34
Improvement of hydraulic flow analysis code for APWR reactor internals F.Kasahara, S.Nakura, T.Morii, and Y. Nakadai Institute of Nuclear Safety (INS) Nuclear Power Engineering Corporation (NUPEC) (PS) This study was performed under the sponsorship of METI CFD Meeting Presentation Material in Aix en Provence, May 15-16, 2002

Improvement of hydraulic flow analysis code for APWR ... › ... › papers › Aix_KasaharaCFD.pdffor APWR reactor internals F.Kasahara, S.Nakura, T.Morii, and Y. Nakadai Institute

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Improvement of hydraulic flow analysis codefor APWR reactor internals

    F.Kasahara, S.Nakura, T.Morii, and Y. Nakadai

    Institute of Nuclear Safety (INS)Nuclear Power Engineering Corporation (NUPEC)

    (PS) This study was performed under the sponsorship of METI

    CFD Meeting Presentation Material in Aix en Provence, May 15-16, 2002

  • CFD meeting presentation 1

    Contents

    1.Background and Objectives2.Results of the hydraulic flow characteristics

    analysis of reactor internals3.Results of the dynamic pressure analysis of

    downcomer4.Conclusion

  • CFD meeting presentation 2

    BackgroundSchedule of the project : Improvement of hydraulic flowanalysis code for APWR reactor internals

    fiscal year 1996 1997 1998 1999 2000 2001 2002 2003i t em

    ElectricTsuruga-3/4(APWR) Power Application� i� jNPPUtility plan forDevelopment

    Coordination SafetyStart of operation : Council License

    � ¤�¤2009 fiscal yearExpected)�i

    Licensing schedule

    Safety Review

    Improve CFD(Computational Fluid Dynamics) codeSchedule of Project

    Experiment

    Design & roduce test facilityP

    Investigation &Planning test facility

  • CFD meeting presentation 3

    In safety review, it is necessary for the regulatory body todevelop its own analysis codes in order to independentlyevaluate the safety analysis results done by applicant.

    One of the most innovative design improvement of APWR is the neutronreflector which replaces the conventional baffle-former structure.

    Concerns:

    • Coolability of the neutron reflector by heating

    • Fluid-structure interaction (FSI) caused by dynamic pressure fluctuation

    Develop analysis codes to evaluate the concerns.

    Verification of analysis code based on the results of hydraulic flow test using1/5 scale mode.

    Objectives

  • CFD meeting presentation 4

  • CFD meeting presentation 5

  • CFD meeting presentation 6

  • CFD meeting presentation 7

    •••••Upper core plate

    •••••••Lower core support plate

    •••••Fuel assembly

    •••••••

    •••••••

    ••••

    ••••••

    •••••

    •••

    •••••

    ••••

    •••

    •••••••

    Flow pattern in APW R reactor vessel

    Neutron reflector

    Inlet nozzle

    Core barrel

    Reactor vessel

    Outlet nozzle

    main flow

    by-pass flow

    Lower core plate

    Guide tube

    Upper support column

    Upper support plate

  • CFD meeting presentation 8

    Developing analysis codes

    Developing analysis codes utilizing IMPACT code modules item code remark

    1 Coolability of the neutron reflector by

    heating CFD-1

    CFD-1 should be parallel simulation code with Reynolds averaged numerical simulation method (k- model).

    2 Flow-induced vibration by dynamic pressure fluctuation

    CFD-2 +

    Structure- vibration analysis

    code (FELIOS)

    CFD-2 should be parallel simulation code with Large Eddy Simulation method or dynamic numerical simulation method.

  • CFD meeting presentation 9

    Hydraulic flow analysis codes for APWR reactorinternals

    • Hydraulic flow characteristics analysis of reactorinternals

    Improvement of Reynolds averaged numerical simulation method (k-model) with unstructured grid• Dynamic pressure analysis of the downcomer Improvement of Large Eddy Simulation method with structured grid

  • CFD meeting presentation 10

    Objective of hydraulic flow characteristicsanalysis of reactor internals

    To establish the numerical method to exactlycalculate flow distribution into the neutron reflector

    Measurement items in this experiment• Flow distribution into the neutron reflector• Pressure distribution on the lower core plate• Pressure distribution of the lower plenum

  • CFD meeting presentation 11

    Calculation Conditions

    Hydraulic flow characteristics analysis Analysis Case

    Flow rate : 100 , Temperature : 150

    Calculation Grid System Unstructured /or structured (BFC with Multi-block Methodl) Time Marching Method SIMPLE (Semi-Implicit Method-for Pressure-Linked Equation)

