshad & Akbar, 2002). Similarly, while exploring Cholistan desert Rao et al., (1989)

documented that phytosociological assemblages are indicator of soil types as edaphic factors

effect the vegetation more than other factors.

Page 85: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

85

The soil topography and chemical composition are very important in plant distributions.

Association of soil features with vegetation was estimated for defining the most effective

factors responsible in the distribution of vegetation types in Cholistan rangelands. Physio-

chemical analysis of soil showed that soil texture of sandunal habitat was sandy; interdunal

was sandy loam whereas clayey saline habitat was clayey nature. Results revealed that pH,

EC, Na contents, and soil moisture were high at clayey saline communities and minimum at

sandunal areas. In typical saline communities moisture was remained available for longer

period (Arshad & Akber, 2002). These soils are regarded as highly saline with very high

conductivities. Whereas concentration of organic matter, P, K was better at interdunal habitat

which may be due to better vegetation cover at interdunal areas. Overall percentage of

organic matter in soil of Cholistan desert was poor, that obviously indicate the aridity causing

in sparse vegetation cover. Our results were in line with Arshad et al., (2008) who has

studied the vegetation distribution in relation to edaphic factors in Cholistan desert.

To study the vegetation of Cholistan rangelands, much stress was paid on plant communities.

The vegetation of Cholistan desert has not been studied properly until now. No actual

information was existing about the browse communities of Cholistan desert however, our

work corroborate with the work of some earlier researchers in this area (Rao et a1., 1989;

Arshad & Rao, 1995; Arshad et a1., 2002; Arshad & Akbar, 2002). The criterion of

classification used in current research was highly supported by the studies of Kirk-Patrick

(1990), Malik et al., (2007), Iqbal et al., (2008), Hussain et al., (2009) and Rashid et al.,

(2011) who supported the above criteria and has described plant communities of different

areas of the world.

5.2.2: MULTIVARIATE ANLYSIS

Multivariate analysis of data was carried out by using the classification and ordination

techniques. Classification by the means of cluster analysis is most common multivariate

procedure to analyze the vegetation data (Gauch, 1982). According to results, cluster analysis

has classified the twenty stands into three different vegetation clusters. Cluster A was

consisting of sandunal association, cluster B was consisting of interdunal sandy association

and cluster C was consisting of clayey saline association. Generally, these clusters were

representing the three ecological habitats i.e. sandunal, interdunal and clayey saline in

Cholistan rangelands (Arshad & Rao, 1995).

Page 86: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

86

Results showed that vegetation diversity was poor at sandunal habitat because soil texture

was sandy and mostly consisted of unstabilized sandunes. Sandunal association was

comprising of six browse communities i.e. Haloxylon salicornicum-Calligonum

polygonoides-Leptadenia pyrotechnica, Calligonum polygonoides-Haloxylon salicornicum-

Crotalaria burhia, Haloxylon salicornicum-Calligonum polygonoides-Aerva javanica,

Calligonum polygonoides-Haloxylon salicornicum-Aerva javanica, Calligonum

polygonoides-Haloxylon salicornicum-Leptadenia pyrotechnica and Haloxylon

salicornicum-Calligonum polygonoides-Crotalaria burhia (Arshad & Akbar, 2002).

Interdunal habitat was consisting of small hummocks of sand and vegetation cover was

better. This association was comprised of eight browse communities i.e. Leptadenia

pyrotechnica-Aerva javanica-Crotalaria burhia, Crotalaria burhia-Leptadenia pyrotechnica-

Haloxylon salicornicum, Crotalaria burhia-Aerva javanica-Haloxylon salicornicum, Aerva

javanica-Crotalaria burhia-Calligonum polygonoides, Salsola baryosma-Crotalaria burhia-

Haloxylon salicornicum, Salsola baryosma-Leptadenia pyrotechnica-Capparis deciduas,

Leptadenia pyrotechnica-Salsola baryosma-Haloxylon salicornicum and Aerva javanica-

Salsola baryosma-Calotropis procera. Whereas clayey saline association was consisting of

six browse communities i.e. Haloxylon recurvum-Suaeda fruticosa-Pulicaria rajputanae,

Suaeda fruticosa-Haloxylon recurvum-Salsola baryosma, Suaeda fruticosa-Salsola

baryosma-Haloxylon recurvum, Haloxylon recurvum-Suaeda fruticosa-Tephrosia uniflora,

Haloxylon recurvum-Suaeda fruticosa-Calotropis procera and Suaeda fruticosa-Haloxylon

recurvum-Abutilon muticum. In this association, vegetation diversity was low due salinity

and poor organic contents in soil (Arshad & Akbar, 2002; Akhter & Arshad, 2006).

The results of cluster analysis were verified by detrended correspondence analysis. DCA of

stands data has produced the similar vegetation groupings along the axis as identified by the

cluster analysis (CA). The three habitats were clearly discernible in ordination diagram along

the two axis. Results showed that group of stands situated to the left of the diagram was

representing the sandunal association and stands situated more to the right of the diagram

were showing with clayey saline association whereas stands in-between them were

representing the interdunal association. The DCA graph has illustrated a gradient along

ordination axes 1 that could be related to high pH, EC, Na, and soil moisture in right side at

clayey saline association (C) and low in left side at sandunal association (A).

Page 87: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

87

Subsequently the effect of environmental variables on three vegetation associations was

carried out by canonical correspondence analysis. Ordination technique CCA has described

the overall pattern of plant species and stands distribution based on soil variables. In CCA

biplot the most effective soil variables, which have significant correlation with the

distribution of vegetation associations were organic matter, phosphorus, potassium, electrical

conductivity and sodium. Result showed that interdunal association (B) was strongly

correlated with organic matter, potassium, and phosphorus whereas clayey saline association

(C) was under the strong impact of EC and Na. It was observed that, sandunal association (A)

was located at opposite end of the high EC, Na, pH, and soil moisture, indicating the poor

affect of these environmental variables (Arshad et al., 2008).

Physio-chemical analysis of soil has revealed that concentration of organic matter, potassium

and phosphorus was better at association (B), therefor vegetation was also healthier at

interdunal sandy habitat. However, soil nutrient level was poor both at sandunal (A) and

clayey saline associations, further poor vegetation in these associations was be due to moving

sandunes problem and high salinity level respectively. Overall, this multivariate analysis has

sketched out the vegetation of Cholistan rangelands into three distinct associations; sandunal,

interdunal sandy and clayey saline along with their specific soil features. a b

Page 88: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

88

c d

e f

PLATE 5.2: SANDUNAL(a,b) INTERDUNAL SANDY (c,d) AND CLAYEY SALINE (e,f) HABITATS

Page 89: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

89

5.3: FORAGE PRODUCTION OF BROWSES

For rangers and biologists, it is essential to have information about biomass production of

rangelands for range management. The best possible use of rangeland resources depends

upon the understanding of amount and dynamics of seasonal biomass productivity as

influenced by climatic conditions. The dry biomass evaluates the community resources fixed

in different species and is one of the top indicators of species importance within plant

community (Gou et al., 1997). The present study is endeavoring to assess the biomass

productivity of browse species in the degrading rangelands of Cholistan desert.

According to our results, the total dry matter production during wet season was 8029.10

kg/ha while in dry season was 5422.90 kg/ha, that was 19.38% higher in wet season.

Whereas dry matter production at sandunal habitat was 21.14% high, at interdunal habitat

was 16.6% high and at clayey saline habitat was 22.62% high in wet season as compare to

dry season. Overall, the forage productivity was high during wet season across the three

range habitats; this was perhaps due to high amount of rainfall received during wet season as

compared to dry season. Annual rainfall in Cholistan desert is extremely unpredictable both

on temporal and spatial scales. Rainfall generally occurs during monsoon (July to September)

and in winter and spring (January to March). The winter rain is scanty so vegetation in spring

is usually poor, characterized by few annual species of forbs and grasses providing low

biomass for grazing (Akhtar & Arshad, 2006).

In arid and semi arid ecosystems, rainfall is a major environmental agent, affecting the forage

productivity and it is extremely variable all through and between the years. It was concluded

that Cholistan rangelands are monsoonal and forage productivity of these rangelands depends

greatly on monsoon rains (Akhtar & Arshad, 2006). Frost & Smith, (1991) has reported that

based on evidences, we assumed that productivity of rangeland in arid and semi arid areas is

determined mostly by site characteristics (precipitation, soil, topography) which influence the

most important limiting factor, moisture. Similarly, Fischer & Turner (1978) also observed

that precipitation, rather than vegetation composition, was the main determinant of biomass

productivity in semiarid areas. Various studies (Farooq, 2003; Durrani & Hussain, 2005)

have also revealed that the quantity of rainfall greatly affects the rangelands production and

our conclusions agree with them.

Page 90: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

90

The natural rangelands of arid and semi-arid areas are mainly composed of perennial plants

species, which make the excellent use of climate and soil (Salem & Palmberg, 1985). Based

on results, it was observed that in both seasons dry forage production was high at interdunal

habitat followed by sandunal and clayey saline habitat. This might be due to high vegetation

diversity and better water retention capacity of soil at interdunal habitat. Vegetation coverage

was low on sand dunes and unstable sand dunes were lacking of any vegetation. Whereas in

clayey saline habitat soil and vegetation structure was very poor, might be due to high pH.

Being very saline and impermeable to rain water the clayey saline habitat called ‘dahars’

remained predominately plant less. It was observed that poor soil with less water holding

capacity, little organic matter, and low nutrients in Cholistan range decrease the vigour and

size of plants leading to reduced biomass productivity (Akhtar & Arshad, 2006).

Generally, the great variations in the productivity levels in different range sites are due to

variations in soil, climate, vegetative types, and grazing pressure. Results showed that range

sites with high forage productivity were less disturbed by grazing while the sites with

minimum forage productivity were mostly overgrazed. It was observed that aboveground

total biomass productivity decreased significantly with increasing grazing pressure. As

change in grazing intensity and selectivity will necessarily change the biodiversity;

overgrazing and under grazing both have adverse effects, but overgrazing by animals is

increasingly problematical. Ultimately overgrazing leads to the retrogression and loss of

biodiversity (Khan, 1994).

In study area during wet season maximum range sites were observed to be moderately grazed

followed by overgrazed then slightly grazed sites. While in dry season, maximum range sites

were observed to be overgrazed. There were no sites without grazing in both seasons. In

Cholistan rangelands, grazing period starts from August until the February in good rainy

years. About all the herbaceous forage is exploited during monsoon and post monsoon

season, whereas some green browse remained available throughout the year. The

commencement and distribution of monsoon showers mostly state the pattern of movement

in nomadic peoples and livestock. At the months of March or April, shortage of water and

feed resources in interior of desert compel nomadic peoples and their herds to move towards

irrigated plains (Akhtar & Arshad, 2006). Therefore, in dry season forage, productivity was

poor and most of study sites were observed to be overgrazed.

Page 91: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

91

This study has provided the baseline about seasonal forgare productivity and grazing status

of cholistan rangelands. Overall, very little information was available about forage

productivity of rangelands in Pakistan. Recorded browse productivity was poor when

compare to the work of Malik, (2004) in rangelands of Azad Kashmir and Hussain & Durani

(2007) in rangelands of kallat. The present study revealed that study area was vegetative rich

in wet season as compare to dry season. Perennial browse species were found playing a

significant role in the provision of forage production round the year. Browses can be an

important component of livestock feed round the year, but particularly important during the

droughts. In Cholistan rangelands, most of perennial species exhibited their greatest

vegetative activity during monsoon and spring and they were less active or dormant during

summer and winter. However, some browse species were active throughout the year. These

type of browse species played significant role in the sustainable production of natural forage.

a b

PLATE 5.3: VEGETATION STRUCTURE IN DRY (a) AND WET SEASON (b)

Page 92: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

92

5.4: RANGE CARRYING CAPACITY

Carrying capacity or grazing capacity are normally considered synonymous and are

explained by ecologists in several ways. Holechek et al., (1996) has defined the carrying

capacity as maximum possible stocking rate year after year without causing damage to

vegetation and other related resources. Assessment of carrying capacity is an important

element of rangeland inventory and monitoring program because it is basic managing tool to

ensure sustainability of natural resources (Bedunah, 2005).

Carrying capacity is a basic component of rangeland evaluation, because it connects the

forage supply and demand. According to our results, in Cholistan rangelands, overall browse

productively was poor whereas browse production was high in wet season as compare to dry

season. As grazing animals in Cholistan rangelands comprised of cattle, sheep, goats, and

camels therefore, carrying capacity was calculated for these kinds of livestock only.

Holechek (1988) has determined the daily dry matter (DM) intake for bighorn sheep, elk,

moose, white-tailed deer, mule deer, and pronghorn antelopes as two percent of their body

weight. As DM intake for the livestock of Cholistan rangelands has not been analyzed yet,

thus DM intake for these animals was also taken as two percent of their live-body weight.

Based on evidences of livestock producers of the area, a young cow (equal to one AU) may

attain average live-body weight of about 350 kg whereas DM requirement of an AU was

calculated as 7 kg haP

-1P.

It has been reported that intake of forage in grazing livestock differs with body weight,

forage availability and quantity. Grazing time depends on availability of total forage,

accessibility of plant parts, and quality of consumed feed. Grazing time is reduced when

good quality of forage is plentiful (Nyamangara & Ndlova, 1995). Based on USA

recommendations, range utilization intensity is 30 to 40% of key species with 130 to 300 mm

annual rainfall for shrub steppe in semiarid region (Holechek, 1988). It may reach at 50%

utilization level during high productive year and decrease during dry period. In the arid

rangelands of Cholistan, range use intensity was taken as 40%. Overall, available browse

production during wet season was 157.97 kg/ha and 105.88 kg/ha during dry season. Based

on these standards; overall carrying capacity during wet season was 16 ha/AU/Y and in dry

season was 24 ha/AU/Y. whereas on the availability of browse forage in wet season 80376

Page 93: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

93

AU/Y were estimated while in dry season 53872 AU/Y were estimated that can be grazed in

Cholistan rangelands.

On the account of three range habitats in Cholistan desert, carrying capacity was high at

interdunal habitat followed by sandunal and clayey saline habitats during both seasons. Over

all forage production was better in wet season due to high rainfall in monsoon (July to

September) as compare to dry season (April to June). Therefore, carrying capacity was high

in wet season as compare to dry season in Cholistan rangelands. The data suggested that

overall carrying capacity of Cholistan rangelands during both seasons was very low and

available browse production was insufficient for present stocking rate. Therefore, rangelands

of Cholistan were degrading due to overgrazing and because of continuous grazing, the

palatable species are disappearing at an alarming rate and comparatively unpalatable species

are spreading the landscape (Akhter & Arshad, 2006).

Appropriate stocking distribution is one of the major goals of all grazing systems (BCMF,

2002). It has been observed that overgrazing not only results in the compaction of soil, but

also decrease the palatable species cover. Main factors influencing the livestock nutritional

status include type of animals, stocking rate, type of forage species, grazing system and

season of usage (Holechek et al., 1998). Hussain & Chughtai (1984) have reported that non-

palatable species have become dominant due to overgrazing in Quetta. Similar, observations

has reported in Ganga Chotti and Bedori hills by Malik (2005). Over grazing and over-

exploitation of palatable resources by local inhabitant has caused degradation in South

Wiziristan (Hussain & Badshah, 1998). Likewise, nomadic peoples in Cholistan desert have

also exploited the natural resources of this area. They uprooted almost every plant for their

need irrespective of its forage, medicinal or other values. Therefore, forage productivity is

decreasing day by day ultimately leading to poor carrying capacity of this area.

Little information was found regarding carrying capacity of Cholistan rangelands and it was

concluded that this information was not found in past, but on limited basis. Several other

studies were observed on carrying capacity of rangelands in Pakistan. A carrying capacity of

1.27 AU/ha (AU stands for Animal Unit) was recorded during summer growing season when

the forage biomass was at its peak in Pir chinasi rangelands (Malik, 2007). Afzal et al.,

(2007) has assessed carrying capacity of Pabbi Hills Kharian range as 12 ha/AU/Y. Sana-ul-

haq et al., 2011 has determined the winter season carrying capacity as 2.41 ha/AU/4month of

Page 94: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

94

sub-tropical, sub humid rangelands of Dhrabi watershed, Pakistan. There is no doubt that the

Cholistan rangelands are dominated by non-equilibrium conditions. There is a great

inconsistency in forage productivity both spatially and temporally where estimates of

carrying capacity should be used as more of an abstraction rather than a set number. In these

environments, droughts will always be an important factor in affecting production levels and

animal numbers. Whereas, in order to decide grazing prescriptions resource managers need to

be able to define the variation in productivity levels and provide estimates of stocking rates

for different vegetation types.

5.5: PALATABILITY CLASSIFICATION OF BROWSES

The Cholistan rangelands are monsoonal and forage productivity of these rangelands depends

greatly on monsoon rains (frequency, amount, & time). The rain in winter season is very

sparse thus; vegetation in spring is normally meager, characterized by few species of annual

grasses and herbs providing very poor biomass for grazing animals. The grazing season in

Cholistan desert is characterized by onset of monsoon rains (July to September) and end at

the months of March or April with the shortage of feed and water in desert (Akbar et al.,

1996). Availability of forage species with respect to season depends upon phenological

stages, which in turn depend upon climate conditions. Results showed that these perennial

browses including the 07 species of trees and 18 species of shrubs were almost remained

available throughout the year.

As rangelands vegetation varied significantly in their seasonal availability, nutritive value,

productivity and palatability, so grazing animals apparently select the highly palatable forage

species first (Hussain & Durrani, 2009b). According to our results, it has been observed that

out of total recorded browse species, 88% species were palatable and 12% species were

unpalatable. In the investigated area maximum browse species were found moderately

palatable. Seven species were found to be highly palatable which consist of 5 species of trees

including Acacia nilotica, Prosopis cineraria, Zizyphus mauritiana, Zizyphus spina Christi,

Salvadora oleoides and 2 species of shrubs Acacia jacquemontii, Zizyphus nummularia.

