20
2018 Tailings and Mine Waste Conference Gordan Gjerapic, Golder Associates, Inc. Dobroslav Znidarcic, University of Colorado at Boulder October 1, 2018 Improved Methodology for TSF Capacity Prediction

Improved Methodology for TSF Capacity Prediction 2018...• SVOFFICETM5 –SVFLUX –SVSOLID, SoilVision => Bentley Systems, Inc. ___ Simplified Consolidation Approach –3D 5 DOMINANT

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • 2018 Tailings and Mine Waste Conference

    Gordan Gjerapic, Golder Associates, Inc.

    Dobroslav Znidarcic, University of Colorado at Boulder

    October 1, 2018

    Improved Methodology for TSF

    Capacity Prediction

  • ___Outline

    2

    ▪ Three-dimensional considerations of seepage and

    compression

    ▪ Large strain deformation during deposition and closure

    ▪ Variable production rate and complex geometries

    ▪ Robust numerical approach

    ▪ Mass balance and water balance errors

  • ___Numerical Models

    3

    H I S T O R I C A L P E R S P E C T I V E

    Gibson et al. (1967) – large strain consolidation theory

    One-dimensional models

    Schiffman et al. (1992) – ACCUMV

    Yao and Znidarcic (1997) – CONDES

    Fox and Berles (1997) – CS2

    GWP Software (1999) – FSConsol

  • ___Numerical Models – 2D and 3D

    4

    C O M M E R C I A L M O D E L S U S E D F O R T S F C O N S O L I D AT I O N

    Programs supporting large strain consolidation

    approach

    • FLAC® and FLAC3DTM- ITASCA Consulting Group

    • PLAXIS, PLAXIS3D – Plaxis BV => Bentley

    Systems, Inc.

    • SVOFFICETM5 – SVFLUX – SVSOLID, SoilVision

    => Bentley Systems, Inc.

  • ___Simplified Consolidation Approach – 3D

    5

    D O M I N A N T S E E PA G E A N D C O M P R E S S I O N M E C H A N I S M S

    TSF modelling using a series of one –dimensional columns

    (Gjerapic et al. 2008)

    • Consolidation dominated by seepage in vertical

    direction

    • Applicable to most TSF geometries and boundary

    conditions

    SoilVision => Pseudo 3D large-strain consolidation (under

    development as of May 2018)

  • ___Improved Methodology

    6

    P R A C T I C A L I M P L I C AT I O N S

    Develop solutions for rapid assessment of TSF capacity

    • Negligible vertical strains during the filling process

    • Fully consolidated tailings (apply analytical solutions)

    • TSF filling starting with the deepest column and

    continuing by filling horizontal layers at higher elevation

    (e.g. FSConsol approach)

    • TSF filling using a series of one-dimensional vertical

    columns (Gjerapic et al. 2008) => computationally

    efficient and relatively easy to implement

  • ___Upper and Lower Bound

    7

    N U M E R I C A L M O D E L S

    Horizontal Layers: Vtotal = i=1

    n

    Hi − Hi−1 Ai

  • ___Upper and Lower Bound

    8

    N U M E R I C A L M O D E L S

    Vertical Columns: Vtotal =i=1

    n

    ALBi HLBi

  • ___Does it Matter ?

    9

    TA I L I N G S V S . F O U N D AT I O N C O M P R E S S I B I L I T Y

  • ___How to Determine Calculation Errors ?

    10

    M A S S C O N S E R VAT I O N

    න0

    t

    Qs τ dτ = Gsρwi=1

    n

    ALBi Hi𝑠𝑜𝑙𝑖𝑑𝑠

    Total Mass of Solids =

    Mass Density of Solids x Volume of Solids in

    Individual Columns

    Total Mass of Solids = Avg. Dry Density of Tails x TSF Volume

    න0

    𝑡

    𝑄𝑠 τ 𝑑τ = ρ𝑑𝑟𝑦,𝑎𝑣𝑔 × 𝑉𝑇𝑆𝐹 𝑡

  • ___Example

    11

    F I L L I N G S C E N A R I O

    0

    20

    40

    60

    80

    100

    120

    0 5 10 15 20

    Mass (

    Mt)

    Time (year)

    Case 1

    Case 1 => 30,000 t/day for 10 years

    Case 2 => On-off filling (1yr + 1yr) – see paper

  • ___Case 1 Results – Time Settlement

    12

    M A S S C O N S E R VAT I O N

    0

    20

    40

    60

    80

    100

    0 5 10 15 20

    Heig

    ht

    (m)

    Time (year)

    FSConsol

    FILLCON - Tallest Column

    Incompressible Tailings (U=0%)

    Instantaneous Consolidation (U=100%)

  • ___Case 1 – Void Ratio Profiles at 10 years

    13

    0

    15

    30

    45

    60

    75

    90

    0 1 2 3 4

    Heig

    ht

    (m)

    Void Ratio (-)

    FSConsol

    Column 1

    Column 2

    Column 3

    Column 4

    Column 5

  • ___Case 1 – Avg. Void Ratio Profiles at 10 years

    14

    0

    15

    30

    45

    60

    75

    90

    0 1 2 3 4

    Heig

    ht

    (m)

    Void Ratio (-)

    FSConsol

    Column 1

    Layer FillingModel

    ColumnFilling Model

  • ___Case 1 – Void Ratio Profiles at 16 years

    15

    0

    15

    30

    45

    60

    75

    90

    0 1 2 3 4

    Heig

    ht

    (m)

    Void Ratio (-)

    FSConsol

    Column 1

    Column 2

    Column 3

    Column 4

    Column 5

  • ___Case 1 – Avg. Void Ratio Profiles at 16 years

    16

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    0 1 2 3 4

    Heig

    ht

    (m)

    Void Ratio (-)

    FSConsol

    Column 1

    Layer FillingModel

    ColumnFilling Model

  • ___Mass Balance Errors – Horizontal Layer Approach

    17

    -70%

    -60%

    -50%

    -40%

    -30%

    -20%

    -10%

    0%

    Year 10 Year 16 Year 20 Year 30

    Mass B

    ala

    nce E

    rror

    Error - Using Average Solids Content/ Density

    Error - Integrated Void Ratio Profile

  • ___Mass Balance Errors – Vertical Column Model

    18

    -0.70%

    -0.60%

    -0.50%

    -0.40%

    -0.30%

    -0.20%

    -0.10%

    0.00%

    Year 10 Year 16

    Mass B

    ala

    nce E

    rror

    Error - Using Average Solids Content/ DensityError - Integrated Void Ratio Profile

  • More things should not be

    used than are necessaryWilliam of Ockham

    19

    Everything should be made

    as simple as possible, but

    not simplerAlbert Einstein