    Turbulent Model k- model ( Reynolds averaged numerical simulation method)

    Transient term Euler implicit Discretization

    Convection term Donor-Cell method Density 917.0 [kg/m3]

    Properties Viscosity 1.80 10-4 [Pa s] Inlet Constant : Vin=16.674 [m/s] Outlet Free out Boundary Condition Wall Log-Law

  • CFD meeting presentation 12

    Velocity distribution in the Reactor vessel

    90°180°90° - 270° cross section

    velocitym/s

    18

    0

    Velocity

    m/s

  • CFD meeting presentation 13

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 10 20 30 40

    “± “ü E ”Ô †

    ”ñ \ ‘¢ Ši Žq

    \ ‘¢ Ši Žq

    ŽŽ Œ± Œ‹ ‰Ê�\‘¢Ši�q�i‚V‚V–œ�j

    ”ñ�\‘¢Ši�q�i‚U‚Q–œ�j

    ‰º•”˜F�S”ÂŒ`�ó�i��Œ±‘•’u�j

    Flow distribution(Ratio to average)

    ••••••

    Comparison between Calculation and Experiment

    Structured grid

    (770,000 meshes)

    Unstructured grid

    (620,000 meshes)

    Unstructured

    structured

    experiment

    Flow hole

    Lower core plate

    (test facility)Flow hole number

    (Flow distribution into radial reflector)

  • CFD meeting presentation 14

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    0 5 10 15 20 25 30 35 40

    • • • • •

    •••••••••••••

    • • • •• • • •

    -6.0

    -4.0

    -2.0

    0.0

    2.0

    4.0

    6.0

    8.0

    0 5 10 15 20 25 30 35 40

    • • • • • •••••••••••KPa•

    • • • •

    • • • •

    Flow rate distribution into neutron reflector(ratio to average)

    Pressure distribution on lower coreplate(deference from average kPa)

    Comparison between Calculation and Experiment

    Flow hole No.Flow hole No.

    AnalysisExperiment

    Analysis

    Experiment

    (Flow and pressure distribution at the entrance of neutron reflector)

  • CFD meeting presentation 15

    Experiment Calculation

    Comparison between Calculation and Experiment

    0�‹

    180�‹

    270�‹ 90�‹

    270�‹

    0�‹

    90�‹

    180�‹

    [k Pa]

    (Pressure distribution in the lower plenum:bottom surface of test vessel)

  • CFD meeting presentation 16

    Objective of dynamic pressure analysisof downcomer

    Improve the code with LES to calculate adequately dynamicpressure by turbulent flow, selected in the 3-dimensional flowanalysis code which can simulate the model of flow passage.

    To establish the numerical method tocalculate dynamic pressure induced byturbulent flow in downcomer.

  • CFD meeting presentation 17

    Measuring Points of Dynamic Pressure

    Upper

    Middle

    Lower

    50mm

    Circumferential point

    Axial point

    Reference point compared with experiment

  • CFD meeting presentation 18

    Calculation Conditions

    LES ( Analysis for optimized Cs value Analysis Case

    Flow rate : 100 , Temperature : 150

    Calculation Grid System BFC with Multi-block Method Time Marching Method SMAC ( Simplified Maker And Cell Method )

    Turbulent Model LES (Smagorinsky eddy viscosity model : Cs=0.17 )

    Transient term Euler Explicit Discretization Convection term QUICK Calculation of Time Interval 4.0 10-5 [s]

    Density 917.0 [kg/m3] Properties

    Viscosity 1.80 10-4 [Pa .s] Inlet Constant : Vin=16.674 [m/s] Outlet Sommerfeld Condition Boundary Condition Wall Log-Law

  • CFD meeting presentation 19

    Calculation Grid

    Calculation grid both side of wall

    (a) Core Barrel (b) Reactor Vessel

  • CFD meeting presentation 20

    Mean Velocity contour of downcomer

    Calculation Results

    (a) Core Barrel (b) Reactor Vessel

    [m/s][m/s]

  • CFD meeting presentation 21

    Turbulent energy contour of downcomer

    (a) Core Barrel (b) Reactor Vessel

    m2/s2 m2/s2

    Calculation Results

  • CFD meeting presentation 22

    Figure.4 Dynamic Pressure( 90 of downcomer see page 17 )

    upper point middle point lower point

    Calculate the dynamic pressure by turbulent flowto t = 0.6s. The data from t = 0.24s to t = 0.6s wasused in statistical analysis.