Among palatable species, mostly the trees were highly palatable and maximum species of

shrubs were found to be moderately palatable.

Whereas, three browse species were found to be unpalatable which consist of only shrubs

including Aerva javanica, Aerva pseudotomentosa and Leptadenia pyrotechnica. This

Page 95: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

95

unpalatability might be due to alkaloids, phenolics, saponins and other poisonous elements in

feed of grazing animals (Kayani et al., 2007). It is very difficult to differentiate between non-

poisonous and poisonous plants as animals dislike feed due to unlikable feelings or physical

discomfort, produced by toxins, or by excess or deficiency of nutrients. This condition

becomes apparent when grazing livestock take no interest even for preferred food or when

presented substitutes (Provenza, 1995).

Animals greatly differ in their preferences for selection of various plant species or plant parts

as feed. The selectivity of forages by grazing animals as feed mainly depends upon the type

and amount of herbage availability (Hussain & Durrani, 2009b). Results showed that

maximum trees were used for their leaves, whereas maximum shrubs were preferred for their

shoot. It showed that leaves have been grazed in maximum browse species (63.64%), as feed

by grazing animals. The livestock usually prefer the leaves of all forages, might be due to

high crude protein, phosphorus and low lignin and fiber contents than woody parts.

Generally, animals desire fresh foliages than dried and non succulent forages that can be

eaten easily. Likewise, soft green herbaceous parts, in addition having good taste and odour

are rapidly digestible (Durrani, 2000).

It has been observed that Acacia nilotica, Prosopis cineraria, and Prosopis juliflora are

preferred for their fruits by livestock. Pfister & Malecheck, (1986) has reported that flowers

and fruits are seasonally essential in animal feed as they might have high level of proteins

and cell soluble than leaves. Similarly, in shrubs vegetative buds are mostly high in crude

protein and cell soluble (Holechek et al., 1998). Fresh forage species with high contents of

crude protein, sugar, cellulose and fats are highly preferred and digestible. While plant

species with high lignin, fiber, silica, secondary metabolites and with poor digestibility are

less preferred by grazing animals (Vallentine, 1990). Our results were in line with Hussain &

Mustafa (1995) who has observed the preference of floral and fruiting parts by animals in the

pastures of Nasirabad valley, Hunza.

Rangelands of Cholistan desert are freely grazed by mixed herds of cattle, sheep, goats and

camels. According to our results, camel ranked first in exploring maximum number of

species, which consist of 07 species of trees, 13 species of shrubs. Goat and sheep were

observed to have similar selection, which consisted of 06 species of trees and 04 species of

shrubs. Cattle were observed to utilize minimum number of species including 05 species of

Page 96: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

96

trees and 02 species of shrubs. It was observed that grazing animals select the most palatable

plant species first. It may lead to complete replacement of good quality forages by non-

palatable species. Livestock pass more time for grazing in forage deficient rangelands.

Animals face forage deficiency in Cholistan rangeland in winter (December & January) due

to dormant season but this condition become more severe in April owing to decline of overall

vegetation due to climatic extremities and shortage of water (Akbar et al., 1996). Certain

species of trees and shrubs that maintain their foliage during the winter may continue to be

palatable. Mostly the deficiency of forage forces the animals to eat harmful amount of even

toxic plants (Hussain & Durrani, 2009b). It may be possible that poor health and death loses

of animals in Cholistan rangelands are partially due to continuous utilization of such

poisonous plant species.

It was observed that in Cholistan rangelands maximum forage was available during monsoon

season because sustainability of life in this desert rotates round the annual precipitation.

Numerous species of ephemeral and annual appear after rains, complete their life cycle in a

short duration and vanish (Akhter & Arshad, 2006). These species, as well important in

nutritional contribution also decrease grazing pressure on palatable perennial species. It was

noted that, animals grazed the vegetation as soon as it was produced. A few species growing

within the thicket of spiny or obnoxious plants might escape grazing and reach maturity. A

very little information was available about palatability, seasonal availability, and animal

preferences of forage plants of Cholistan rangelands. However, our results were almost in

line with Arshad et al., (2001) who has studied the sustainability pattern of livestock in

Cholistan desert.

Page 97: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

97

a. Camel b. Cattle

c. Goat d. Sheep

PLATE 5.4: TYPES OF GRAZING LIVESTOCK IN CHOLISTAN RANGELANDS (a, b, c, d)

Page 98: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

98

5.6: NUTRITIONAL EVALUATION OF BROWSES 5.6.1: PROXIMATE COMPOSITION

Our data was first report about the chemical composition of browse species in the arid

rangelands of Cholistan desert. The chemical analysis of range browses serves as a relative

measure of differences between the selected species. The comparison of ten major browse

species of Cholistan rangelands showed that there were significant differences in nutrients

among investigated species.

In forages, dry matter (DM) is considered to be the actual amount of feed stuff after

removing water, volatile acids and bases if they are present (Azim et al., 2011). The results

revealed that DM contents were high in browse species, which may be determined by late

stage of maturity of foliage’s at the time of sampling as DM is found to increase with

maturity of forages (Sanon et al., 2008). In this study high DM contents could be due to the

time of sampling in spring season (March) after 5-6 months of fresh growth of plant species

in monsoon because in Cholistan desert, maximum plant growth has been observed during

monsoon (July to September). It indicates that browse species of this area serves as an

essential and consistent source of DM, along other nutrients for feeding the livestock of

Cholistan. The contents of DM in this study had almost similar ranges as those stated

previously (Towhidi, 2007; Towhidi & Zhandi, 2007; Njidda & Ikhimioya, 2010; Foguekem

et al., 2011).

Crude protein (CP) mainly includes all nitrogenous compounds present in forages and

considered as reliable source of overall nutritional status of animal feed (Ganskopp &

Bohnert, 2001). Crude protein below 6-7% causes low production of milk, meat, and wool.

It also disturbs the reproduction process in animals. Deficiency of crude protein may also

reduce microbial activity in the rumen of animals due to poor availability of nitrogen (Bose

& Balakrishnan, 2001). The concentration of CP in browse species was higher than minimum

level of 7-8%, essential for optimum feed intake and function of rumen in grazing animals

(Van Soest, 1994). This high level of CP signifies their high nutritive value; therefore,

browses can be used as protein supplements for poor quality pastures (Osuga et al., 2005).

The animal feeds with less than 6% CP are not likely to provide the minimum level of

ammonia that is required for maximum microbial growth in rumen (Norton, 1994).

Page 99: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

99

Based on level of CP suggested for the maintenance of several wild and domestic herbivores

by Schwartz et al., (1977) and NRC, (1978; 1984) 7.5% CP was established as satisfactory

forage quality threshold (Ganskopp & Bohnert, 2001). According to results, contents of CP

in browse species were higher than 8%, which were sufficient for medium level of

production in ruminants. Therefore, these browses could be a good quality protein

supplements if they were properly degraded and were non-toxic to the microbes of rumen

and host animal. The concentration of CP was found almost consistent with previous studies

eg., Arzani et al., (2006) Towhidi, (2007) and Mahala, et al., (2009). The CP range in present

study was slightly higher than what had been stated for range forages in earlier studies

(Towhidi & Zhandi, 2007; Foguekem et al., 2011) and was little lower than the range

presented by Melaku et al., (2010) Njidda & Ikhimioya, (2010) and Azim et al., (2011).

These variations in contents of CP in browses may be due to time of sampling because same

species varying in CP level by about 30 to 40% when harvested at different times of the year

(Wood et al., 1994).

Ether is like a group of substances, insoluble in organic compounds and water. They act as

storehouse of energy and refer as lipids (Verma, 2006). Ether extract (EE) is a component of

lipid and animals mainly derive their energy from it for their body production and

maintenance. The high contents of EE in feed samples are a sign of higher energy level for

the animals (Odedire & Babayemi, 2008). According to our results, maximum value of EE

was observed as 03.44% (Suaeda fruticosa) and minimum 01.03% (Haloxylon salicornicum).

Our findings were almost comparable with work of Santra et al., (2008) and Mahala, et al.,

(2009). The results were showing little high values of EE as determined previously (Towhidi

& Zhandi, 2007; Towhidi 2007) but slightly lower than Njidda & Ikhimioya, (2010) and

Azim et al., (2011).

In this study, mean concentration of crude fiber (CF) was 24.36%, which varied from 13.45

to 33.45% among browse species. These results were showing slightly lower contents of CF

as determined previously by Towhidi & Zhandi, (2007). However, these results were almost

in line with Abu-Zanat, (2005) and Azim et al., (2011). Ash represents the mineral level in

animal feed, which is mostly consisting of calcium, phosphorus, potassium and large amount

of silica (Verma, 2006). According to our results, concentration of ash was ranging from

08.24 to 18.60% with mean value 13.44%. Different researchers have determined the

Page 100: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

100

different ratios of ash in different plant species between 07.60 and 22.20% (Tan & Yolcu,

2001). Our results were in this limit and can be compared with some previous studies

(Mahala, et al., 2009; Njidda & Ikhimioya, 2010; Sultan et al., 2010). However, our results

were slightly higher than the results of Nasrullah et al., (2003), Melaku et al., (2010) and

Azim et al., (2011).

Similarly, in this study mean concentration of nitrogen free extract (NFE) was calculated as

48.79% ranging from 34.98 to 56.75%. This range was almost in agreement with those

reported by Okoli et al., (2003) Abu-Zanat, (2005) and Azim et al., (2011). Our results

showed that browses were of paramount importance for rangelands management in Cholistan

desert. The proximate composition of browse species did not vary much from values

published in previous literature. The slight variations in chemical composition of browse

species among different studies could be attributed to plant variety, agro climatic conditions,

or even growth stages of plants at sampling and sampling procedures (Bamikole et al., 2004).

It was decided that the browse species investigated in present study could be a good source of

DM and protein.

5.6.2: STRUCTURAL COMPOSITION

Neutral detergent fiber (NDF) is an important determinant of forage quality and digestibility,

and it directly affects the performance of an animal. The high concentration of NDF lower

the neutral detergent soluble which mostly consisting of starches, sugar, fat, CP. El Shaer &

Gihad, (1994) has reported that contents of NDF can range from 35-40% which is

considered as the normal range of nutritious fodder. Results revealed that concentration of

neutral detergent fiber (NDF) present in browses was ranged from 29.33 to 44.00%. Browse

species investigated in current study consisted below 45% NDF on DM basis and this render

them as good quality roughages, because fibrous feed with less than 45% NDF have been

classified as good quality feed (Singh & Oosting, 1992). High contents of NDF in Prosopis

cineraria and Acacia nilotica as compare to others may have low DM intake because high

contents of NDF lower the feed intake rate in animals (Mc Donald et al., 2002). Our findings

were very close to the results of Melaku et al., (2010) and Shimelse, (2010) who has studied

the chemical composition of browse species in Ethiopia.

The results showed that concentration of acid detergent fiber (ADF) in selected browse

species was ranged from 12.33 to 33.67%. Melaku et al., (2010) and Shimelse, (2010), has

Page 101: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

101

reported almost similar ranges. It was observed that Calligonum polygonoides, which has

higher content of ADF may have poor digestibility, since it has been reported that

digestibility of feed and ADF contents are negatively correlated (Mc Donald et al., 2002). In

all the investigated species, except for Haloxylon recurvum, Haloxylon salicornicum and

Calotropis procera the ADF was a large part of NDF fraction that showed high content of

cellulose and lignin and low content of hemicellulose. In this study, hemicellulose was

ranging from 10.00 to 21.67% with the mean value 16.70%. Highest contents of

hemicellulose were observed in Haloxylon salicornicum (21.67 %) and lowest in Calligonum

polygonoides (10.00%). Our results were almost in line with Nasrullah et al., (2003) and

Foguekem et al., (2011) who has evaluated the nutritional status of various forage plants.

Lignin is a cell wall component and formed as part of cell wall thickening process (Boudet,

1998). Results revealed that mean concentration of lignin in browses was 07.22% that was

varying from 05.40 to 09.87%. Shimelse, (2010) has determined the range of ADL in browse

species from 4.3 to 15.9%. Our results were almost in line with this range and with previous

studies (Santra et al., 2008; Melaku et al., 2010). However, from a nutritional point of view,

it is remarkable that lignin value is kept low in order to avoid jeopardizing the digestibility of

other nutrients. Different studies have reported a negative correlation between lignin contents

and cell wall digestibility because lignin acts as a physical barrier in the functioning of

microbial enzymes (Moore & Jung, 2001). According to our results, the differences in

structural constituents among selected browse species could be attributed to facts that these

species were different, and even growing in similar environmental conditions, they may have

different chemical composition, a result of genetic diversity of species (Van Soest, 1965).

5.6.3: MINERAL COMPOSITION

According to results the concentration of macro minerals (P, K, Na, Ca, Mg) and micro

minerals (Mn, Cu, Zn, Fe) were varying significantly (p<0.05) among selected browses from

Cholistan rangelands. Phosphorus (P) has been called as “master mineral” since it is

concerned in most metabolic processes (Rasby et al., 1998). P is also vital for strengthening

of skeleton, improving blood plasma, teeth, carbohydrates assimilation, and activation of

enzymes. Deficiency of P has been observed to cause the poor growth of livestock (Holechek

et al., 1998). The recommended range of P for all classes of ruminants as suggested by

National Research Council (1984) was 0.12 to 0.48%. Sheep and goats require a minimum

Page 102: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

102

level of phosphorous from 0.16 to 0.37% of DM (Anon., 1985). In this study P concentration

in browse species was also lower than minimum requirement (0.082%) of livestock (Anon.,

1975). This agrees with the results of Inam ur Rahim (1999), Akhtar el al., (2007) and Sultan

et al., (2009) who has observed P deficiency in various forages.

Forages from savanna and semi desert areas have been described as deficient in P due to low

concentration of P in soil. Deficiency of phosphorus becomes apparent in animals when

forages are poor in P and high in Ca (Minson, 1990a). According to Wilson (1969), trees and

shrubs in such areas with poor or intermittent rainfall have been found to be deficient in P.

On worldwide basis, P may be considered as most widespread mineral deficiency among

grazing livestock (Underwood, 1981).

According to National Research Council (1984), the recommended range of potassium (K)

for all classes of ruminants was 0.5-1.0%. The critical level of K was 0.60% as recommended

by the NRC (1996) and 0.80% by McDowell et al., (1984). Results showed that

concentration of K in browses was lower than these recommended ranges. It has been

reported that maximum level of K that can be tolerated is 3% of DM (NRC, 1980). Increase

in concentration of K from 0.7 to 3% in feed linearly reduced the energy and weight gain in

lambs (NRC, 1985). The contents of K are mainly affected by maturity of forage species.

Young actively growing forage may have excess of K, ranging from 4-5%, whereas mature

forages are found to have less than 0.4-0.5% K (McDowell, 2003). Our results were almost

in line with Ramırez-Orduna et al., (2005) and Ghazanfar et al., (2011).

In certain areas of world, it can be possible that deficiency of K occur, in view of increase in

forage maturity may lower the concentration of this element (McDowell & Valle, 2000).

Khan (2003) had confirmed the deficiency of K for ruminants in grazing forages solely in

Pakistan. The major cause for extensive K deficiency, even though forages consist of K

lower than requirements, may be due to the deficiency of other nutrients (McDowell & Valle,

2000). Kinzel (1983) had observed that increase in supply of lime with low availability of K

cause to decrease intake of K from soil, leading to considerable variation in plant growth.

The variation in concentration of K might be associated to availability of water, as absorption

of K by root is related to soil moisture (Charley, 1977). Therefore, in our study, poor soil

moisture, high Na contents, and drought conditions may be the reason of low concentration K

among browses of Cholistan desert. Similar, findings were reported by Barnes et al., (1990),

Page 103: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

103

Ramırez et al., (2001) and Moya-Rodriguez et al., (2002) who had studied the K in browses

from arid and semiarid areas of world.

Sodium (Na) is an important element in order to determine the adequacy of minerals in

animal feed. It has been reported that animals have an important ability to preserve Na

contents but prolong deficiencies can cause weight loss or the loss of appetite, decreased

growth and reduced milking (McDowell & Valle, 2000). Results revealed that Na was

considerably varying among the browse species from 0.22 to 1.82%. Our results were

showing higher contents than the critical value of Na 0.06% DM (NRC, 1985). Overall, the

recommended range of Na element, for all classes of ruminants, as suggested by National

Research Council (1984) was 0.06 to 0.18%.

Among all the investigated browse species, sodium level was significantly high in Suaeda

fruticosa and Haloxylon recurvum because these species were halophytes and abundance of

sodium make them suitable to an environment so hostile such as desert (Laudadio et al.,

2008). Ramırez-Orduna et al., (2005) has reported that concentration of sodium tends to

increase with the decrease in rainfall. Plants in desert conditions may accumulate Na contents

in order to relieve water and saline stress. As soil becomes dry, the concentration of salts start

to increase in soil and osmotic potential turns to be more negative. In saline environment,

NaCl is very important for osmotic adjustment; but absorption of salts by plants may increase

the chances of potential Na toxicity (Salisbury & Ross, 1994; Miller & Doescher, 1995). The

higher values of Na were in contrary to previous studies that have observed deficiency of Na

in shrubs and trees growing in arid regions (Khanal & Subba, 2001; Moya et al., 2002;

Ghazanfar et al., 2011). However, our findings were in agreement with Ramırez-Orduna et

al., (2005) and Aganga & Mesho, (2008) who has investigated the mineral contents in

various browses.

According to National Research Council (1984), the recommended range of Ca, for all

classes of ruminants was 0.19 to 0.82%. While Minson (1990a) has reported that level of Ca

ranged from 0.31 to 1.98% with the mean value 0.63%. However, ruminants can tolerate Ca

level up to 2% of diet on DM basis (NRC, 1985). It has been reported that Ca contents more

than 1% decrease the DM intake and excess of Ca can upset the absorption of trace minerals

especially Zn (NRC, 2001). In order to fulfill the maintenance and production requirements

of livestock, Ca level in their diet should remain within the range of 0.17 to 0.42% (Anon.,

Page 104: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

104

1975). According to our results, the mean contents of Ca in 50% browses were high than

critical value 0.30% of DM for different classes of ruminants (NRC, 1984).

