34
In-Medium Vector-Meson Spectral Functions with the Functional Renormalization Group Ralf-Arno Tripolt, ECT*, Trento, Italy Based on: C. Jung, F. Rennecke, R.-A. T., L. von Smekal and Jochen Wambach, Phys. Rev. D 95, 036020 (2017) Workshop: Space-like and time-like electromagnetic baryonic transitions Trento, May 11th, 2017 1 / 34

In-Medium Vector-Meson Spectral Functions with the

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Ralf-Arno Tripolt, ECT*, Trento, Italy
Based on:
C. Jung, F. Rennecke, R.-A. T., L. von Smekal and Jochen Wambach,
Phys. Rev. D 95, 036020 (2017)
Workshop: Space-like and time-like electromagnetic baryonic transitions
Trento, May 11th, 2017
I Flow equations for 2-point functions
I Analytic continuation
IV) Summary and Outlook
[B. Mohanty, arXiv: 1308.3328 [nucl-ex]]
10 -11
10 -10
10 -9
10 -8
10 -7
10 -6
10 -5
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
In-In→ µ + µ
NA60 Data hadronic
QGP total thermal
[R. Rapp, H. van Hees, Phys.Lett. B 753 (2016)]
I Exploration of phase structure of QCD-matter through heavy ion collisions
I Useful probes: photons and dileptons, negligible interaction with hadronic medium
4 / 34
I Vector mesons can decay directly into lepton pairs
I Interesting: light vector mesons ρ, ω and φ
I Lifetime τρ ≈ 1.3 fm/c, smaller than lifetime of fireball (≈ 10 fm/c)
Dilepton rate:
dNll d4xd4q
ImΠµν em ∼ ImDµν
[A. Drees, Nuclear Physics A 830 (2009)]
⇒ Aim: In-medium spectral functions of vector mesons and order parameter for chiral phase transition within the same framework
5 / 34
∂kΓk = 1
2 STr
¶kGk 1 2
[wikipedia.org/wiki/Functional renormalization group]
I Γk interpolates between bare action S at k = Λ and effective action Γ at k = 0
I regulator Rk acts as a mass term and suppresses fluctuations with momenta smaller than k
I the use of 3D regulators allows for a simple analytic continuation procedure
7 / 34
Modelling Vector Mesons
I Sakurai (1960): vector mesons as gauge bosons of local gauge symmetry SU(2)
→ Electromagnetic-hadronic interaction via exchange of vector mesons
→ Current field identity (CFI):
[Berghaeuser, www.staff.uni-giessen.de (2016)]
I Lee and Nieh (1960s): Gauged linear sigma model, local gauge symmetry SU(2)L × SU(2)R
⇒ ρ meson and chiral partner a1 meson as gauge bosons
8 / 34
Gauged Linear Sigma Model with Quarks
I Local gauge symmetry SU(2)L × SU(2)R: Low-energy model of two-flavor QCD
I Ansatz for the effective average action Γk ≡ Γk[σ, π, ρ, a1, ψ, ψ] (LPA):
Γk =
∫ d4x { ψ ( /∂ − µγ0 + hS (σ + i~τ~πγ5) + ihV (γµ~τ~ρ
µ + γµγ5~τ~a µ 1 ) ) ψ + Uk(φ2)− cσ
+ 1
− 1
4 g2TrVµVν [Vµ, Vν ]
}
I Mesonic fields: φ ≡ (~π, σ) and Vµ ≡ ~ρµ ~T + ~a1,µ ~T 5
I Scale dependent quantities: Uk,m 2 k,V
9 / 34
∂kΓ (2) ρ,k =
ψ
ψ
I Neglect vector mesons inside the loops
I Vertices extracted from ansatz of the effective average action Γk
I Tadpole diagrams give ω-independent contributions
10 / 34
nB,F (E + ip0)→ nB,F (E)
2) Substitute p0 by continuous real frequency ω:
Γ(2),R(ω) = − lim ε→0
ρ(ω) = −Im(1/Γ(2),R(ω))/π
[R.-A. T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89, 034010 (2014)]
[J. M. Pawlowski, N. Strodthoff, Phys. Rev. D 92, 094009 (2015)]
[N. Landsman and C. v. Weert, Physics Reports 145, 3&4 (1987) 141]
11 / 34
III) Results
Phase Diagram of the Model
I chiral order parameter σ0 decreases towards higher T and µ
I a crossover is observed at T ≈ 175 MeV and µ = 0
I critical endpoint (CEP) at µ ≈ 292 MeV and T ≈ 10 MeV
I we will study spectral functions along µ = 0 and T ≈ 10 MeV 100 200 300 400
Μ @MeVD
5
10
15
20
[R.-A. T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89, 034010 (2014)]
13 / 34
Phase Diagram of the Model
I chiral order parameter σ0 decreases towards higher T and µ
I a crossover is observed at T ≈ 175 MeV and µ = 0
I critical endpoint (CEP) at µ ≈ 292 MeV and T ≈ 10 MeV
I we will study spectral functions along µ = 0 and T ≈ 10 MeV 100 200 300 400
Μ @MeVD
5
10
15
20
[R.-A. T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89, 034010 (2014)]
14 / 34
Flow of Euclidean Masses
I Starting at cutoff scale Λ = 1500 MeV in chirally symmetric phase
I Chiral symmetry breaking sets in at kχSB
≈ 700 MeV
mσ = 557 MeV
mπ = 140 MeV
mρ = 1298 MeV
ma1 = 1676 MeV
mψ = 300 MeV
500
1000
1500