    Calculation Results

    - 50. 0

    0. 0

    50. 0

    0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7

    Š î� €̂ Ê’ u� ü• ûŒü‘ ŠŠ Ö̂ Ê’ u� ²• ûŒü‘ ŠŠ Ö̂ Ê’ u

    ˆ³—

    Í [k

    Pa]

    � �Š Ô [ s ]

    - 50. 0

    0. 0

    50. 0

    0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7

    Š î� €̂ Ê’ u� ü• ûŒü‘ ŠŠ Ö̂ Ê’ u� ²• ûŒü‘ ŠŠ Ö̂ Ê’ u

    ˆ³—

    Í [k

    Pa]

    � �Š Ô [ s ]

    - 50. 0

    0. 0

    50. 0

    0. 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7

    Š î� €̂ Ê’ u� ü• ûŒü‘ ŠŠ Ö̂ Ê’ u� ²• ûŒü‘ ŠŠ Ö̂ Ê’ u

    ˆ³—

    Í [k

    Pa]

    � �Š Ô [ s ]time [s] time [s] time [s]

    time [s]

    dyna

    mic

    pre

    ssur

    e [k

    Pa]

    dyna

    mic

    pre

    ssur

    e [k

    Pa]

    dyna

    mic

    pre

    ssur

    e [k

    Pa]

    dyna

    mic

    pre

    ssur

    e [k

    Pa]reference pointcircumferential point

    axial point

    Experiment

    reference pointcircumferential pointaxial point

    reference pointcircumferential pointaxial point

  • CFD meeting presentation 23

    RMS Value of Dynamic Pressure

    ( ) ( ) ( )fkfffPdffPpk

    kkxx

    f

    f xxRMS∆⋅=∆⋅≅⋅= ∑∫

    =

    ,~max

    min

    max

    min

    2( ) : C/E value

    Calculation Results

    1.6 1.45 0.9090 [deg]2.0 1.57 0.790 [deg]

    Lower

    1.8 2.50 1.3990 [deg]1.7 1.75 1.030 [deg]

    Middle

    5.0 6.49 1.30135 [deg]

    5.011.75 2.3590 [deg]

    4.9 6.20 1.2745 [deg]2.0 2.80 1.400 [deg]

    Upper

    ExperimentCalculationCircumferentialPositionAxial position

  • CFD meeting presentation 24

    ( ) ( )( ){ }∑ ∆⋅⋅

    =

    kxx

    xxRMSxx

    ffC

    fCpfS2

    ~

    Definition : RMS Spectrum

    is the magnitude of Fourier coefficientxxC

    RMSp~ is RMS value

    Spectrum Analysis

    Sampling cycle is 8 10-5 [s]

    The spectrum is the ensembleaverage of Fourier coefficientcalculated by 2048 samples perone section.

    ( )fkf ∆⋅=

    Calculation Results

  • CFD meeting presentation 25RMS Spectrum ( 90°of downcomer )

    Upper point Middle point Lower point

    Upper point Middle point Lower point

    0. 0

    2. 5

    5. 0

    0 100 200 300 400 500

    RMS

    spec

    trum

    [k

    Pa*s

    0.5 ]

    f r equency [ Hz]

    0. 0

    2. 5

    5. 0

    0 100 200 300 400 500

    RMS

    spec

    trum

    [k

    Pa*s

    0.5 ]

    f r equency [ Hz]

    0. 0

    2. 5

    5. 0

    0 100 200 300 400 500

    RMS

    spec

    trum

    [k

    Pa*s

    0.5 ]

    f r equency [ Hz]

    Calculation Results

    0. 0

    2. 5

    5. 0

    0 100 200 300 400 500

    Š î� €̂ Ê’ u� ü• ûŒü‘ ŠŠ Ö̂ Ê’ u� ²• ûŒü‘ ŠŠ Ö̂ Ê’ u

    ‚q‚

    l‚rƒ

    Xƒyƒ

    Nƒgƒ

    ‹ [k

    Pa*s

    0.5 ]

    � ü” g� ” [ Hz]