The need of Ca in grazing animals is an issue of considerable debate, because requirement of

Ca is influenced by type of animal, age and level of their production (Khan et al., 2007). If

the diet of animal is poor in Ca, then deficiency of Ca may appear in the form of broken

bones, convulsions, and death of animal. The area under study is sandveld, of which soil has

poor texture and does not hold sufficient nutrients hence browses has low level of nutrients

(Aganga & Mesho, 2008). The calcium concentration in the selected browse species was

high than the level of phosphorus. Ibeawuchi et al., (2002) reported high-level of Ca than that

of P, but findings of Okoli et al., (2001) contradict this view. Our findings were very close to

Vercoe (1987) and Ghazanfar et al., (2011) who has investigated Ca in various foliage’s.

However, our results were not in line with Ahamefule et al., (2006) Aganga & Mesho,

(2008) Sultan et al., (2010).

Green plants are remarkable source of magnesium (Mg) for animals because of its presence

in chlorophyll (Wilkinson et al., 1990). The highest level of Mg in forages was observed in

early vegetative stage. The recommended requirements of Mg were 0.12-0.20% DM in the

feed of ruminants (NRC, 1985) and according to Ensminger & Olantine (1987) Mg

requirements range from 0.90 to 0.21%. Our findings were lower than the recommended

range and required level (0.12-0.18% of diet DM) of Mg for sheep (NRC, 1985). These

browses were remained fail to meet the minimum requirement of Mg for lambs (0.8-1.5%

DM), lactating sheep and goats (0.9-1.8% DM) and lactating cows (1.2-2.1% DM).

The deficiency of Mg was most common on sandy, acidic soils (Sultan et al., 2008). The

proportions of Mg and Ca in soil not only affect the uptake of Mg in plants, but also affect

the concentration of other cat-ions and pH of soil (Skerman & Riveros, 1990). Dua & Care,

(1995) has been reported that dietary requirement of Mg in livestock is markedly influenced

by other nutrients in diet, mainly K. High concentration of N and K in animal diet will

decrease the absorption of Mg from rumen. Whereas the increase in the contents of P in

animals feed causes to decrease the requirements of both Ca and Mg (Judson & McFarlane,

1998). Our results were in line with Ayan et al., (2006) and Sultan et al., (2009) who have

analyzed the minerals of various forages whereas our results were not in agreement with

Aganga & Mesho, (2008).

Page 105: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

105

Manganese (Mn) is considered the least toxic to mammals among the trace elements (Sher et

al., (2011). It has been observed that wide variation in the concentration of Mn occurs

between and within plant species (Ramirez et al., 2001). The recommended range of Mn is

18 to 36 ppm, as suggested by the Anonymous (1985) and 20 to 50 ppm as reported by

Ensminger & Olantine (1987). Our results remained fail to fulfill the recommended

requirements of Mn. The maximum Mn contents in the diets of various livestock forms has

been recommended as 1000 mg/kg (Anon., 1984) but in this investigation the level of Mn has

been found below this tolerable range. The mean values of Mn in the browse species were in

the range of Minson (1990b), who has reported that the contents of Mn in pastures can range

from 01 to 2670 ppm.

It has been reported that Mn deficiency causes the impaired growth, skeletal, and infant

abnormalities in livestock (Hussain & Durrani, 2008). Among trace elements, Mn is second

most abundant element next to ferrous on earth; however, availability of Mn is decreased by

draining of soil. Georgievskii (1982) has described that increase in soil pH above 6.0 causes

to decrease the availability of Mn. Low level of Mn contents in forages generally occur only

on neutral or alkaline soils (Minson, 1990a). It has been observed that lower level in the

evaluated browses may be due to high pH of soil and impact of interference with other

elements. Our results are almost in range with Aganga & Mesho, (2008) who has

investigated minerals in various browses but showing some variations from previous studies

of Towhidi, (2007), Sultan et al., (2010), and Sher et al., (2011).

Copper (Cu) is essential because, along with iron it is required for maturation of red cells. It

is also vital in the formation of bones and act as key component of several enzymes in plants

(Curtis & Barnes, 2000). The copper deficiencies are different in different species and

problem of anemia is common along with abnormalities of bones and depressed growth (Sher

et al., 2011). Ensminger & Olantine (1987) has reported that requirement of Cu in ruminants

can vary from 06 to 12 ppm. The Cu level in this report was lower than recommended Cu in

the diet of ruminants (7.0-11.0 mg/kg DM) for common physiological functions and

maintenance (NRC, 2001).

According to McDowell et al., (1983) the Cu contents are inversely related to increase in

plant maturity which may be one of the main causes of low levels of Cu in forage. Cu decline

with maturity in forage species and are high in leaf parts as compare to stem (McDowell,

Page 106: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

106

1996). Minson (1990b) reported that Cu values for pastures could vary from 2.50 to 13.90

ppm. In pastures, forages had low contents of Cu than minimum suggested requirements, for

various production purposes in ruminants (Spears, 2003). With the exclusion of P, Cu is most

common mineral deficiency for ruminants in world (McDowell, 2003). Low level of Cu in

plants might be due to high level of pH in soil (Spears, 1994). Furthermore, increase in pH of

soils may perhaps elevate the uptake of Se and Mo, and excess of Mo could seriously

increase deficiency of Cu (Spears, 1994). Akhtar et al., (2007) and Sher et al., (2011) has

stated the deficiency of Cu in forage plants of Pakistan.

Zn is also an essential element for the activation of many enzymes (Sher et al., 2011). In this

study, the contents of Zn were lower in all the analyzed browses than the reported range of

pastures (Minson, 1990b) and optimum value reported by Minson (l990a). Minson (1990a)

stated that the amount of Zn in forages varied from 7.0 to 100.0 ppm in the DM with mean

concentration of 36.0 ppm. It has been recommended that critical dietary point of Zn is 30

mg/kg; however, it has been observed that contents of 12-20 mg/kg are sufficient for growing

of ruminants (Anon., 1980). Our results were showing the lower level of Zn than the

recommended ones and investigated browses were found to be deficient with Zn.

It was reported that Zinc deficiency could cause parakeratosis (inflamed skin around mouth

and nose), stiffness of joints, breaks in skin around the hoof and retarded growth (Ganskopp

& Bohnert, 2003). Deficiency of Zn also causes the sterility, anemia or immune system

problems in animals (Hidiroglu & Knipfell, 1984). Absence of sexual maturation and

dwarfism are main symptoms in case of severe Zn deficiency (Sher et al., 2011).

Deficiencies of Zn could be improved through supplementation of this terrace element. In

recent years, deficiency of Zn in grazing animals has been observed in number of tropical

countries where Zn was less than recommended values in diet (McDowell et al., 1984). Sher

et al., (2011) has also reported the deficiency of Zn in forages from Pakistan rangelands. Our

results were almost in agreement with Aganga and Mesho, (2008) who has investigated the

minerals in various browse species.

Iron (Fe) is a vital component of haemoglobin, blood pigment, muscle protein, myoglobbulin

and several other enzymes. The deficiency of Fe can cause anemia and decrease in the

resistance to various diseases. Very high concentration of iron may cause nutritional

problems in animals by lowering the absorption of phosphate (Sher et al., 2011). McDowell

Page 107: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

107

(1992) has reported that the normal requirement of iron can range from 30-60 ppm DM for

ruminants. The dietary requirement of Fe in goats and sheep lies within 30 to 50 ppm (Anon.,

1985). It has been observed that maximum tolerable level of Fe in forages is about 1000 mg

kgP

-1P and is the least toxic of all the essential trace elements for livestock (McDowell &

Arthington, 2005).

The investigated species had lower level of Fe than the critical levels in animal tissues (30-50

mg kg-1 DM). Differences of Fe content between our findings and literature could be partly

explained by type of forage species, Fe content in soil, nature, and type of soil on which these

forages are growing (McDowell, 1992). The change in the conditions of soil and climate as

well as physiological status of plants species may affects the absorption of iron in plants

(Kabata-Pendiaus & Pendias, 1992). Our findings are in line with previous studies of

Towhidi & Zhandi (2007) who has studied the chemical composition of various plant species

in Iran. Sher et al., (2011) has also reported the deficiency of Fe contents (1.819 to 12 ppm)

in forage from Pakistan rangelands. Our study may not support the findings of some earlier

reports, for example Mountousis et al., (2008) and Shamat et al., (2009).

However, differences in the concentration of minerals in present study with those in the

previous literature could be partly described by variations between forage species, minerals

level in soil, influences of climate and locality, growth stages, fractions of leaf and stem for

analysis, and season when forage sampling was carried. The concentration of almost all the

minerals (micro and macro) except Na among selected browses was less than required level

for ruminants grazing therein. The area under study was sandy and by the nature of soil type,

the browse plants have low levels of both major and minor minerals. As a result, grazing

animals in the area cannot obtain sufficient minerals from indigenous plants especially during

dry season.

Page 108: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

108

a b

c d

PLATE 5.5: NOMADIC HERDERS OF CHOLISTAN RANGELANDS (a, b, c, d)

Page 109: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

109

UCONCLUSION AND MANAGEMENT STRATEGY_ _________ CHAPTER 6

6.1: GENERAL CONCLUSIONS

This research project was being planned to carry out a comprehensive, scientific baseline

study to determine the productivity potential of browses in Cholistan rangelands. Knowing

the current status of browse resources will help in planning the remedy measures to conserve

this ecosystem. The following general conclusions could be drawn from the results of present

study;

1. According to the floristic inventory, total 25 browse species belonging to 17 genera and 12

families were identified from the arid rangelands of Cholistan desert. The recorded species

were composed of 07 species of trees and 18 species of shrubs. Based on life span and life

form, all the identified species were found as perennials and phanerophytes respectively.

Abundance of browses showed that out of total, 10 species were found to be very common,

08 species were common, and 07 species were rare in the investigated rangelands. Family

importance index showed that Chenopodiaceae and Mimosaceae were most dominant

families that were mainly contributing the vegetation coverage.

There was a great diversity in phenological behaviour of browse species; overall, two

phenological seasons were observed from the investigated area. The first season was from

February to April and the second was from September to November. May to August and

December to January were almost dormant seasons but the activity of some browses was also

observed in these phases. Furthermore, maximum species were recorded in second

phenological season as compare to first one, because of high rainfall received during this

season (monsoon).

Further based on economic use classification, there were 19 species, which were being used

as firewood, 07 species were as timber wood, 22 species were as forage/fodder, and 19

species were as medicine. Results have showed that flora of Cholistan desert was rich in

economic plants of various uses. Maximum species were observed to have forage/fodder

value that clearly indicates that this area can serve as rangeland. It means that this area has

potential for grazing and livestock development, with some potential for medicinal plants.

However, overexploitation of browse species for various purposes has contributed to the

degradation of these rangelands.

Page 110: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

110

2. According to phytosociological study, 20 browse communities were identified based on

importance value of each plant species, on different landforms in Cholistan rangelands.

Multivariate analysis of twenty stands has delineated three vegetation associations inhabiting

the sandunes, interdunal sandy and clayey saline habitats in the study area. Physio-chemical

analysis of soil showed that texture of sandunal habitat was sandy; interdunal was sandy

loam whereas clayey saline habitat was clayey nature. Results revealed that pH, EC, Na

contents, and soil moisture were high at clayey saline communities and minimum at sandunal

areas. Whereas concentration of organic matter, P, K was better at interdunal habitat which

may be due to better vegetation cover at interdunal habitat. Percentage of organic matter in

soil of Cholistan rangelands was very low, which obviously specify the sparse vegetation

cover. Conservation of these communities especially within disturbed sites is more normally,

demands an exclusive and urgent protection challenge. Therefore, species with low IVIs need

priority measures for conservation and those with high IVIs need monitoring.

3. Based on results, total dry browse production during wet season was 8029.10 kg/ha while in

dry season was 5422.90 kg/ha, that was 19.38% higher in wet season. Forage productivity

was high during wet season across the three range habitats. This was probably due to high

amount of rainfall during wet season (July through September) as compared to dry season.

Moreover, Grazing status of Cholistan rangelands showed that in wet season, maximum

stands were observed to be moderately grazed while in dry season most of stands were over

grazed. Results have revealed that range sites with high forage productivity were less

disturbed by grazing while the sites with minimum forage productivity were mostly

overgrazed. Therefore, in dry season forage productivity was poor and most of study sites

were observed to be overgrazed. As change in grazing intensity and selectivity necessarily

change the biodiversity; overgrazing and under grazing can both have negative effects, but

overgrazing by animals is increasingly problematical. The present study revealed that overall

recorded browse production was poor in both seasons. It was due to poor soil, overgrazing

and climatic extremities in Cholistan range which reduce the size and vigor of plants leading

to poor biomass productivity.

4. Carrying capacity (CC) during wet season was calculated as 16 ha/AU/Y while in dry season

was calculated 24 ha/AU/Y. The data suggested that overall carrying capacity of Cholistan

rangelands during both seasons was very low and available browse production was

Page 111: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

111

insufficient for present stocking rate. There is no doubt that the Cholistan rangelands are in

the form of non-equilibrium condition where there is vast variability in forage production

both spatially and temporally. It was observed that aboveground total biomass productivity

decrease significantly with increasing grazing pressure leading to poor carrying capacity of

the area and ultimately livestock suffer more.

5. Based on palatability classification, 22 species were found to have palatability to varying

degree and 03 species were found non-palatable. Among the palatable species, 07 species

were highly palatable, 09 species were moderately palatable, and 06 species were less

palatable. It was observed that among palatable species, leaves of 14 species were grazed;

shoot/stem of 13 species, flower of 04 species, and fruit of 03 species were grazed by

livestock. Out of total palatable browse species, cattle were observed to graze on 07 species,

Goat and sheep like 10 species while camel preferred 20 species. These palatable species are

under sever threat and thinning out gradually due to tremendous grazing pressure and short

growing season round the year. In Cholistan rangelands high intensity of past livestock

grazing, and low palatability, it therefore, becomes indispensable to frequently change the

feeding and bedding grounds, in order to maintain a healthy palatable cover.

6. Nutritive evaluation showed that proximate composition (DM, CP, EE, CF, TA & NFE),

structural constituents (NDF, ADF, Hemicellulose & Lignin) and mineral (macro P, K, Na,

Ca & Mg and micro Mn, Cu, Zn & Fe) composition were varying significantly (p<0.05)

among the selected browse species. Results have revealed that these species were good

source of dry matter and protein whereas; concentration of almost all the minerals (micro and

macro) was less than required level for ruminants grazing therein. The area under study was

sandy and by the nature of the soil type, the browse plants have low levels of both major and

minor minerals. As a result, livestock in this area cannot obtain sufficient minerals from the

indigenous plants especially during dry season. Therefore, provision of supplemented feed

would seem most important for optimum productivity of grazing ruminants during different

times of the year.

Page 112: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

112

6.2: MANAGEMENT STRATEGY

The challenge of rangeland management facing by today’s scientists, policy makers, and

users is to develop management strategies that will be based on basic problems over there.

From the conclusions of this baseline study or surveys and observations made during field

research, the following potential and feasible, research and/or developmental

recommendations could be forwarded as part of management strategy.

1. It is recommended that detailed vegetation surveys should be carried out to identify the

complete flora of Cholistan rangelands, in order to compile the floristic inventory and to

provide complete vegetation map of the area. For this herders’ knowledge about plant species

will also be important in developing the local herbarium. Further establishment of botanical

garden in order to conserve the diversity of endangered species is compulsory. It will provide

the base line information for future studies.

2. It was observed that over exploitation of browse species for medicinal, fuel and timber wood

purposes have destroyed these natural resources gradually. Alternate resources should be

provided and the area should be closed for a period of 10 years to promote browse coverage

there. Such long-term efforts might reduce the pressure and allow the flora and fauna to

revert to its natural position. Educating and encouraging the local communities to practice the

use of alternative resources is compulsory.

3. There is an urgent need of research and developmental actions to circumvent and address the

problems faced by those species having poor score and low importance value index in order

to stop the phenomenon of retrogression in Cholistan rangelands. To improve and conserve

the sustainable biological diversity of this ecosystem, long term plans are needed that might

include rehabilitation of degraded habitats by introducing soil and water conservation

operations, artificial reseeding, and reforestation on favorable range cites. There is an urgent

need of detailed soil analysis to encourage the ethics that improvement and conservation of

natural vegetation is essential for land and soil management. Tree planting by local peoples

has to be encouraged on already degraded landscapes to create a buffer for rehabilitation.

4. However, this study is very preliminary and it is recommended that subsequent ecological

studies should be conducted on spatial and temporal variations about browse production. The

productive potential of rangelands is not constant and carrying capacities need to be

periodically reviewed to accommodate any permanent changes in land resources, or from

Page 113: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

113

changes in the environment. There is severe problem of overgrazing that leads to year round

stress on browse species. Grazing at suitable stocking rate is compulsory. Planned grazing

should be introduced and implemented in order to release the stress over browse species.

Planned but simple grazing system in accordance to nomadic pattern such as best block

grazing system will be very successful there.

5. It is obvious that successful range management and improvement requires the knowledge of

nutritional value of range plants (qualitative & quantitative) and forage palatability and

preferences of livestock. It is very imperative to determinate the comparative nutrient value

of all available browse resources during various seasons, phonological stages and the ability

of these resources to meet animal requirements for optimum livestock production. It should

be make compulsory for the provision of artificial feed for livestock during drought spells.

Animal feeding experiments are also compulsory to determine the nutritive value of

favorable species in relation to palatability, intake, digestion, and effect on productivity

performance of livestock.

6. Drought must be accepted as part of the pastoral life and there should be an adequate early

warning system regarding livestock feed availability and of appropriate mitigation strategies.

Rainfall patterns in the Cholistan rangelands need to be predicted using modern techniques

such as meteorological data and spatial analysis, while the indigenous knowledge of the

pastoral communities for rainfall prediction could also be used as a supporting tool.