ma1
[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]
15 / 34
I Euclidean (curvature) masses determine thresholds for the decay processes
I Euclidean masses in the vacuum:
mσ = 557 MeV
mπ = 140 MeV
mρ = 1298 MeV
ma1 = 1676 MeV
mψ = 300 MeV
I Mass degeneration of chiral partners for high T and µ
0 50 100 150 200 250 300 0
500
1000
1500
500
1000
1500




ma1
[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)] 16 / 34
Decay Channels of the ρ Meson
ρ∗ → π + π
(2mψ)2 + ~p 2
[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]
17 / 34
a∗1 → σ + π
(2mψ)2 + ~p 2
[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]
18 / 34
0 200 400 600 800 1000 1200 1400
-3
-2
-1
0
1
e V
0 200 400 600 800 1000 1200 1400 0
1
2
3
4
I Pole mass ∼ zero-crossing of the real part:
mp ρ = 789 MeV, mp
a1 = 1275 MeV
I Decay channels accessible when imaginary part is non-zero
I ρ and a1 meson unstable due to mesonic and quark-antiquark decay channels
[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]
19 / 34
0 200 400 600 800 1000 1200 1400
-3
-2
-1
0
1
e V
0 200 400 600 800 1000 1200 1400 0
1
2
3
4
ψψ
σ/π
mp ρ = 789 MeV, mp
a1 = 1275 MeV
I Decay channels accessible when imaginary part is non-zero
I ρ and a1 meson unstable due to mesonic and quark-antiquark decay channels
[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]
20 / 34
10-4
0.001
0.010
0.100
1
1
2
4
5
3 : a∗1 + π → σ
4 : a∗1 → π + σ
5 : a∗1 → ψ + ψ
[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]
21 / 34
0 200 400 600 800 1000 1200 1400 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0 200 400 600 800 1000 1200 1400 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0 200 400 600 800 1000 1200 1400 0.0
0.1
0.2
0.3
0.4
0.5
0.6
0 200 400 600 800 1000 1200 1400 0.0
0.1
0.2
0.3
0.4
0.5
0.6
T = 300 MeV, μ = 0 MeV
[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]
22 / 34
(Loading movie...)
23 / 34
Discussion and T -dependent Pole Masses
I Degeneration of ρ and a1 spectral functions in chirally symmetric phase
I Broadening of spectral functions with increasing T
I Pole masses do not vary much, no dropping ρ mass
⇒ Consistent with broadening/melting-ρ-scenario
500
1000
1500
p
[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]
24 / 34
(Loading movie...)
25 / 34
ρ∗ + π → π
0 ≤ ω ≤ |~p|
ρ∗ + ψ → ψ
ρ∗ + ψ → ψ
0 ≤ ω ≤ |~p|
[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]
26 / 34
a∗1 + σ → π
0 ≤ ω ≤ |~p|
[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]
27 / 34
I shown for µ = 0 and T = 100 MeV
I time-like region (ω > ~p) is Lorentz-boosted to higher energies
I space-like region (ω < ~p) is non-zero at finite T due to space-like processes
[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]
28 / 34
(Loading movie...)
29 / 34
I shown for µ = 0 and T = 100 MeV
I time-like region (ω > ~p) is Lorentz-boosted to higher energies
I space-like region (ω < ~p) is non-zero at finite T due to space-like processes
[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]
30 / 34
I Introduce wave function renormalization to include dressing of momentum dependence of meson propagators:
Γ (meson,kin) k =
m2 α 7−→ m2
Truncation mcurv ρ mpole
ZS,k = 1, ZV,k 914 MeV 786 MeV
31 / 34
Summary and Outlook
I Analytic continued flow equations for vector meson two-point functions based on the gauged linear sigma model within the FRG
I Chiral order parameter and in-medium spectral functions obtained by the same theoretical framework
I Degeneration of ρ and a1 spectral functions indicating restoration of chiral symmetry, consistent with broadening/melting-ρ-scenario
Work in progress:
I Improve truncation (e.g. include wave function renormalization for all mesons)
I Improve phenomenology (e.g. include vector mesons inside the loops)
32 / 34
∂kΓ (2) ρ,k = − 1
ψ
Summary and Outlook
I Analytic continued flow equations for vector meson two-point functions based on the gauged linear sigma model within the FRG
I Chiral order parameter and in-medium spectral functions obtained by the same theoretical framework
I Degeneration of ρ and a1 spectral functions indicating restoration of chiral symmetry, consistent with broadening/melting-ρ-scenario
Work in progress:
I Improve phenomenology (e.g. include vector mesons inside loops)
Aim: Provide spectral functions for transport simulations to compute dilepton spectra!
34 / 34