    0. 0

    2. 5

    5. 0

    0 100 200 300 400 500

    Š î� €̂ Ê’ u� ü• ûŒü‘ ŠŠ Ö̂ Ê’ u� ²• ûŒü‘ ŠŠ Ö̂ Ê’ u

    ‚q‚

    l‚rƒ

    Xƒyƒ

    Nƒgƒ

    ‹ [k

    Pa*s

    0.5 ]

    � ü” g� ” [ Hz]

    0. 0

    2. 5

    5. 0

    0 100 200 300 400 500

    Š î� €̂ Ê’ u� ü• ûŒü‘ ŠŠ Ö̂ Ê’ u� ²• ûŒü‘ ŠŠ Ö̂ Ê’ u

    ‚q‚

    l‚rƒ

    Xƒyƒ

    Nƒgƒ

    ‹ [k

    Pa*s

    0.5 ]

    � ü” g� ” [ Hz]

    reference pointcircumferential pointaxial point

    RM

    S sp

    ectru

    m [k

    Pa×s

    0.5 ]

    Experiment

    frequency [Hz] frequency [Hz] frequency [Hz]

    RM

    S sp

    ectru

    m [k

    Pa×s

    0.5 ]

    RM

    S sp

    ectru

    m [k

    Pa×s

    0.5 ]

    reference pointcircumferential pointaxial point

    reference pointcircumferential pointaxial point

    Experiment Experiment

  • CFD meeting presentation 26

    Definition : Normalized Cross-Spectrum

    ( ) ( )( ) ( )fPfP

    fPf

    yyxx

    xyxy ⋅

    =Γ( )fPxy( ) ( )fPfP yyxx ,

    is real part of cross spectrumis power spectrum

    Normalized Cross-Spectrum Approximated by Turbulent Theory**

    ‡ @ Axial Correlation

    ( )

    −⋅⋅= −

    C

    fCxy U

    yxfef πΓΓ 2cos10

    *

    ‡ A Circumferential Correlation

    ( ) fCxy ef 10* −⋅= ΓΓ

    **Taylor s hypothesis of frozen turbulence

    Uc : Convection velocity is calculated form the peak of the cross-relation coefficient. C1 is approximated by the method of least squares using the normalized cross-spectrum raging the frequency shown by thick line.

    Calculation Results

  • CFD meeting presentation 27

    Normalized Cross Spectrum ( 90°of downcomer )

    Calculation Results

    - 1 . 0

    - 0 . 5

    0 . 0

    0 . 5

    1 . 0

    0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

    –³�

    ŸŒ³‰

    »ƒNƒ

    �ƒXƒ

    Xƒyƒ

    Nƒgƒ

    [�

    |]

    � ü” g� ” [ Hz ]

    - 1 . 0

    - 0 . 5

    0 . 0

    0 . 5

    1 . 0

    0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

    –³�

    ŸŒ³‰

    »ƒNƒ

    �ƒXƒ

    Xƒyƒ

    Nƒgƒ

    ‹ [

    �|]

    � ü” g� ” [ Hz ]

    - 1 . 0

    - 0 . 5

    0 . 0

    0 . 5

    1 . 0

    0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

    –³�

    ŸŒ³‰

    »ƒNƒ

    �ƒXƒ

    Xƒyƒ

    Nƒgƒ

    ‹ [�

    |]

    � ü” g� ” [ Hz ]

    Cal

    cula

    tion

    Cro

    ss sp

    ectr

    um [-

    ]

    Cro

    ss sp

    ectr

    um [-

    ]

    Cro

    ss sp

    ectr

    um [-

    ]

    Frequency [Hz] Frequency [Hz] Frequency [Hz]

    Exp

    erim

    ent

    Cro

    ss sp

    ectr

    um [-

    ]

    Cro

    ss sp

    ectr

    um [-

    ]

    Cro

    ss sp

    ectr

    um [-

    ]

    Frequency [Hz]Frequency [Hz]Frequency [Hz]

    Upper point Middle point Lower point

    Upper point Middle point Lower point

  • CFD meeting presentation 28

    ( ) ( )( ) ( )

    00 ==⋅

    =

    ττττ

    ττ

    yyxx

    xyxy

    CC

    CR ( )τxyC : cross-correlation function

    : auto- correlation function( ) ( )ττ yyxx CC ,

    Definition : Coefficient of Cross Correlation

    Auto-Correlation Function Inverse-Fourier transform of power-spectrum

    ( ) ( ) dtefPC ftxxxx πτ 2−∞

    ∞−⋅= ∫

    ( ) ( ) dtefPC ftyyyy πτ 2−∞

    ∞−⋅= ∫

    ( ) ( ) dtefPC ftxyxy πτ 2−∞

    ∞−⋅= ∫

    Cross-Correlation Function Inverse-Fourier transform of cross-spectrum

    Calculation Results

  • CFD meeting presentation 29

    Convection velocity

    Calculation Results

    9.410.7890 [deg]