7. There are more avenues for further exploration of browses such as research activity for

knowing the germination, soil seed bank, seed physiology, growth pattern, and propagation

in the investigated area. Potential traditional knowledge of the people on the diverse uses of

plants should be strengthened for enrichment of ethno botanical studies of the area.

8. The participation and cooperation of pastorals and nomadic peoples is very essential to

implement the effective management plan. Community involvement and integrated

management of the area should be considered as a practical option. I conclude that herder’s

knowledge should be considered in future monitoring and development of range management

policy because of important management implications. Based on the findings of this research,

it is recommended that rangeland management systems should integrate community

perceptions and practices. This should be so in every aspect including policies, programs,

Page 114: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

114

projects, strategies, and activities that aim at reducing the degradation and managing the

rangelands.

9. The government and its institutions should play their respective responsibilities in

strengthening the low existing efforts as well as in correcting the gaps and in creating

integrated mechanisms at national, regional and local levels for implementing and enforcing

the rules of conservation and sustainable use of range resources. There is an urgent need of

strong linkage among international research activities, regional and sub-regional researches.

Further developmental programs are required to suggest an integrated management sketch so

that ecological and socio-economic problems could be addressed accurately.

At the end, it is described that the set objectives for this study were successfully achieved.

The identification, classification, forage production, stocking rate, and nutritive evaluation of

browses have created a detail map about productive potential of browses in Cholistan

rangelands. Previously no comprehensive studies were reported; therefore, present research

provided a valuable baseline data on the current condition of this ecosystem. All factors

considered, it was concluded that Cholistan rangelands are less productive and they need

proper protection, management, and rehabilitation through ecological approaches. Generally,

it was first comprehensive attempt to summaries what was known about the browses of

Cholistan rangelands. This task was rather overwhelming, because large sections of flora

were still not known, data sources were scattered and presented in different ways. These

problems have inevitably result the gap in previous stated materials but what I have presented

is the best possible summary of the information. This data should be incorporated into the

current management plan and the subsequent vegetation map should serve as a valuable tool

in the planning, conservation and management of these rangelands. The impact of

management recommendations should be regularly monitored to determine whether the aims

that were set, were achieved. This all would be possible with the sincere efforts of

government and local peoples in order to make the range resources sustainable.

Page 115: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

115

ULITERATURE CITED ____________ __________________ CHAPTER 7

Abd el ghani M.M. and A.M. Fawzy. 2006. Plant diversity around springs and wells in five

oases of the Western desert, Egypt. International journal of agriculture & biology, 1560–

8530/2006/08–2–249–255.

Abd el Ghani, M.M. and W.M. Amer. 2003. Soil–vegetation relationships in a coastal desert

plain of southern Sinai, Egypt. Journal of Arid Environments, 55: 607- 628.

Abou Auda, M.M., K.F. El-Sahhar and N.Y. Deeb. 2009. Phytosociological Attributes of

Wadi Gaza Area, Gaza Strip, Palestine. International Journal of Botany, ISSN 1811-

9700. pp.1-9.

Abule, E., H.A. Snyman and G.N. Smit. 2007. Rangeland evaluation in the middle Awash

valley of Ethiopia: I. Herbaceous vegetation cover. Journal of Arid Environments, doi:

10.1016/j. jaridenv. 2006.12.008.

Abu-Zanat, M.M.W. 2005. Voluntary Intake and Digestibility of Saltbush by Sheep. Aust. J.

Anim. Sci.,Vol. 18, No. 2: 214-220.

Afzal, J., M. Arshad Ullah and M. Anwar. 2007. Assessing carrying capacity of pabbi hills

kharian range. J. Anim. Pl. Sci., 17(1-2).

Aganga A.A. and E.O. Mesho. 2008. Mineral contents of browse plants in Keweneng district

Botswana. Agricultural journal, 3 (2) 93-98.

Aganga, A.A., K.W. Mosase. 2001. Tannin content, nutritive value and dry matter

digestibility of Lonchocarpus capassa, Ziziphus mucronata, Sclerocarya birrea, Kirkia

acuminate and Rhus lancea seed. Animal Feed Science and Technology, 91: 107-113.

Ahamefule, F.O., B.E. Obua, J.A. Ibeawuchi and N.R. Udosen. 2006. The Nutritive Value of

Some Plants Browsed by Cattle in Umudike, Southeastern Nigeria. Pakistan Journal of

Nutrition, 5 (5): 404-409.

Ahmad, K., M. Hussain, M. Ashraf, M. Luqman, M.Y. Ashraf and Z.I. Khan. 2007.

Indigenous vegetation of Soone Valley at risk of extinction. Pak. J. Bot., 39(3): 679-690.

Ahmad, M., F.A. Raza, J. Masud and I. Ali. 2006. Ecological Assessment of Production

Potential for Rangeland Vegetation in Southern Attock. Pakistan journal of agriculture &

social science, vol. 02. 4: 212–215.

Page 116: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

116

Ahmad, S.D. and G. Hasnain. 2001. Evaluation of introduced fescue grass for forage and soil

conservation in hilly areas of Pakistan. Journal of Biological Sciences, 1 (61) 442-445.

Akbar, G. and M. Arshad. 2000. Developing sustainable strategies for Cholistan desert:

opportunities and perspectives. Science Vision, 5: 77-85.

Akbar, G., T.N. Khan and M. Arshad. 1996. Cholistan desert Pakistan. Rangelands, 18: 124-

128.

Akhtar, M.Z., A. Khan, M. Sarwar and A. Javaid. 2007. Influence of soil and forage minerals

on buffalo (Bubalus bubalis) haemoglobinaria. Asian-Australian J. Ani. Sci., 20: 393.

Akhter, R. and M. Arshad. 2006. Arid Rangelands in Cholistan Desert Pakistan. Scheresse,

17: 1-18.

Alanso, A., F. Dallmeier, E. Granck and P. Raven. 2001. Biodiversity: Connecting with the

Tapastry of Life Smithsonian Institution/Monitoring and Assessment of Biodiversity

Program and President. S Committee of Advisors on Science and Technology. Charter

Printing, Washington. D.C. USA.

Ali, M., I.A. Qamar, A. Ali, M. Arshad and J. Iqbal. 2001. Evaluation of tropical grasses for

forage yield and crude protein content in the Pothowar plateau of Pakistan. On line J.

Biol. Sci., 1: 466–7.

Ali, S.I. and M. Qaiser (Eds.). 1993-2007. Flora of Pakistan (fascicles series 193-215).

Islamabad, Karachi.

Ali, S.I. and Y.J. Nasir (Eds.). 1990-1991. Flora of Pakistan (fascicles series 191-192).

Islamabad, Karachi.

Ali, S.l. 2008. Significance of Flora with special reference to Pakistan. Pakistan Journal of

botany, 40 (3): 967-971.

Ali, S.M. and R.N. Malik. 2010. Spatial Patterns of Vegetation with Underlying Soil

Properties Prevailing Along Drain Side Areas in Islamabad. Pak. J. Bot., 42(4): 2397-

2410.

Ali, S.M. and S. Kauser. 2006. Plant Communities Analysis of Selected Urban Flora of

Islamabad, Journal of Applied Sciences, 6(1): 177-182.

Allen, M.M., S.T. Stainer. 1974. Chemical Analysis of Ecological Materials. Blackwell

Scientific Publications, Oxford, London, pp. 565.

Page 117: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

117

Al-Yemeni, M. and H. Sher. 2010. Biological spectrum with some other ecological attributes

of the flora and vegetation of the Asir Mountain of South West, Saudi Arabia. African

Journal of Biotechnology, Vol. 9(34): pp. 5550-5559.

Anderson, M.J., K.E. Ellingsen and B.H. McArdle. 2006. Multivariate dispersion as a

measure of beta diversity. Ecol. Lett., 9(6): 683-693.

Anonymous. 1975. Nutrient requirements of domestic animals-Nutrient requirement of

sheep. (5th revised Ed.) National Research Council. National Academy of Science,

Washington, DC.

Anonymous. 1980. The Nutrients Requirements of Ruminant Livestock. 4th edition CAB

International, Wallingford.

Anonymous. 1984. Ministry of Agriculture, Fisheries, and Food (MAFF), Energy

Allowances and Feeding Systems for Ruminants. Her Majesty's Stationery Office,

London.

Anonymous. 1985. Nutrient requirements of domestic animals. Number 5. Nutrient

requirements of sheep. Nat. Acad. Sci., Nat. Res. Council, Washington, D.C.

Anonymous. 2006. Economic Survey of Pakistan. Finance Division, Islamabad. Economic

Advisor’s Wing Govt. of Pakistan.

AOAC, 2005. Official Methods of Analysis of the official analytical chemists, 18P

thP Edn.

(Hoewtiz, W., Eds.), Association of official analytical chemists, Washington DC.

Arshad, M. and A.R. Rao. 1994. Flora of Cholistan Desert (Systematic list of trees, shrubs

and herbs). Jour. Econ. Tax. Bot., 18(3): 615-625.

Arshad, M. and A.R. Rao. 1995. Pytosociological division in cholistan desert. Proceding of

the sixth all Pakistan geographical conference (26-29 december 1993). Department of

Geography, Islamia university Bhawalpur.

Arshad, M. and G. Akbar. 2002. Benchmark of Plant Communities of Cholistan Desert.

Pakistan Journal of Biological Sciences, 5 (10): 1110-1113.

Arshad, M., A.R. Rao and G. Akbar. 1999. Masters of disaster in Cholistan desert, Pakistan:

pattern of nomadic migration. UNDP Desertification Control Bulletin; 35: 33-9.

Arshad, M., A.R. Rao, and G. Akbar. 2001. Sustainability pattern of livestock in Cholistan

desert Pakistan. Sustainable development of desert communities a regional symposium

Iran UNDP. 2: 185-192.

Page 118: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

118

Arshad, M., A.U. Hassan, M.Y. Ashraf, S. Noureen and M. Moazzam. 2008. Edaphic factors

and distribution of vegetation in the Cholistan desert, Pakistan. Pak. J. Bot., 40(5): 1923-

1931.

Arshad, M., G. Akbar and S. Rashid. 2003. Wealth of medicinal plants of Cholistan desert,

Pakistan: conservational strategies. Hamdarad Medicus, 105: 25-34.

Arshad, M., M.Y. Ashraf, M. Ahmad and F. Zaman. 2007. Morpho-genetic variability

potential of Cenchrus ciliarus L., from Cholistan desert, Pakistan. Pak. J. Bot., 39: 1481-

1488.

Arshad, M., S. Din and A.R. Rao, 2002. Phytosociological Assessment of Natural Reserve of

National Park Lalsuhanra Punjab, Pakistani. Asian J. PI. Sci., 1: 174-175.

Arzani H., M. Basiri, F. Khatibi, G. Ghorbani. 2006. Nutritive value of some Zagros

Mountain rangeland species. Small Ruminant Research, 65: 128–135.

Arzani, H., J. Torkan, M. Jafari, A. Jalili, A. Nikkhah. 2001. Effects of phenological stages

and ecological factors on forage quality of some range species. Iranian J. Agric. Sci., 32,

385-397.

Arzani, H., M. Zohdi, E. Fish, Gh. Zahedi Amiri, A. Nikkhah, D. Wester. 2004. Phenological

effects on forage quality of five grass species. J. Range Manage., 57, 624-629.

Asmus, U. 1990. Floristic and phytosociological study in Gropiusstadt (Berlin) Gernamy.

Verh. brel. Bot., Vol. 8(0): 97-140.

Atamov, V. 2008. Phytosociological Characteristics the Vegetation of the Caspian's Shores

in Azerbaijan, International Journal of Botany, 4 (I): 1-13.

Athar, M. 2005. Nodulation of native legumes in Pakistani rangelands. Agric. Conspectus

Scientificus, 70: 49–54.

Atiq-ur-Rehman. 1995. The potential for the use of saltbush in sheep grazing systems during

summer and autumn in a Mediterranean climate. Ph.D Thesis, University of Western

Australia.

Ayan ,I., Z. Acar, H. Mut, U. Basaran and O. Asci. 2006. Morphological, Chemical and

Nutritional properties of forage plants in a natural rangeland in Turkey. Bangladesh J.

Bot., 35(2): 133-142.

Page 119: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

119

Azim A., S. Ghazanfar, A. Latif and M.A. Nadeem. 2011. Nutritional evaluation of some top

fodder tree leaves and shrubs of district chakwal, Pakistan in relation to ruminants

requirements. Pakistan Journal of Nutrition, 10 (1): 54-59.

Baig, M.S., E.H. Khan, M.R. Zaheer and M. Ahmad. 1975. Reconniassance soil survey of

Cholistan. Directorate of Soil Survey of Pakistan, Lahore, (Research Report), pp. 163.

Baig, M.S., M. Akram and M.A. Hassan. 1980. Possibilities for range development in

Cholistan desert as reflected by its physiography and soils. Pak. Jour. For., 30: 61-71.

Baile, C.A. and M.A. Della fera. 1988. Physiology of control of food intake and regulation

of energy balance in dairy cow. In: P.C. Gransworthy Nutrition and lactation in the dairy

cow. Butter worth and Company Limited, London.

Bamikole, M.A., O.M. Ikhatua, O.M. Arigbede, O.J. Babayemi, I. Etela. 2004. An

Evaluation of the Acceptability as forage of some Nutritive and Antinutritive

Components and of the Dry Matter Degradation Profiles of Five Species of Ficus. Trop.

Anim. Health Prod., 36: 157-167.

Barnes, T.G., L.W. Varner, L.H. Blankenship, T.J. Fillinger, S.C. Heineman. 1990. Macro

and trace mineral content of selected south Texas deer forages. J. Range Manage., 43;

220–223.

Bartels, G.B., B.E. Norton and G.K. Perrier. 1990. The applicability of the carrying capacity

concept in Africa. Pastoral Development Network 30e, ODI, London.

Bartels, G.B., B.E. Norton and G.K. Perrier. 1993. An examination of the carrying capacity

concept. In: Range Ecology at Disequilibrium, new models of natural variability and

pastoral adaptation in African savannas (Eds. Behnke, R.H., Scoones, I. and Kerven, C.).

pp. 89-103. ODI, London.

Baumer, M. 1992. Trees as browse and to support animal production. In: Speedy, A.,

Pugliese, P.L. (Eds.),Legume Trees and Other Fodder Trees as Protein Sources for

Livestock. FAO, Kuala Lumpur, pp. 1–10.

BCMF. 2002. Considering tools for remediation. Rangeland Health Brochure 4. British

Columbia Ministry of Forests (BCMF.), Canada. PP.1-22.

Beatley, J.C. 1974. Phenological events and their environmental triggers in Mojave Desert

ecosys- tems. Ecology, 55: 856-863.

Page 120: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

120

Bedunah, D.J. Ph.D. 2005. Analysis of Afghanistan’s Rangelands and Strategies for

Sustainable Management, Draft Report January. 1-85.

Behnke, R.H., & J. Scoones. 1993. Rethinking range ecology implications for rangeland

management in Africa. In: R.H. Behnke, I. Scoones, & Kerven, editors. Range Ecology at

Disequilibrium, Overseas development Institute. London. UK. pp.1-30.

Bergstrom, R., 1992. Browse characteristics and impact of browsing on trees and shrubs in

African savannas. J. Veg. Sci., 3: 315–324.

Bhandari, M.M. 1995. Biodiversity of Indian desert. In: Taxonomy and Biodiversity. K.

Panday (Ed.) CBS Publishers Delhi, pp. 29-43.

Bhatti, G.R., M. Shah and R. Qureshi. 1998-2001. Floristic study of arid zone (Desert Nara,

Region), Sindh. Pakistan Science foundation Project. No. S-SALU/ ENVR (45).

Blowey, R.W. 1990. A veterinary book for dairy farmers. Farming Press Books. 4-Friars

Courtyard 30-32 Princes Street, I pswich, UK .

Bohn, P.J. 1990. Investigation in to the effect of Phenolic acids on forage digestibility

Dissertation. Sciences and Engineering. 50: 4282-4283.

Bonham, C.D. 1989. Measurement for Terrestrial Vegetation. John Wiley & Sons. New

York.

Borchert, R., S.A. Meyer, R.S. Felger, L. Porter-Bolland. 2004. Environmental control of

flowering periodicity in Costa Rican and Mexican tropical dry forest. Global Ecology

and Biogeography, 13: 409–425.

Bose, M.S.C. and V. Balakrishnan. 2001. Forage production technologies. South Asian

Publication Pvt. Ltd. New Delhi, India. 253pp.

Boudet, A. M. 1998. A new view of lignification. Trends in Plant Sci. 3:67-71.

Bowers, J.E. 2007. Has climatic warming altered spring flowering date of Sonoran Desert

shrubs? Southwestern Naturalist, 52: 347–35.

Brearley, F.Q., J. Proctor, N.L. Suriantata, G. Dalrymple, B.C. & B.C. Voysey. 2007.

Reproductive phenology over a 10-year period in a lowland evergreen rain forest of

central Borneo. J. Ecol., 95: 828–839. (doi:10.1111/j.1365-2745.2007.01258.x)

Bredenkamp, G.J. & L.R. Brown. 2003. A reappraisal of Acock’s Bankenveld: origin and

diversity of vegetation types. South African Journal of Botany 69 (1): 7-26.

Page 121: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

121

Briske, D. D. 1993. Developmental morphology and physiology of grasses. In: R. K. I-

ieitschmidt, and J. W. Stuth, Grazing management: An ecological perspective. Timber

Press Portland, Oregon. USA.

Caughley, G., 1979. What is this thing called carrying capacity? In: Boyce, M.S., Hayden-

Wing, L. (Eds.), North American Elk: Ecology, Behavior, and Management. University

of Wyoming Press, Lander. pp. 2–8.

Caughley, G.C., A.R.E. Sinclair. 1994. Wildlife Ecology and Management. Blackwell

Science, Cambridge, Massachusetts.

Charley, J.L., 1977. Mineral cycling in rangeland ecosystems. In: Soseebe, R.E. (Ed.),

Rangeland Plant Physiology. Range Sci. Ser. No. 4. Society for Range Management,

Denver, CO, pp. 215–256.

Chaudhry, S. A. 1992. The Cholistan desert. A token consultancy report. Cholistan Institute

of Desert Studies, Islamia University, Bahawalpur, Pakistan. pp:34. (Unpublished).

Chemey D.J.R., D.R. Mertens and J.E. Moore. 1990. Intake and digestibility by withers as

influenced by forage morphology at three levels of forage offering. J. Animal Sci., 68

:(12) 4387-4399.

Chul, K.S. and K. Moody. 1983. Comparison of some methodologies for vegetation analysis

in transplanted rice. Korean J. Crops Sci., 28: 310-318

Cleemput, S., B. Muys, C.H. Kleinn & M.J.J. Janssens. 2004. Biomass Estimation

Techniques for Enclosures in a Semi-Arid Area: A Case Study in Northern Ethiopia.

Deutscher Tropentag. Humboldt Universita¨t zu Berlin, Germany.

Coetzee, J.P. 1993. Phytosociology of the Ba and lb Land Types in the Pretoria-Witbank-

Heidelberg Area. M.Sc Thesis. University of Pretoria, Pretoria.

Cook, C.W. and L.E. Harris. 1977. Nutritive value of seasonal ranges. Utah Agr., Exp. Sta.

Bul., 472.

Cooper, S., D.I. Kyriazakis and J.D. Oldham. 1996. The effects of physical form of feed,

carbohydrate source and inclusion of sodium bicarbonate on the diet selection of sheep. J.

Anim. Sci., 74(6): 1 240-51.

Costa, F.C.D., S.D. Araujo and L.W. Lima-Verde. 2007. Flora and life form spectrum in an

area of deciduous thorn woodland (caatinga) in northeastern, Brazil. Journal of Arid

Environment, 68(2): 237-247.

Page 122: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

122

Curtis, H., N.S. Barnes. 2000. Procesos de transporte en las plantas. En: Shneky Flores (Ed.),

Biolog´ıa, sexta edición en español. Editorial Médica, Panamericana, pp. 982–1006.

Dar, M.E.U.I. and Z.H. Malik. 2009. A Floristic List and Phenology of Plant Species of

Lawat Area District Neelum, Azad Jammu and Kashmir, Pakistan. International Journal

of Botany, 5 (2): 194-199.

Dasti, A. and A.D.O. Agnew. 1994. The vegetation of Cholistan and Thal deserts, Pakistan.

J. Arid Environ., 27: 193-208.

De Leeuw, P.N. and J.C. Tothill, J.C. 1990. The concept of rangeland carrying capacity in

sub-Saharan Africa - Myth or reality. Pastoral Development Network 29b, ODI, London.

Dicko, M.S., L.K. Sikena. 1992. Fodder trees and shrubs in range and farming systems in dry

tropical Africa. In: Speedy, A., Pugliese, P.L. (Eds.), Legumes Trees and Others Fodder

Trees As Proteins Sources For Livestock. FAO, Rome, pp. 27–41.

Digby, P.G.B. and R.A. Kempton. 1996. Multivariate Analysis of Ecological Communities.

Population and Community Biology Series. Chapman and hall, London.

Dua, K. and A.D. Care. 1995. Impaired absorption of magnesium in the etiology of grass

tetany. Br. Vet. J., 151:413-426.

Durrani, M. J. and A. Razaq. 2010. Floristic diversity, Ecological, characteristics and

Ethnobotonical profile of plants of aghberg rangelands, Balochistan, Pakistan. Pak. J. Pl.

Sci., 16 (1): 29-36.

Durrani, M.J. 2000. Ecological evaluation of some Rangeland plants of Harboi Hills, Kalat,

Balochistan. Ph.D. Thesis. Department of Botany, University of Peshawar.

Durrani, M.J. and F. Hussain. 2005. Ethnoecological profile of plants of Harboi

rangeland,Balochistan. Int. J. Biol.& Biotech., 2: 15-22.

Durrani, M.J., A. Razaq, S.G. Muhammad and F. hussain. 2010. Floristic diversity,

ecological, characteristics and Ethnobotonical profile of plants of aghberg rangelands,

Balochistan, Pakistan. Pak. J. Pl. Sci., 16 (1): 29-36.

Dye, P.J. & Spear, P.T. 1982. The effects of bush clearing and rainfall variability on grass

yield and composition in south-west Zimbabwe. Zimbabwe Journal of Agricultural

Research. 20: 103 – 118.

Ebong, C. 1995. Acacia nilotica, Acacia seyal and Sesbania sesban as supplement to tef

(Eragrostis tef) straw fed to sheep and goats. Small Rumin. Res., 18: 233–238.

Page 123: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

123

El Shaer, H.M., E.A. Gihad. 1994. Halophytes as animal feeds in Egyptian deserts (Ed:

Squires, VR, Ayoub, AT). “Halophytes as a resource for livestock and for rehabilitation

of degraded lands, 281 - 284", Kluwer Academic Publishers.

El-Ghanim, W.M., L.M. Hassan, T.M. Galal, A. Badr. 2010. Floristic composition and

vegetation analysis in Hail region north of central Saudi Arabia. Saudi Journal of

Biological Sciences, 17: 119–128.

Enright, N.J., B.P. Miller, R. Akhter. 2005. Desert vegetation and vegetation-environment

relationships in Kirthar National Park, Sindh. Pakistan Journal of Arid Environments, 61:

397–418.

Ensminger, M. E and C. G Olantine Jr. 1978. Feeds and Nutrition-complete. Ensminger

Publishing Company 3699 East Sierra Avenue, Clovis California, 93612.

Ensminger, M.E and C.G Olantine Jr. 1987. Feeds and Iyutrition-complete. Ensminger

Publishing Company 3699 East Sierra Avenue, Clovis California, 93612.

Etgen, W.M. and P.M. Reaves. 1978. Dairy cattle feeding and management. John Wiley and

Sons, New York.

F.A.O. 1993. Pakistan - Cholistan Area Development project. Report No. 59/53 ADB-PAK

58 (Final version). Food and Agriculture Organization of the United Nations, Rome.

Farooq, M.U. 2003. Some suitable and sustainable strategies for improving rangeland

productivity in Pakistan. Pak. J. Forest., 53: 193-199.

Filmalter, N. 2010. A vegetation classification and management plan for the hondekraal

section of the loskopdam nature reserve. Magister Technologiae, Deptt. Nature

conservation at the University of South Africa.

Fischer, R.A., and N.C. Turner. 1978. Plant productivity in the arid and semiarid zones.

Annu. Rev. Plant Physio. 29 :277-317.

Flombaum, P., O.E. Sala. 2007. A non-destructive and rapid method to estimate biomass and

aboveground net primary production in arid environments. Journal of Arid Environments,

69: 352–358.

Foguekem, D., M.N. Tchamba, L.N. Gonwouo, P. Ngassam and M. Loomis. 2011.

Nutritional status of forage plants and their use by elephant in Waza national park,

Cameroon. Scientific Research and Essays, Vol. 6(17), pp. 3577-3583.

Page 124: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

124

Friedel, M.H., W.A. Laycock and G.N. Bastin. 2000. Assessing Rangeland Condition and

Trend. Field and Laboratory Methods for Grassland and Animal Production Research,

CABI International, Wallingford, UK. pp. 305-360.

Frost, W.E. and E.L. Smith. 1991. Biomass productivity and range condition on range sites in

southern Arizona. Journal of Range Management, 44(l), January.

Fullen, M.A. and D.J. Mitchell. 1994. Desertification and reclamation in north-central China.

Ambio, 23: 131-135.

Ganskopp, D. and D. Bohnert, 2003. Mineral concentration dynamics among 7 northern

Great Basin grasses. J. Range Manage. 54: 640–647.

Ganskopp, D. and D. Bohnert. 2001. Nutritional dynamics of 7 northern Great basin grasses.

J. Range Manage., 54: 640-647.

Gauch, H.C. 1982. Multivariate Analysis in Community Structure. Cambridge University

press, Cambridge.

Gauch, H.C. and R.H. Whittaker. 1981. Hierarchical Classification of Community data.

Journal of Ecology, 69: 135-152.

Georgievskii, V.l. 1982. Biochemical regions, Mineral composition of feeds. In:

Georgievskii, V. l. B. N. Annenkov and V. l. Samokhin Mineral nutrition of animals.

Butterworths London.

Ghazanfar, S., A. Latif, I.H. Mirza and M.A. Nadeem. 2011. Macro-Minerals Concentrations

of Major Fodder Tree Leaves and Shrubs of District Chakwal, Pakistan. Pakistan Journal

of Nutrition, 10 (5): 480-484. ISSN 1680-5194.

Goering, H. K. and P. J. Van Soest. 1970. Forage fiber analysis (apparatus, reagents

procedures, and some applications). USAA-ARS Agriculture Hand bul. 379.U.S. Govt.

Printing Office, Washington DC.

Gohl, Bo. 1981. Tropical feeds. Feed information summaries and nutritive values. FAO,

Animal Health and Production Series No. 12. FA6, Rome, Italy.

Greene, L.W., W.E. Pinchak and R.K. Heitschmidt. 1987. Seasonal dynamics of minerals of

forages at the Texas Expertmental Ranch. J. Range Management, 40: 502-506.

Greig-Smith, P. 1979. The Development of Numerical Classification and Ordination.

Vegetatio., 42: 19-26.

Page 125: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

125

Guo, Q.F., F.W. Rundel and Q.F. Guo. 1997. Measuring dominance and diversity in

ecological communities: choosing the right variables. J. Veg. Sci., 8: 405-408.

Hamann, A., 2004. Flowering and Fruiting phenology of a philipines submontane rain forest:

climatic factors as proximate and ultimate causes. J. Ecol., 92: 24-31.

Hameed, M., A.A. Chaudhry, M.A. Maan and A.H. Gill. 2002. Diversity of plant species in

Lal Suhanra National Park, Bahawalpur. Pak. J. Biol. Sci., 2: 267-274.

Hameed, M., M. Ashraf, F. Al-quriany, T. Nawaz, M. S. A. Ahmad, A. Younis, N. Naz.

2011. Medicinal flora of the cholistan desert: A review. Pak. J. Bot., 43: 39-50, Special

Issue, December, 2011 (Medicinal Plants: Conservation & Sustainable use)

Hardesty, L.H., T.W. Box. 1988. Defoliation impacts on coppicing browse species in

northeast Brazil. J. Range Manage., 41: 66–70.

Hargreaveas, P. 2008. Phytosociology in brazil. The American journal of plant science and

biotechnology 2(2) 12-20.

Harris, R.B. 2010. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the

evidence of its magnitude and causes. Journal of Arid Environments, 74: 1-12.

Hary, I., H.J. Schwartz, V.H. Pielert and C. Mosler. 1996. Land degradation in African

Pastoral systems and destocking controversy. Ecological Modelling, 86: 227-233.

Heady, H.F. 1975. Range Management. McGraw-Hill Book Company, New York, USA.

Heath, M.E., R.F. Barnes and D.S. Metcalfe. 1985. Forages: The Science of Grassland

Agriculture. Iowa State University, Iowa, Aimes.

Hein, L. 2006. The impacts of grazing and rainfall variability on the dynamics of a Sahelian

rangeland. J. Arid Environ., 64, 488–504.

Heneidy, S.Z., 2002. Role of indcator range species as browsing forage and effective

nutritive source, in Matruh area, a Meditenanean coastal region, NW Egypt. Biol. Sci., 2:

136-142.

Hidiroglu, M. and J.E. Knipfel. 1984. Zinc in mammalian sperm: A review. J. E. Dairy Sci.,

7: 1141-1156.

Holecheck, J.L.. 1988.Anapproach for setting the stocking rate. Rangelands, 10: 10–14.

Holechek, J. L., R.D. Pieper and C.H. Herba. 1998. Range Management. Principles and

practices. 3rd Edition. Prentice Hall, Upper Saddle River, New Jersey, 07458.

Page 126: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

126

Holechek, J.L., R.D. Pieper, and C.H. Herbel. 1996. Range management: Principles and

practices. Prentice-Hall, New Jersey, USA.

Holechek, J.L., R.D. Pipeper and C.H. Herbal. 1995. Range Management. Principles and

Practices. 2nd Edition. Prentice Hall, Inc. USA.

Humphreys, L.R. 1984. Tropical pastures and fodder crops. Longman Group U.K. Ltd.

Longman House, Burnt Mill, Harlow Essex CM 20 21E. England.

Hussain F. and M.J. Durrani. 2008. Mineral Composition of Some Range Grasses and Shrubs

From Harboi Rangeland Kalat, Pakistan. Pak. J. Bot., 40(6): 2513-2523.

Hussain, A., S. N. Mirza, I.A. Khan and M.A. Naeem. 2009. Determination of relative

species composition and seasonal Plant communities of nurpur reserved Forest in scrub

rangelands of district chakwal. Pak. J. Agri. Sci., vol. 46(1).

Hussain, F and M.J. Durrani. 2007. Forage productivity of arid temperate Harboi rangeland,

Kalat, Pakistan. Pak. J. Bot., 39(5): 1455-1470.

Hussain, F. 1989. Field and Laboratory Manual of Plant Ecology. National Academy of

Higher Education, University Grants Commission, Islamabad, Pakistan.

Hussain, F. and G. Mustafa. 1995. Ecological studies on some pasture plants in relation to

animal use found in Nasirabad Valley, Hunza, Pakistan. Pak. J. Pl. Sci., 1: 255-262.

Hussain, F. and L. Badshah. 1998. Vegetation structure of Pirghar Hills South Waziristan,

Pakistan. Journal of Tropical and Subtropical Botany, 6: 187-195.

Hussain, F. and M.J. durrani. 2009a. Nutritional evaluation of some forage plants from

harboi rangeland, kalat, Pakistan. pak. j. bot., 41(3): 1137-1154.

Hussain, F. and M.J. Durrani. 2009b. Seasonal availability, palatability and animal

preferences of forage plants in harboi arid range land, kalat, Pakistan. pak. j. bot., 41(2):

539-554.

Hussain, M. I. and A. Perveen. 2009. Plant biodiversity and phytosociological attributes of

Tiko baran (khirthar range). Pak. J. Bot., 41(2): 581-586.

Hussain. F and S. R. Chaughtai. 1984. The effect of overgrazing on the development of

herbaceous vegetation in Zangilora, Quetta, Balochistan, Pakistan. Area Study Journal,

91: 29-38.

Page 127: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

127

Huston, J.E. and W.E. Pinchak. 1993. Range animal production. In: R. K.Heitschimdt, and J.

W. Stuth. Grazing management: An ecological Perspective.Timber Press. Portland,

Oregon. USA.

Ibeawuchi, J.A., F.O. Ahamefule and J.E. Oche, 2002. Anassessment of the nutritive value of

the browsed plants in Makurdi, Nigeria. Nig. Agri. J., 33: 128- 135.

Ibrahim, K.M. 1981. Shrubs for fodder production. In: Advances in food producing systems

for arid and semi arid lands. Academic Press, London. pp. 601-642.

Inam-ur-Rahim. 1999. Identification, yield, palatability and nutritional evaluation of

consumable forage species at various elevations and aspects in Chagharzai valley of

Malakand division in Trans-Himalayan range. Ph.D Thesis. U.A.F. Pakistan.

Iqbal, M.Z., S.Z. Shah, M.J. Shafiq. 2008. Ecological surveys of certain plant communities

around urban areas of Karachi. Appl. Sci. Environ. Manage., Vol. 12(3) 51-60.

Iqbal. J., A. Jabbar. M. Amin-ud-Din and M. Siddique, 1981. Chemical Investigation of

Haloxylon recurvum and its Ash. Pakistan Journal of Scientific Research, Vol. 33, No. 1-

4, pp 82-84.

Islam, M.R., C.K. Saha, N.R. Sharkar, M. Jahilil and M. Hasanuzzamam. 2003. Effect of

variety on proportion of botanical fraction and nutritive value of different Napier grass

(Pennisetum puporeum) and relationship between botanical fraction and nutritive value.

Asian-Australian J. Anim. Sci., 16: 177-188.

Jabeen, T. and S.S. Ahmad. 2009. Multivariate analysis of environmental and vegetation data

of Ayub National Park Rawalpindi, Soil & Environment, 28 (2): 106-112.

Jackson, M.L. 1967. Soil Chemical Analysis—Advanced Course. Washington Department of

Soil Sciences, pp. 498.

Jafari, M., M.A. Zare Chahouki, A. Tavili and H. Azamivand, 2003. Soil-Vegetation

relationships in Hoze- Soltan Region of Qom Province, Iran. Pak. J. Nut., 2(6): 329-34.

Jafari, M., M.A. Zare Chahouki, A. Tavili, H. Azarnivand and G.H. Zahedi Amiri, 2004.

Effective environmental factors in the distribution of vegetation types in Poshtkouh

rangelands of Yazd Province (Iran). J. Arid Environ., 56(1): 627-41.

Jeloudar, Z.J., H. Arzani, M. Jafari, A. Kavian, Gh. Zahedi, H. Azarnivand. 2010. Vegetation

community in relation to the soil characteristics of Rineh rangeland, Iran. Caspian J. Env.

Sci., Vol. 8 No.2 pp. 141-150.Copyright by The University of Guilan, Printed in I.R. Iran.

Page 128: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

128

Jones, D.I.H. and A.D. Wilson. 1987. Nutritive quality of forage. In: The nutrition of

Herbivores. pp. 65-90 Academic Press. Australia.

Judson, G.J. and J.D. McFarlane. 1998. Mineral disorders in grazing livestock and the

usefulness of soil and plant analysis in the assessment of these disorders. Aust. J. Experi.

Agric., 38: 707-723.

Kabata-Pendias, A. and H. Pendias. 1992. Trace Elements in Soils and Plants. CRC Press

Inc., Boca Raton, FL.

Kalmbacher, R.S. 1983. Distribution of dry matter and chemical constituents in plant parts of

four Florida native grasses. J. Range Manage., 36: 298-301

Kassahun, A. 2006. Characterzation of rangeland resources and dynamics of the pastoral

Production system in the Somali region of Eastern Ethiopia. A PhD Thesis Presented to

the University of the Free State, Bloemfontein, South Africa. pp. 232.

Kayani, S.A., A.Masood, A.K.K. Achakzai and S. Anbreen. 2007. Distribution of secondary

metabolites in plants of Quetta-Balochistan. Pak. J. Bot., 39: 1179-1179.

Kemp, P.R. 1983. Phenological patterns of Chihuahuan desert plants in relation to the timing

of water availability. Journal of Ecology, 71: 427–436.

Kent, M. & Coker, P. 1992. Vegetation description and analysis: A practical approach.

(edition). John Wiley and Sons, New York. pp. 275.

Kent, M. & Coker, P. 1997. Vegetation Description and Analysis – A Practical Approach.

New York: John Wiley & Sons.

Kershaw, K.A. 1973. Quantitative and dynamic plant ecology, 2nd ed. Elsevier, New York.

Khan, A.U., 1994. Appraisal of Ethnoecological incentives to promote conservation of

Salvadora oleoides Dine the cse for creating a resource area. Biological conservation,

75(2): 187-190.

Khan, M.F., Z. Naseer, S.M. Chaudhry. 1990. Strategies of small ruminants feeding.

National Workshop on Goats and Sheep Research and Development. November Lahore,

Pakistan, 24-27.

Khan, Z.I. 2003. Effect of seasonal variation on the availability of macro-and micro, nutrients

to animals (sheep and goats) through forage from soil. Ph.D. Dissertation. Uni. Agric,

Faisalabad, Pakistan.

Page 129: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

129

Khan, Z.I., E. Valeem, A. Hussain, M. Ashraf, M.Y. Ashraf, McDowell, M.S. Akhtar and

M.A. Mirza. 2005. Effect of seasonal variation on Zn content of soil, forage, water, feed

and small ruminants grazing the native and improved pasture during different seasons in

the semi-arid regions of Pakistan. Int. J. Biol. Biotechnol. Pakistan, 2: 465–74.

Khan, Z.I., M. Ashraf and A. Hussain. 2007. Evaluation of Macro Mineral Contents of

Forages: Influence of Pasture and Seasonal Variation. Asian-Aust. J. Anim. Sci., Vol. 20,

No. 6: 908 - 913

Khanal, R.C. and D.B. Subba, 2001. Nutritional evaluation of leaves from some major fodder

trees cultivated in the hills of Nepal. Anim. Feed Sci. Technol., 92: 17-32.

Kibon, A. and E.R. Orskov. 1993. The use of degradation characteristics of browse plants to

predict intake and digestibility by goats. Anim. Prod., 57: 247-251.

Kinzel, H. 1983. Influence of limestone silicates and soil pH on vegetation. Ill. Physiological

plant ecology. In: Lange, O. L. P. S. Nobel, C. B. Osmond andH. Zieglers. Encyclopedia

of plant physiology. Spriger-Verlag, Berlin.

Kirk-Patrick. A.H. 1990. A vegetation survey of heath and moorland in northern Ireland and

co. congeal. Dissertation and abstracts international-B, Sciences and engineering.

51(2):544b.

Kovach, W. 1985-2002. Institute of Earth Studies, – University college of Wales,

ABERYSTWYTH, (Shareware)-MVSP Version 3.2, 1985-2002 Kovach Computing

Services - http://www.kovcomp.com/MVPs/downl2.html

Kumar, H. D. 1981. Modern Concept of Ecology. (2nd ed.) Vicas Publishing House Private

Ltd, Delhi.

Labavitch, J. M. 1981. Cell wall turnover in plant development. Annual Review of Plant

Physiology.32: 385-406.

Landsberg, J. & G. Crowley. 2004. Monitoring rangeland biodiversity: Plants as indicators.

Austral Ecol., 29: 59–77.

Laudadio, V., Tufarelli, V., Dario, M., Hammadi, M., Seddik, M.M., Lacalandra, G.M. and

Dario, C., 2008. A survey of chemical and nutritional characteristics of halophytes plants

used by camels in Southern Tunisia, Tropical Animal Health and Production, in press,

doi:10.1007/ s11250-008-9177.

Page 130: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

130

Le Houerou, H.N., 1980. The role of Browse in the Sahelian and Sudanian zones. In: Le

Houerou, H. N. (Ed.). Browse in Africa, pp: 83-100. Adds Ababa, ILCA., pp: 491.

Le Houerou, H.N., 2000. Utilization of fodder trees and shrubs in the arid and semiarid zones

of West Asia and North Africa. Arid Soil Res. Rehab. 14, 101–135.

Liu, Y.Z. 1993. Study on the dynamic features of nutritive substances in inner Mongolia

Steppe. Grassland of China, 4: 16-20.

Mahala, A.G., I.V. Nsahlai, N.A.D. Basha and L.A. Mohammed. 2009. Nutritive Evaluation

of the Natural Pastures at Early and Late Rainfall Season in Kordofan and Butana, Sudan.

Australian Journal of Basic and Applied Sciences, 3(4): 4327-4332.

Majeed, A., M. Azam and A. Mumtaz. 2002. Drought and Water Management Strategies in

Pakistan. Proceedings of the SAARC Workshop on Drought and Water Management

Strategies (September 16-18, 2002 Lahore-Pakistan). Pakistan Council of Research in

Water Resources, Islamabad, Pakistan.

Malechek, J. C, and D. F. Balph. 1987. Diet selection by grazing and browsing livestock. In:

J, B.Hacker and J. H. Ternouth. The nutrition of herbivores. Academic Press New York.

Malik, N.Z. 2007. Vegetation structure and diversity of moist temperate rangelands of pir-

chinasi hills, district muzaffarabad. Department of Botany Faculty of Sciences Pir Mehr

All Shah Arid Agriculture University Rawalpindi.

Malik, N.Z., M. Arshad and S.N. Mirza. 2007. Phytosociological Attributes of Different

Plant Communities of Pir Chinasi Hills of Azad Jammu and Kashmir. International

Journal of Agriculture & Biology, 1560–8530/2007/09–4–569–574.

Malik, Z.H. 2005. Comparative study of vegetation of Ganga Chotti and Bedori hills district

Bagh, Azad jamu and Kashmir with special reference to range conditions. Phd Thesis,

University of Peshawar.

Malik, Z.H., 2004. Comparative study on the vegetation of Ganga Chotti and Bedori hills

District Bagh, Azad Jammu and Kashmir with special reference to Range conditions.

PhD Thesis, University of Peshawar

Mandal, L. 1997. Nutritive value of trees leaves of some tropical species for goats. Small

Rumin. Res., 24: 95–105.

Marten, G.C., C.C. Sheaffer and D.L. Wyse. 1987. Forage nutritive value and palatability of

perennial weeds. Agron. J., 79: 980-986.

Page 131: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

131

Mc Naughton, S.J. 1983. Physiological and ecological plant environment. M. Physiological

plant ecology In: Lange, O. L. P. S. Nobel, C. B. Osmond and H. Zieglers. Encyclopedia

of plant physiology. Spriger-Verlag, Berlin.

McCullough, B.D. and D.A. Heiser. 2008. On the accuracy of statistical procedures in

Microsoft Excel 2007, Computational Statistics and Data Analysis, 52: 4570- 4578.

McCune, B. and M.J. Mefford. 1999. PC-ORD. Multivariate Analysis of Ecological Data.

version 4.

McDonald, P., R.A. Edwards, J.F.D. Greenhalgh, C.A. Morgan. 2002. Animal Nutrition (6th.

edition). Pearson Educational Limited. Edinburgh.

McDowell, L., J.H. Conrad and G.L. Ellis. 1984. Mineral deficiencies and imbalances and

their diagnosis. In: Herbivore Nutrition in Subtropics & Tropics, Graighall, South Africa.

(Eds.) F.M.C. Gilchrist & R.I. Mackie. The Science Press, Johannesburg, pp. 67-88.

McDowell, L.R. 1996. Feeding mineral to cattle on pasture. Anim. Feed Sci. Tech., 0: 247

271.

McDowell, L.R. 2003. Minerals in Animal and Human Nutrition (2nd Ed.ed., Elsevier,

Amsterdiam. Uni. Florida.

McDowell, L.R. and G. Valle. 2000. Major minerals in forages. Forage Evaluation in

Ruminant Nutrition (Ed. D. I. Givens, E. Owen, R. F. E. Oxford and H. M. Omed). p.

373. CAB International, Wallingford, UK.

McDowell, L.R. and J.D. Arthington. 2005. Minerals for grazing ruminants in tropical

regimes. Bulletin (4th ed.). University of Florida, Ginessville, pp. 1-86.

McDowell, L.R., J.H. Conrad, G.L. Ellis and L.K. Loosli. 1983. Minerals for Grazing

Ruminants in Tropical Regions. Extension Bulletin Anim. Sci., Dept., Univ. of Florida.

McDowell, L.R.1992. Minerals in animals and livestock nutrition. Academic press Inc., San

Diego, California, USA.

McSweeney, C.S., B. Palmer, B. Bunch, D.O. Krause. 1999. In vitro quality assessment of

tannin-containing tropical shrub legumes: protein and fibre digestion. Anim. Feed Sci.

Technol., 82, 227–241.

Melaku, S., T. Aregawi, L. Nigatu. 2010. Chemical composition, in vitro dry matter

digestibility and in sacco degradability of selected browse species used as animal feeds

Page 132: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

132

under semi-arid conditions in Northern Ethiopia. Agroforest Syst., DOI 10.1007/s10457-

010-9295-x.

Mengistu, A. 2006. Range Management for East Africa: Concepts and Practices, Sponsored

by RPSUD and Printed by A.A.U Printed Press. Addis Ababa, Ethiopia.

Miller, R.F., Doescher, P.S., 1995. Plant adaptations to saline environments. In: Bedunah,

D.J., Sosebee, R.E. (Eds.), Physiological Ecology and Developmental Morphology.

Society for Range Management, Denver, CO, pp. 440–478.

Mills, C.F. 1974. Trace element interactions: effect of dietary composition on the

development of imbalance and toxicity. In: Proceed. H. International Symposium on

Trace Elements Metabolism in Animals. Madison, Wisconsin.

Minson, D.J. 1990b. The chemical composition and nutritive value of tropical grasses. In: P.

J Skerman, and F. Riveros. Tropical grasses. FAO Plant Production and Protection

Series, No: 23. FAO Rome.

Minson, D.J., 1990. (Editor) Forage in ruminants. Academic Press Inc., San Diego,

California, USA.

Minson, D.J., 1990a. Forage in Ruminant Nutrition. Academic Press, London.

Mohammad, N. 1989. Rangeland Management in Pakistan. International centre for Integrated

Mountain Development, Kathmandu, Nepal. pp: 198.

Mohammad, N. and M.S. Naz. 1985. Range management and forage research in Pakistan.

Progressive farming, 5: 44-51.

Moodie, C.D., W. Smith and R.A. MeCreery. 1959. Laboratory Manual for Soil Fertility:

Dept. Agron. State College of Washington, Pullman, Washington. pp. 1-75.

Moore, K.J. and H.J.G. Jung. 2001. Lignin and fiber digestion. Journal of Range

Management, 54: 420–430. doi:10.2307/ 4003113.

Moore, P.D. and S.R. Chapman. 1986. Methods in Plant Ecology, pp. 588.

Morris, C. and D. Kotze. 2006. Introduction to Veld care (1). Agricultural research council,

University of Kwazulu Natal.

Mountousis, I., K. papanikolaou, F. chatzitheodoridis, Ch. Roukos and A. papazafiriou. 2008.

Monthly variations of mineral content in semi-arid rangelands in western macedonia–

Greece. Bulgarian journal of agricultural science, 14 (4) 361-372 agricultural academy.

Page 133: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

133

Moya-Rodriguez, R.J.G., Ram´ırez, R.G., Foroughbakhch, R., Hauad, L., Gonzalez, H.,

2002. Variación estacional de minerales en las hojas de ocho especies arbustivas. Ciencia

UANL, Universidad Autónoma de Nuevo León, México, pp. 59–65.

Muller-Dombois, D. and H. Ellenberg. 1974. Aims and Methods of Vegetation Ecology.

John Wiley and Ltd. New York and London.

Mutanga, O., H.T. Prins, A.K. Skidmore, S. VanWieren, H. Huizing, R. Grant, M. Peel and

H. Biggs. 2004. Explaining grass-nutrient patterns in a savannah rangeland of southern

Africa. Journal of Biogeography, 31: 819-829.

Myers, N., RA. Mittenneier, e.G. Mittenneier, G.A.B. da Fonseca and J. Kent, 2000.

Biodiversity hotspots for conservation priorities. Natures, 403: 853-858.

Nasrullah, N., M. Akashi and R.O. Kawamura. 2003. Nutritive evaluation of forage plants in

South Sulaweshi, Indonesia. Asia-Astralia J. Anim. Sci., 16: 693-701.

National Research Council. 1980. Mineral tolerance of domestic animals. National Academy

of sciences, Washington, DC.

National Research Council. 1985. Nutrient Requirements of Sheep: Sixth Revised Edition.

National Academy Press, Washington, DC.

Njidda, A.A. and I. Ikhimioya. 2010. Correlation between chemical composition and in vitro

dry matter digestibility of leaves of semi-arid browses of north-eastern Nigeria.

American-Eurasian J. Agric. & Environ. Sci., 9 (2): 169-175.

Norton, B.W. 1994. The nutritive value of tree legumes. In: (Ed. R. C. Gutteridge and H. M.

Shelton), Forage Tree Legumes in Tropical Agriculture, CAB international, pp. 177-191.

NRC, 1978. Nutrient requirements of domestic animals, no. 6. Nutrient Requirements of

Horses. National Academic Science, Natural Research Council, Washington, DC, 76 pp.

NRC, 1984. Nutrient requirements of domestic animals, no. 4. Nutrient Requirements of

Beef Cattle, 6th Rev. ed. National Academic Press, Washington, DC, 100 pp.

NRC, 2001. Nutrient Requirements of Dairy Cattle. 7th Rev. Edn., National Academy Press,

National Research Council, Washington DC., USA.

NRC. 1996. Nureit Reqiurment of Beef Cattle. Seventh Rev. Edition National Research

Council Washinton Dc National Academy Press.

Page 134: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

134

Nyamangara, M. E. and L.R. Ndlova. 1995. Feeding behavior. feed intake, chemicals and

botanical composition of the diet of indigenous goats raised on natural vegetation in a

semi-arid region of Zimbabwe. J. Agri. Sci., 124: 455-461.

O’Farrell P.J., J.S. Donaldson, and M.T. Hoffman. 2007. The influence of ecosystem goods

and services on livestock management practices on the Bokkeveld plateau, South Africa.

Agriculture, ecosystems, and environment doi: 10.1016/j. agee. 2007.01.025.

Odedire, J.A, Babayemi, O.J. 2008. Comparative studies on the yield and chemical

composition of Panicum maximum and Andropogon gayanus as influenced by Tephrosia

candida and Leucaena leucocephala. Livest Res Rural Dev, 20(2): 1-8.

Okoli, I.C., C.S. Ebere, O.O. Emenalom, M.C. Uchegbu and B.O. Esonu, 2001. Indigenous

livestock production paradigms revisited. 111: An assessment of the proximate values of

most preferred indigenous browses of Southeastern.

Okoli,I.C., M.O. Anunobi, B.E. Obua and V. Enemuo. 2003. Studies on selected browses of

southeastern Nigeria with particular reference to their proximate and some endogenous

anti nutritional constituents. Livestock Research for Rural Development, 15 (9).

Opler, P.A., G.W. Frankie & H.G. Baker. 1980. Comparative phonological studies of shrubs

and treelets in wet and dry forests in the lowlands of Costa Rica. Journal of Ecology, 68:

167-186.

Osuga, I.M., S.A. Abdulrazak, T. Ichinohe and T. Fujihara. 2005. Chemical composition,

degradation characteristics and effect of tannin on digestibility of some browse species

from kenya harvested during wet season. Asian-Aust. J. Anim. Sci., Vol. 18, No. 1: 54-60.

Page, A.L., R.H. Miller and D.R. Keeney. 1982. Methods of Soil Analysis, American Society

of Agronomy, Madison, Wisconsin, USA.

Papachristou, T.G. 1997. Foraging behaviour of goats and sheep on Mediterranean kermes

oak shrublands. Small Ruminant Research, 24, 85-93.

Parveen, A. and M.I. Hussain. 2007. Plant biodiversity and phytosociological attributes of

Gorakh hill (Khirthar range). Pak. J. Bot., 38 (3): 691-698.

Pearce, R. 1992. Mirage of shifting sands. New Scientist 136, 38-42.

Peden, M.I. 2005. Tackling the most avoided issue: Communal rangeland management in

Kwazulu-Natal, South Africa. African Journal of Range and Forage Science, 22 (3) 167-

175.

Page 135: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

135

Pfister, J.A. and J.C. Malechek. 1986. Dietary selection by goats and sheep in a deciduous

woodland of North Eastern Brazil. J. Range Mange., 39: 24-28.

Pharswan, K., J.P. Mehta and Subodh. 2010. Floristic Composition and Biological Spectrum

of Vegetation in Alpine Meadows of Kedarnath: Garhwal Himalaya. Nature and Science,

8(7):109-115.

Pieper, R.D. 1988. Rangeland vegetation productivity and biomass. In: P.T. Tueller. (ed).

Vegetation science applications for rangeland analysis and management. Handbook of

vegetation science, Volume 14. Kluwer Academic Publishers, Dordrecht. pp. 449-467.

Primack, RB., 2002. Essentials of Conservation Biology. 3rd Edn., Sinauer Associates,

Sunderland, ISBN-l 0: 0878937196. pp: 698.

Provenza, F.D. 1995. Postingestive feed back as an elemental determinant of food reference

and intake in ruminants. J. Range Manage., 48: 2-17.

Qureshi, R. 2004. Floristic and Ethnobotanical Study of Desert Nara Region, Sindh. Ph.D.

Thesis. Department of Botany, Shah Abdul Latif University, Khairpur. Vol. I: 1-300.

Qureshi, R. 2008a. Preliminary floristic list of Chotiari Wetland Complex, Nawab Shah,

Sindh, Pakistan. Pak. J. Bot., 40(6): 2281-2288.

Qureshi, R. 2008b. Vegetation assessment of sawan wari of nara desert, Pakistan. pak. j. bot.,

40(5): 1885-1895.

Qureshi, R. and G.R. Bhatti. 2010. Floristic inventory of Pai Forest, Nawabshah, Sindh,

Pakistan. Pak. J. Bot., 42(4): 2215-2224.

Qureshi, R., G.R. Bhatti and G. Shabbier. 2011a. Floristic inventory of pir mehr ali shah arid

agriculture university Research farm at koont and its surrounding areas. Pak. J. Bot.,

43(3): 1679-1684.

Qureshi, R., W.A. khan, G.R. Bhatti, B. khan, S. iqbal, M. S. ahmad, M. abid and A. yaqub.

2011b. First report on the biodiversity of khunjerab National park, Pakistan. Pak. J. Bot.,

43(2): 849-861.

Rafi, M.M. 1965. Maslakh Range Project, Quetta, West Pakistan (A review of its first ten

years). Pak. Jour. For., 15(4): 319-338.

Ram´ırez, R.G., Haenlein, G.F.W., Nuñez-González, M.A., 2001. Seasonal variation of

macro and trace mineral contents in 14 browse species that grow in northeastern Mexico.

Small Rumin. Res. 39, 153–159.

Page 136: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

136

Ram´ırez-Orduña, R., R.G. Ram´ırez, H. González-Rodr´ıguez, G.F.W. Haenlein. 2005.

Mineral content of browse species from baja California sur, Mexico. Small Ruminant

Research, 57: 1–10.

Ramirez, R.G. 1996. Feed values of browse. In: VI International Conference on Goats

Editorial. International Publishers, Beijing, China. pp. 510-517.

Rankiaer, C. 1934. Life form of Plants and Statistical Plant Geography. Clarendon press,

Oxford.

Rao, A.R., M. Arshad and M. Shafiq. 1989. Perennial grass germplasm of Cholistan desert

and their phytosociology. Cholistan Institute of Desert Studies, Islamia University,

Bahawalpur. pp. 84.

Rasby, R., D. Brink, I. Rush and D. Adams, 1998. Minerals and vitamins for beef cows.

Nebraska Cooperative Extension, Publ. EC97-277. University of Nebraska – Lincoln.

Rashid, A., M. F. Swati, H. Sher, M. N. Al- Yemeni. 2011. Phytoecological evaluation with

detail floristic appraisal of the vegetation arround Malam Jabba, Swat, Pakistan. Asian

Pacific Journal of Tropical Biomedicine, 461-467. doi:10.1016/S2221-1691(11)60101-9.

Rashid, S., Q. Iftikhar, M. Arshad and J. Iqbal. 2000. Chemical composition and antibacterial

activity of Suaeda fruticosa forsk, From Cholistan. Pakistan. Pakistan Journal of

Biological Sciences, 3 (2): 348-349.

Rhoades, J.D. 1982. Soluble salts. In: Methods of soil analysis: Part 2: Chemical and

microbiological properties. (Eds.): A.L. Page et al. Monograph Number 9 (Second

Edition). ASA, Madison, WI, pp. 167-179.

Rhodes, B.D., S.H. Sharrow. 1990. Effect of grazing by sheep on the quantity and quality of

forage available to big game in Oregon’s Coast Range. J. Range Manage., 43, 235-237.

Richard, L.A. 1954. Diagnosis and Improvement of Saline and Alkali Soils. USDA

Handbook No. 60, Washington, D. C., USA.

Roberts, B.R. 1987. Availability of herbage. In. J. B. Hacker and J. H. Ternouth. The

nutrition of herbivores. Academic Press New York.

Robles, C.A.B. and L.J. Boza. 1993. Native forage flora of south-eastern Spain. II. Nutritive

value. Pastos, 29: 47-60.

Rossiter, R.C. 1966. Ecology of the Mediterranean Annual type pasture. Advance Agron., 18:

1-56. Academic Press New York.

Page 137: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

137

Sala, O.E., A.T. Austin. 2000. Methods of estimating aboveground net primary productivity.

In: Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W. (Eds.), Methods in

Ecosystem Science. Springer, New York, Berlin, Heidelberg, pp. 31–43.

Salah, S. and T.E. Din. 1994. Prediction of Salsola vermiculata Foliage Production for

Different Grazing Intensities. Apric. Sci., 2: pp. 311-320.

Saleem, M. 1997. Range management activities in the Integrated Range Livestock

Development Project. Project Report: Pak/88/071.

Salem, B. & C. Palmberg. 1985. Place and role of trees and shrubs in dry areas. In: Wickens,

G.E., Goodin, J.R., Field, D.V. (Eds), Plants for Arid Lands, pp 93-102. London: Allen &

Unwin.

Salis, S.M., M.A. Assis, P.P. Mattos, & A.C.S. Piao. 2006. Estimating the aboveground

biomass and wood volume of savanna woodlands in Brazil’s Pantanal wetlands based on

allometric correlations. Forest Ecol. Manage,. 228: 61–68.

Salisbury, F.B., C.W. Ross. 1994. Fisiolog´ıa en condiciones de estrés. In: Philip, N.G. (Ed.),

Fisiolog´ıa Vegetal. Grupo Editorial Iberoamericana, México, DF, pp. 639–667.

Sana-ul-haq, S.N. Mirza, S.M. Nizami, A. Khaliq Chaudhry, I.A. Khan and R. Qureshi.

2011. Vegetation analysis and winter season carrying capacity of sub-tropical, sub humid

rangelands of dhrabi watershed, Pakistan. Pak. J. Bot., 43(3): 1669-1672.

Sanderson, M. A., J.S. Hornstein and W. F. Wedin. 1989. Alfalfa morphological stage and its

relation to in-situ digestibility of detergent fiber fractions of stem. Crop Sci., 29:1315-19.

Sandford, S. 1983. Management of Pastoral Development in the Third World. John Wiley

and Sons, Chichester, UK.

Sanon H.O., C. Kabore-Zoungrana, I. Ledin. 2008. Nutritive value and voluntary feed intake

by goats of three browse fodder species in the Sahelian zone of West Africa. 144: 97-110.

Santra, A.K., S. Pan, A.K. Samanta, S. Das & S. Halder. 2008. Nutritional status of forage

plants and their use by wild elephants in South West Bengal, India. Tropical Ecology,

49(2): 251-257, 2008 ISSN 0564-3295.

SAS. 2000. SAS/STAT Software: Changes and Enhancements through Release 8.1, SAS

Institute Inc., Cary, NC.

Schwartz, C.C., J.C. Nagy, R.W. Rice. 1977. Pronghorn dietary quality relative to forage

availability and other ruminants in Colorado. J. Wildl. Manage., 41: 161–168.

Page 138: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

138

Scoones, I. 1992. Land degradation and livestock production in Zimbabwe's communal areas.

Land Degradation and Rehabilitation vol.3, 99-113.

Selvenderan, R.R. 1983. Chemistry of plant cell walls. In: G.G. Birch and K.J. Parker

Dietary Fiber. Applied Science Publ. London. pp: 95-147.

Shaheen, H. and Z.K. Shinwari. 2012. Phytodiversity and endemic richness of karambar lake.

Vegetation from Chitral, Hindukush-Himalayas. Pak. J. Bot., 44(1): 15-20.

Shaltout,K.H. A.A. El-Keblawy and M. T. Mousa. 2008. Vegetation Analysis of Some

Desert Rangelands in United Arab Emirates. Middle-East Journal of Scientific Research,

3 (3): 149-155.

Shamat, A.M., I.A. Babiker, A.M.S. Mukhtar and F.A. Ahmed. 2009. Seasonal and Regional

Variations in Mineral Content of Some Important Plants Species Selected by Camels

(Camelus dromedaries) in Arid and Semi-arid Lands (ASAL) of Sudan. Journal of

Applied Sciences Research, 5(10): 1676-1684.

Shenk, J.S. and R.F. Barnes. 1985. Forage analysis and its application. In M. E. Health, R. f.

Barnes and D. S. Metcalfe Forages: The science of grassland agriculture lowa State

University Press Ames, lowa, USA.

Sher, Z., F. Hussain and L. Badshah. 2011. Micro-mineral contents in eight forage shrubs at

three phenological stages in a Pakistan’s rangeland. African Journal of Plant Science Vol.

5(10), pp. 557-564. http://www.academicjournals.org/AJPS

Shetty, B.V. and V. Singh. 1991. Flora of Rajasthan, Botanical Survey of India. Old

Connaught Place Dehra Dun. Vol. I & II.

Shimelse, S. 2010. Vegetation Ecology, Forage Biomass and Evaluation of Nutritive Value

of Selected Browse Species in Nechisar National Park, Ethiopia. Addis Ababa University

School of Graduate Studies.

Simpson, B.B. 1977. Breeding systems of dominant perennial plants of two disjunct warm

desert eco- systems. Oecologia, 27: 203-226.

Singh, G.P., Oosting, S.J. 1992. A model for describing the energy value of straws. Indian

Dairym XLIV: 322–327.

Skerman, P. J and F. Riveros. 1990. Tropical grasses. FAO Plant Production and Protection

Series, No. 23. FAO Rome.

Page 139: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

139

Smith, E.L. 1994. Class notes for Range Management, RAM 456/556. Fast Copy, University

of Arizona, Tucson.

Society for Range Management. 1989. A glossary of terms used in range management.

Society for Range Management. Denver, CO. 3rd ed. pp. 9.

Society for Range Management. 1999. A glossary of terms used in range management.

Society for Range Management. Denver, Colorado. pp. 20.

Spears, J.W. 2003. Overview of mineral nutrition in cattle: the dairy and beef NRC.

Proceedings of the 13th Annual Florida Nutrition Symposium. pp. 113-126.

Spears, J.W., 1994. Minerals in forages. In: Fahey Jr., G.C. (Ed.), Proceedings of the

National Conference on Forage Quality, Evaluation and Utilization. University of

Nebraska, Lincoln, NE, pp. 281–317.

Sprague, H.B. 1979. Management of Rangelands and other grazing lands of the Tropics and

subtropics for support of livestock production. Technical series Bulletin No.23,

Agriculture Technology for Developing countries, Office of Agriculture Development

support Bureau. Agency for International Development, Washington D.C. 20523

Steel, G.D, J.H. Torrie and D.A. Dickey. 1997. Principles ad procedures of Statistical and

Biometrical approach. 3rd ed. McGraw Hill Book Company, New York. pp. 182.

Stoddart, L.A., A.D. Smith, T.W. Box. 1975. Range management, third ed. McGraw-Hill

Book Company, New York. pp. 532.

Stuth, J.W. 1993. Foraging behavior. In: R. K..Heitschmidt, and J. W. Stuth Grazing

management: An ecological perspective. Timber Press, Portland, Oregon USA.

Sultan J.I., Inam-ur-Rahim, A. Javaid, M.Q. Bilal, P. Akhtar And S. Ali. 2010. Chemical

composition, mineral profile, Palatability and in vitro digestibility of shrubs. Pak. J. Bot.,

42(4): 2453-2459.

Sultan, J. I., Inam-Ur-Rahim, M. Yaqoob, H. Nawaz and M. Hameed. 2008. Nutritive value

of free rangeland grasses of northern grasslands of Pakistan. Pak. J. Bot., 40(1): 249-258.

Sultan, J.I., Inamur Rahim, H. Nawaz and M. Yaqoob. 2007. Nutritive value of marginal land

grasses of Northern Grasslands of Pakistan. Pak. J. Bot., 39: 1071-1082.

Sultan, J.I., Inam-Ur-Rahim, M. Yaqoob, M.I. Mustafa, H. Nawaz and P. Akhtar. 2009.

Nutritional Evaluation of Herbs as Fodder Source for Ruminants. Pak. J. Bot., 41(6):

2765-2776.

Page 140: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

140

Tainton, N.M. & Hardy, M.B. 1999. Introduction to the concepts of development of

vegetation. In: Tainton, N.M. Veld Management in South Africa. (1st edition). University

of Natal Press, Pietermaritzburg. 1 – 22.

Tan, M. and H. Yolcu. 2001. The nutrition value of some wild plants as a forage crops.

Türkiye 4. Field Crops Congress, pp. 199-204.

Ter Brakk, C.J.F. 1986. Canonical correspondence analysis: a new technique for multivariate

direct gradient analysis. Ecology, 67: 1167-1179.

Ter-Braak, C.J.F. 1987. CANOCO-a fortran program for (canonical) correspondence

analysis, principal components analysis and redundancy analysis. TNO, Eageningen.

Theander, O. and P. Aman. 1984. Anatomical and chemical characteristics. In: F. Sundstol

and E.Owen. Straw and other fibrous byproducts as feed . pp: 45-78. Elsevier Amsterdam

Holland.

Theunissen, J.D. 1995. Phenolic compound in the leaves of ecotypes of three graminoides in

the semi-arid grassland of South Africa. J. Arid Environ., 29: 439-445.

Thomson, E.F., S.N. Mirza & J. Afzal. 1998. Predicting the components of aerial biomass of

fourwing saltbush from shrub height and volume. J. Range Manage. 51(3), 323–325.

Tonggui wu, ming wu, mukui yu, and jianghua xiao. 2011. Plant distribution in relation to

soil conditions in Hangzhou bay coastal wetlands, china. Pak. J. Bot., 43(5): 2331-2335.

Towhidi A., 2007. Nutritive value of some herbages for dromedary camel in Iran. Pakistan

journal of biological sciences, 10 (1) 167-170.

Towhidi, A. & M. Zhandi. 2007. Chemical composition, in vitro digestibility and palatability

of nine plant species for dromedary camels in the province of Semnan, Iran. Egyptian

Journal of Biology, 2007, Vol. 9, pp 47-52.

U.S. Salinity Lab. Staff. 1954. Diagnosis and Improvement of Saline and Alkali Soils. USDA

Hand Book No. 60, US Govt. Printing Office, Washington, D. C., USA.

Underwood, E.J. 1981. The mineral nutrition of livestock. Commonwealth Agr. Bureaux,

London, 180 pp.

Vallentine, J.F., 1990. Grazing management. Academic Press Inc., San Diego, pp.528.

Van Rooyen, N., Theron, G.K. & Grobbelaar, N. 1981. A floristic description and structural

analysis of the plant communities of the Punda Milia-Pafuri-Wambiya area in the Kruger

Page 141: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

141

National Park, Republic of South Africa. 1. The hygrophilous communities. South

African Journal of Botany, 47: 213-246.

Van Soest ,P.J. 1994. Nutritional Ecology of the Ruminant. 2nd ed. Comstock - Cornell

University Press Ithaca, NY, USA. pp. 122-139.

Van Soest, P.J. 1965. Symposium on factors influencing the voluntary intake of herbage by

ruminants: voluntary intake in relation to chemical composition and digestibility. Journal

Animal Science, v.24, n.3, p.834-843.

Van Soest, P.J. 1982. Nutritional ecology of the ruminant, ruminant metabolism. In:

Fermentation and the Chemistry of Forages and Plant Fibers. Cornell University Press,

Ithaca, New York, pp. 137.

Van Soest, P.J. and J.B. Robertson. 1990. Methods of Dietary Fiber, NDF and Non starch

poly saccarides. Symposium paper ADSA June1990. CornellUniversity, Dept. of Animal

Science. Ithaca N.Y.

Van Soest, P.J., B. Rebort, son and B.A. Lewis. 1991. Method for dietry fiber, neutral

detergent fiber and non starch poly sacharides in relation to animal nutrition. J. Dairy

Sci., 74: 3583-3597.

Van Soest. P.J. 1973. The uniformity and nutritive availability of cellulose. Feed.Proc.,

32:1804-1808.

Van-Auken, O.W. 2000. Shrub invasions of Northern American semi-arid grasslands. Annual

Review of Ecology and Systematics, 31: 197-215.

Verma, D.N. 2006. A textbook of animal nutrition kalyani publishers, New Delhi-110 002:

126-132.

Verscoe, T.K. 1987. Australian Acacias in developing countries. In: Fodder potential of

selected Australian tree species. (Ed.): J.W. Tumbull. Proceeding of an international

workshop. Forestry training centre, Gympie, Queensland Australia. 4-7 August 1986.

Australia Centre for International Agricultural Research, Canberra, Australia.

Vetter, S., W.N. Goqwana, W.J. Bond and W.W. Trollope. 2006. Effects of land tenure,

geology and topography on vegetation and soils of two grassland types in South Africa.

African Journal of Range and Forage Science, 23: 13-27.

Von Carlowitz, P.G. 1989. Agroforestry technologies and fodder production—concepts and

examples. Agrofor. Syst., 9, 1–16.

Page 142: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

142

Wadleigh, C. H. and L. A. Richards. 1951. Soil moisture and the mineral nutrition of plants.

In: E. Truog. Mineral Nutrition of plants, University of Wisconsin, Madison Press.

Wagner, F.H., R. Foresta, R.B. Gill, D.R. McCullough, M.R. Pelton, W.F. Porter, H.

Salwasser. 1995. Wildlife Policies in US National Parks. Island Press, Washington, DC.

Wahid, A. 1990. Dietary composition and nutritional status of sheep and goats grazing two

rangeland types in Balochistan, Pakistan. Ph.D. Thesis, Oregon State University.

Walker, B.H. 1980. A review of browser and its role in livestock produc- tion in Southern

Africa. In: Le Houérou, H.N. (Ed.), Browse in Africa: The Current State of Knowledge.

ILCA, Addis Ababa, Ethiopia, pp. 7– 24.

Walton, P.D. 1983. Production and management of cultivated forages. Prentice-Hall

Company Reston, Virginia. pp. 336.

Wazir, S.M., A. Dasti, A. Saima, J. shah, F. Hussain. 2008. Multivariate analysis of

vegetation of Chapursan valley: an alpine meadow in Pakistan. Pak. J. Bot., 40: 615-626.

Wilkinson, S.R., R.M. Welch, H.F. Mayland and D.L. Grunes, 1990. Magnesium in plants:

Uptake, distribution, function and utilization by man and animal. In "Metal ions in

Biological Systems, Vol. 26, compendium on magnesium and its role in biology,

nutrition and physiology" (H.Sigol & A.Sigel, eds.) pp: 3-56, Marcel Dekker, New York.

William and A. Zahoor. 1999. Priorities for Medicinal Plants Research and Development in

Pakistan. MPPA, New Dehli, India.

Wilson, A.D. 1969. A review of browse in the nutrition of grazing animals. J. Range

Management, 22: 23-28.

Wood, C.D., B.N. Tiwari, V.E. Plumb, C.J. Powell, B.R. Roberts, V.D.P. Sirimane, J.T.

Rossiter and M. Gill. 1994. Interspecies differences and variability with time of protein

precipitation activity of extractable tannins, crude protein, ash & dry matter content of

leaves from 13 species of Nepalese fodder trees. J. Chem. Ecol., 20: 3149-3162.

Woolnough, A.P., J.T. Du Toit. 2001. Vertical zonation of browse quality in tree canopies

exposed to sizestructured guild of African browsing ungulates. Oecologia, 129:585-590.

Yavari, A. and S.M. Shahgolzari. 2010. Floristic study of Khan-Gormaz protected area in

hamadan province, Iran. Int. J. Agric. Biol., 12: 271–275.

Younas, M and M. Yaqoob. 2005. Feed resources of livestock in the Punjab, Pakistan. Livest.

Res. Rural Devel. http://www.cipav.org.co/lrrd/lrrd17/2/youn17018.htm.

Page 143: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

143

Youssef, A.M., A. A. Morsy, H. A. Mossallam and Ahmed H. Abd Al-Latif. 2009b.

Vegetation Analysis along Alamain- Wadi El- Natrun Desert Road. Australian Journal of

Basic and Applied Sciences, 3(1): 167-176.

Youssef, A.M., M.A. Al-Fredan and A.A. Fathi. 2009a. Vaiation in plant species

composition of Lake Al- Asfar, Al-Hofouf, Saudi Arabia. Int. J. Bot., (Accepted and in

publication).

Zegeye, H., D. Teketay and E. Kelbessa, 2006. Diversity, regeneration status and socio-

economic importance of the vegetation in the island of Lake Ziway, south-central

Ethiopia. Flora, 201: 483-98.

a b

PLATE 7.1: LIVESTOCK DEATH; A SEVERE EFFECT OF DROUGHT (a, b)

Page 144: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

144

UANNEXURE__ ____________ __________________ CHAPTER 8 ANNEXURE 8.1: ECOLOGICAL ATTRIBUTES OF BROWSE SPECIES Sr. No. Plant Species Habit Life Form Abundance Life Span

1 Aerva javanica (Burm. f.) Merill. Shrub Phanerophyte V.Common Perennial

2 Aerva pseudotomentosa ssp. bovei. Clarke. Shrub Phanerophyte Common Perennial

3 Calotropis procera (Aiton.) Aiton. Shrub Phanerophyte Common Perennial

4 Leptadenia pyrotecnica (Forssakal.) Decne. Shrub Phanerophyte V.Common Perennial

5 Capparis decidua (Forsskal.) Edgew. Shrub Phanerophyte V.Common Perennial

6 Capparis spinosa Linn. Shrub Phanerophyte Rare Perennial

7 Haloxylon recurvum Bunge. ex. Boiss. Shrub Phanerophyte V.Common Perennial

8 Haloxylon salicornicum (Moq.) Bunge. Shrub Phanerophyte V.Common Perennial

9 Salsola baryosma (Roem. et. Scult.) Dany. Shrub Phanerophyte V.Common Perennial

10 Suaeda fruticosa (Linn.) Farsskal. Shrub Phanerophyte V.Common Perennial

11 Pulicaria rajputanae Blatt. & Hall. Shrub Phanerophyte Common Perennial

12 Abutilon muticum (Del. ex. DC.) Sweet. Shrub Phanerophyte Common Perennial

13 Acacia jacquemontii Benth. Shrub Phanerophyte Common Perennial

14 Acacia nilotica (Linn.) Del Tree Phanerophyte Common Perennial

15 Prosopis cineraria (Linn.) Druce. Tree Phanerophyte V.Common Perennial

16 Prosopis juliflora DC. Tree Phanerophyte Rare Perennial

17 Crotalaria burhia Ham. Ex. Bth. Shrub Phanerophyte V.Common Perennial

18 Tephrosia uniflora Pers. Shrub Phanerophyte Rare Perennial

19 Calligonum polygonoides Linn. Shrub Phanerophyte V.Common Perennial

20 Zizyphus mauritiana Lam. Tree Phanerophyte Rare Perennial

21 Zizyphus nummularia (Burm. f.) Wifht & Arn. Shrub Phanerophyte Common Perennial

22 Zizyphus spina christi ( Linn.) Wild. Tree Phanerophyte Rare Perennial

23 Salvadora oleoides Decne. Tree Phanerophyte Rare Perennial

24 Tamarix aphylla (Linn.) Karst. Tree Phanerophyte Common Perennial

25 Tamarix dioica Roxb. Shrub Phanerophyte Rare Perennial

Page 145: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

145

ANNEXURE 8.2: PHENOLOGICAL PATTERNS OF BROWSE SPECIES

Sr. No. Plant Species Seedling Flowering Fruiting Dormant

1 Aerva javanica (Burm. f.) Merill. Feb, Sep Mar, Oct Apr, Nov May, Dec

2 Aerva pseudotomentosa ssp. bovei. Clarke. Sep Oct Nov Dec

3 Calotropis procera (Aiton.) Aiton. Feb, Sep Mar Apr May

4 Leptadenia pyrotecnica (Forssakal.) Decne. Mar, Sep Oct Nov Dec

5 Capparis decidua (Forsskal.) Edgew. Feb, Sep Mar, Oct Apr, Nov May, Dec

6 Capparis spinosa Linn. Feb, Sep Mar, Oct Apr, Nov May, Dec

7 Haloxylon recurvum Bunge. ex. Boiss. Sep Dec Dec Jan

8 Haloxylon salicornicum (Moq.) Bunge. Sep Dec Jan Jan

9 Salsola baryosma (Roem. et. Scult.) Dany. Sep Dec Jan Feb

10 Suaeda fruticosa (Linn.) Farsskal. Sep Oct Nov Dec

11 Pulicaria rajputanae Blatt. & Hall. Sep Oct Nov Dec

12 Abutilon muticum (Del. ex. DC.) Sweet. Feb, Sep Mar Apr May

13 Acacia jacquemontii Benth. Sep Oct Nov Dec

14 Acacia nilotica (Linn.) Del Feb, Sep Mar, Oct Apr, Nov May, Dec

15 Prosopis cineraria (Linn.) Druce. Sep, Feb Feb Apr Jun

16 Prosopis juliflora DC. Feb, Sep Mar, Oct Apr, Nov May, Dec

17 Crotalaria burhia Ham. Ex. Bth. Feb, Sep Mar, Oct Apr, Nov May, Dec

18 Tephrosia uniflora Pers. Sep Oct Nov Dec

19 Calligonum polygonoides Linn. Feb, Sep Mar Apr May

20 Zizyphus mauritiana Lam. Sep Nov Dec Feb

21 Zizyphus nummularia (Burm. f.) Wifht & Arn. Sep Nov Dec Feb

22 Zizyphus spina christi ( Linn.) Wild. Sep Nov Dec Feb

23 Salvadora oleoides Decne. Sep Jun Jul Aug

24 Tamarix aphylla (Linn.) Karst. Feb Mar Apr May

25 Tamarix dioica Roxb. Feb Mar Apr May

Key words: Jan-January, Feb-February, Mar-March, Apr-April, Jun-June, Jul-July, Aug-August, Sep-

September, Oct-October, Nov-November, Dec-December

Page 146: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

146

ANNEXURE 8.3: ECONOMIC USE CLASSIFICATION OF BROWSE SPECIES

Sr.

No.

Plant Species Fire

Wood

Timber

Wood

Forage/Fodder Medicinal

1 Aerva javanica (Burm. f.) Merill. − − − +

2 Aerva pseudotomentosa ssp. bovei. Clarke. − − − −

3 Calotropis procera (Aiton.) Aiton. + − + +

4 Leptadenia pyrotecnica (Forssakal.) Decne. + − − +

5 Capparis decidua (Forsskal.) Edgew. + − + +

6 Capparis spinosa Linn. − − + +

7 Haloxylon recurvum Bunge. ex. Boiss. + − + +

8 Haloxylon salicornicum (Moq.) Bunge. + − + +

9 Salsola baryosma (Roem. et. Scult.) Dany. + − + +

10 Suaeda fruticosa (Linn.) Farsskal. + − + +

11 Pulicaria rajputanae Blatt. & Hall. − − + −

12 Abutilon muticum (Del. ex. DC.) Sweet. − − + +

13 Acacia jacquemontii Benth. + − + −

14 Acacia nilotica (Linn.) Del + + + +

15 Prosopis cineraria (Linn.) Druce. + + + +

16 Prosopis juliflora DC. + + + −

17 Crotalaria burhia Ham. Ex. Bth. + − + +

18 Tephrosia uniflora Pers. − − + −

19 Calligonum polygonoides Linn. + − + +

20 Zizyphus mauritiana Lam. + + + +

21 Zizyphus nummularia (Burm. f.) Wifht & Arn. + − + +

22 Zizyphus spina christi ( Linn.) Wild. + + + +

23 Salvadora oleoides Decne. + + + +

24 Tamarix aphylla (Linn.) Karst. + + + +

25 Tamarix dioica Roxb. + − + −

Page 147: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

147

ANNEXURE 8.4: NAME, LOCATION, AND TOPOGRAPHY OF EACH STAND

Sr. No. Stand Name GPS Location Elevation Topography

1 Mansora N: 29P

oP12.161´ E: 072P

oP15.427´ 398 ft Sandunal

2 Kalapahar N: 29P

oP10.430´ E: 072P

oP05.569´ 384 ft Clayey saline

3 Chaklihar N: 29P

oP11.315´ E: 071P

oP57.648´ 389 ft Interdunal sandy

4 Januwali N: 29P

oP05.056´ E: 072P

oP09.933´ 406 ft Interdunal sandy

5 Khirsir N: 29P

oP10.339´ E: 072P

oP08.749´ 391 ft Sandunal

6 Haider wali N: 29P

oP02.672´ E: 072P

oP10.200´ 382 ft Clayey saline

7 Mojgarh Fort N: 29P

oP01.059´ E: 072P

oP08.106´ 392 ft Sandunal

8 Chelanwala Toba N: 28P

oP57.261´ E: 072P

oP03.089´ 369 ft Interdunal sandy

9 Khanser N: 28P

oP59.227´ E: 071P

oP55.299´ 352 ft Sandunal

10 Aldin Mor N: 28P

oP47.988´ E: 071P

oP45.770´ 340 ft Interdunal sandy

11 Dingarh Fort N: 28P

oP57.454´ E: 071P

oP51.910´ 365 ft Clayey saline

12 Dingarh Fort N: 28P

oP57.182´ E: 071P

oP49.362´ 371 ft Sandunal

13 Nidamwala Toba N: 28P

oP52.963´ E: 071P

oP44.270´ 355 ft Clayey saline

14 Mehmodwala Toba N: 28P

oP47.939´ E: 071P

oP45.770´ 334 ft Interdunal sandy

15 Lakhan N: 28P

oP52.232´ E: 071P

oP42.731´ 351 ft Clayey saline

16 Chananpir N: 28P

oP56.832´ E: 071P

oP40.057´ 353 ft Interdunal sandy

17 Baylawala N: 29P

oP23.466´ E: 071P

oP39.563´ 410 ft Interdunal sandy

18 Derawar fort N: 28P

oP49.208´ E: 071P

oP28.129´ 334 ft Sandunal

19 Derawar fort N: 29P

oP23.465´ E: 071P

oP39.560´ 345 ft Interdunal sandy

20 Chasma Dhar N: 28P

oP39.864´ E: 071P

oP15.632´ 323 ft Clayey saline

Page 148: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

148

ANNEXURE 8.5: SEASONAL BROWSE PRODUCTION (kg/ha) AND GRAZING STATUS OF STANDS

Stand No. Topography/Habitat Season Fresh Biomass Dry Biomass Grazing Status 1 Sandunal area Wet 669.1 388.2 Overgrazed Dry 466 284.8 Overgrazed 2 Clayey saline area Wet 517.4 328.4 Overgrazed Dry 344 221.8 Overgrazed 3 Interdunal sandy area Wet 793.2 451.2 Moderately grazed Dry 577.8 322.5 Overgrazed 4 Interdunal sandy area Wet 825.6 452.2 Moderately grazed Dry 582 376.5 Moderately grazed 5 Sandunal area Wet 731.7 420.3 Slightly grazed Dry 436 244.8 Moderately grazed 6 Clayey saline area Wet 623 347.7 Moderately grazed Dry 335.5 234.5 Moderately grazed 7 Sandunal area Wet 690.3 365.2 Moderately grazed Dry 427.5 240 Moderately grazed 8 Interdunal sandy area Wet 1017 554.4 Slightly grazed Dry 623 354.3 Overgrazed 9 Sandunal area Wet 650.4 386.8 Overgrazed Dry 420.5 232.8 Overgrazed 10 Interdunal sandy area Wet 920.3 523.7 Slightly grazed Dry 625.3 372.8 Moderately grazed 11 Clayey saline area Wet 593.3 344.8 Moderately grazed Dry 327.5 255.5 Overgrazed 12 Sandunal area Wet 628.6 376.9 Overgrazed Dry 402.3 240.8 Overgrazed 13 Clayey saline area Wet 523.3 367.3 Overgrazed Dry 313.9 245.3 Overgrazed 14 Interdunal sandy area Wet 810 495.6 Moderately grazed Dry 607.3 363.5 Overgrazed 15 Clayey saline area Wet 570 339.6 Moderately grazed Dry 266.3 175.3 Overgrazed 16 Interdunal sandy area Wet 737.4 391.4 Overgrazed Dry 493.8 285.3 Overgrazed 17 Interdunal sandy area Wet 790.3 396.8 Moderately grazed Dry 489.3 257.8 Overgrazed 18 Sandunal area Wet 692.1 361.1 Moderately grazed Dry 391.3 253.3 Overgrazed 19 Interdunal sandy area Wet 784 416 Overgrazed Dry 485.5 300.3 Overgrazed 20 Clayey saline area Wet 467.6 321.5 Overgrazed Dry 251 161 Overgrazed

Page 149: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

149

ANNEXURE 8.6: PALATABILITY CLASSIFICATION OF BROWSE SPECIES

S.

N.

Plant Species Degree of

Palatability

Palatability by

Parts used

Palatability by

Livestock

Hp Mp Lp Np Lv Sh Fl Fr Ca Go Sh Cm

1 Aerva javanica (Burm. f.) Merill. − − − + − − − − − − − −

2 Aerva pseudotomentosa ssp. bovei. Clarke. − − − + − − − − − − − −

3 Calotropis procera (Aiton.) Aiton. − − + − + − − − + + + −

4 Leptadenia pyrotecnica (Forssakal.) Decne. − − − + − − − − − − − −

5 Capparis decidua (Forsskal.) Edgew. − + − − − + − − − − − +

6 Capparis spinosa Linn. − + − − − + − − − − − +

7 Haloxylon recurvum Bunge. ex. Boiss. − + − − − + − − − − − +

8 Haloxylon salicornicum (Moq.) Bunge. − − + − − + − − − − − +

9 Salsola baryosma (Roem. et. Scult.) Dany. − + − − − + − − − − − +

10 Suaeda fruticosa (Linn.) Farsskal. − + − − + + − − − − − +

11 Pulicaria rajputanae Blatt. & Hall. − − + − + − − − − − − +

12 Abutilon muticum (Del. ex. DC.) Sweet. − − + − + − − − − − − +

13 Acacia jacquemontii Benth. + − − − + + + − − + + +

14 Acacia nilotica (Linn.) Del + − − − + + + + + + + +

15 Prosopis cineraria (Linn.) Druce. + − − − + + + + + + + +

16 Prosopis juliflora DC. − + − − + − − + − + + +

17 Crotalaria burhia Ham. Ex. Bth. − − + − + − − − − − − +

18 Tephrosia uniflora Pers. − − + − + − − − − + + −

19 Calligonum polygonoides Linn. − + − − − + + − − − − +

20 Zizyphus mauritiana Lam. + − − − + − − − + + + +

21 Zizyphus nummularia (Burm. f.) Wifht & Arn. + − − − + − − − + + + +

22 Zizyphus spina christi ( Linn.) Wild. + − − − + − − − + + + +

23 Salvadora oleoides Decne. + − − − + + − − + + + +

24 Tamarix aphylla (Linn.) Karst. − + − − − + − − − − − +

25 Tamarix dioica Roxb. − + − − − + − − − − − +

Key words: Hp-Highly palatable, Mp-Moderately-palatable, Lp-Less palatable, Np-Non palatable

Lv-Leaf, Sh-Shoot, Fl-Flower, Fr-Fruit Ca-Cattle, Go-Goat, Sh-Sheep, Cm-Camel

Page 150: IN THE NAME OF ALLAH THE MOST BENEFICENT THE MOST …prr.hec.gov.pk/jspui/bitstream/123456789/1418/1/2472S.pdf · The Cholistan rangelands have been ondecline due to various stresses

150

PLATE 8.1: SOME PICTURES TAKEN DURING FIELD WORK