    6.28.800 [deg]Lower

    9.98.9390 [deg]

    5.9 9.190 [deg]Middle

    9.58135 [deg]

    12.612.0090 [deg]

    9.8245 [deg]

    5.4 7.380 [deg]

    Upper

    ExperimentCalculationCircumferentialPositionAxialposition

  • CFD meeting presentation 30

    xy

    yxΓ

    −−=

    lnλ

    Definition : Correlation Length

    xyΓ : Absolute normalized cross-spectrum approximated by turbulent theory

    yx − : Distance between measuring point x to y (=50mm)

    Calculation Results

  • CFD meeting presentation 31

    Correlation length ( 90 deg Axial direction)

    Calculation Results

    0. 0

    300. 0

    600. 0

    0 100 200 300 400 500

    ‘ŠŠ

    Ö’·

    [mm]

    � ü” g� ” [ Hz]

    0. 0

    300. 0

    600. 0

    0 100 200 300 400 500

    ‘ŠŠ

    Ö’·

    [mm]

    � ü” g� ” [ Hz]

    0. 0

    300. 0

    600. 0

    0 100 200 300 400 500

    ‘ŠŠ

    Ö’·

    [mm]

    � ü” g� ” [ Hz]

    Cal

    cula

    tion

    Frequency [Hz] Frequency [Hz] Frequency [Hz]

    Exp

    erim

    ent

    Cor

    rela

    tion

    leng

    th [m

    m]

    Cor

    rela

    tion

    leng

    th [m

    m]

    Cor

    rela

    tion

    leng

    th [m

    m]

    Frequency [Hz]Frequency [Hz]Frequency [Hz]

    Cor

    rela

    tion

    leng

    th [m

    m]

    Cor

    rela

    tion

    leng

    th [m

    m]

    Cor

    rela

    tion

    leng

    th [m

    m]

    Upper point Middle point Lower point

    Upper point Middle point Lower point

  • CFD meeting presentation 32

    0. 0

    300. 0

    600. 0

    0 100 200 300 400 500

    ‘ŠŠ

    Ö’·

    [mm]

    � ü” g� ” [ Hz]

    0. 0

    300. 0

    600. 0

    0 100 200 300 400 500

    ‘ŠŠ

    Ö’·

    [mm]

    � ü” g� ” [ Hz]

    0. 0

    300. 0

    600. 0

    0 100 200 300 400 500

    ‘ŠŠ

    Ö’·

    [mm]

    � ü” g� ” [ Hz]

    Correlation length ( 90 deg Circumferential direction)

    Calculation ResultsC

    alcu

    latio

    n

    Frequency [Hz] Frequency [Hz] Frequency [Hz]

    Exp

    erim

    ent

    Cor

    rela

    tion

    leng

    th [m

    m]

    Cor

    rela

    tion

    leng

    th [m

    m]

    Cor

    rela

    tion

    leng

    th [m

    m]

    Frequency [Hz]Frequency [Hz]Frequency [Hz]

    Cor

    rela

    tion

    leng

    th [m

    m]

    Cor

    rela

    tion

    leng

    th [m

    m]

    Cor

    rela

    tion

    leng

    th [m

    m]

    Upper point Middle point Lower point

    Upper point Middle point Lower point

  • CFD meeting presentation 33

    Conclusion• CFD-1 with unstructured grids, SIMPLE method and k- turbulent model show good agreement with the experiments

    data.• Considering present CFD technique, CFD-2 with structure

    grids ( BFC method) , SMAC method and LES turbulentmodel is the best combination for the analysis of dynamicpressure fluctuation.

    • Basically,CFD-1 and CFD-2 are applicable to plantoperating condition. For better evaluation, it is planed toconfirm that the numerical method of 1/5 scaled model isrightly applied to a real scale simulation.

    Conclusion

    Improvement of hydraulic flow analysis code for APWR reactor internalsHydraulic flow analysis codes for APWR reactor internalsObjective of hydraulic flow characteristics analysis of reactor internalsVelocity distribution in the Reactor vesselObjective of dynamic pressure analysis of downcomerConclusion

    close: