21
Impact of planetary ephemerides on gravitaonal wave searches with Pulsar Timing Arrays G. Theureau (USN/LPC2E), S. Babak (APC), A. Peteau (APC), L. Guillemot (LPC2E), S. Chen (LPC2E) YERAC Dublin, 27/08/2019 Aurélien Chalumeau (APC/USN/LPC2E) Collaboraons with A. Fienga (Géoazur), M. Vallisneri (JPL/Caltech)

Impact of planetary ephemerides on gravitational wave ...~ 200 ns. A. Chalumeau 6 YERAC - 27/08/19 Build a timing model and get residuals Pulsar timing ISM SSB t e psr: Time of emission

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Impact of planetary ephemerides on gravitational wave searches with Pulsar Timing Arrays

G. Theureau (USN/LPC2E), S. Babak (APC), A. Petiteau (APC), L. Guillemot (LPC2E), S. Chen (LPC2E)

YERAC Dublin, 27/08/2019

Aurélien Chalumeau (APC/USN/LPC2E)

Collaborations with A. Fienga (Géoazur), M. Vallisneri (JPL/Caltech)

Pulsars

2A. Chalumeau YERAC - 27/08/19

Fast spinning, highly magnetized compact objectsCredit : B. Saxton.

TimeFrequen

cyFlux

Pulse phaseEmitting a pulsated signal

Mostly observed in radio freq.

3A. Chalumeau YERAC - 27/08/19

● Canonical pulsars

● Millisecond pulsars

● Magnetars

● Young pulsars

● X-ray pulsar

● Gamma-ray pulsar

● Spiders

● …..

A full zoology !

canonicals

milliseconds

youngs

magnetars

Pulsars

4A. Chalumeau YERAC - 27/08/19

● Canonical pulsars

● Millisecond pulsars

● Magnetars

● Young pulsars

● X-ray pulsar

● Gamma-ray pulsar

● Spiders

● …..

A full zoology !

canonicals

milliseconds

youngs

magnetars

Most stables

Pulsars

5A. Chalumeau YERAC - 27/08/19

Determinate times of arrival (TOAs)

Pulsar timing

cf. L

ori

mer

& K

ram

er 2

00

5

Profile folding

folded profile cross-correlated with a noise-free template (« template matching »)

cf. M

cKee

Choose good the pulsars

Good receiver

Observe in a large bandwidth

Folded profile

template

σTOA

~ 200 ns

6A. Chalumeau YERAC - 27/08/19

Build a timing model and get residuals

Pulsar timing

ISM

SSB

tepsr : Time of emission from the center of the pulsar

taobs : TOA at observatory time after clock correction

Δ☉ : Transformation to the solar system barycenter (SSB)

ΔISM

: Transformation to the binary barycenter

(dispersion from the ISM)

ΔB : Transformation to the pulsar proper time of emission

● Rotational params● Astrometric params● Orbital params● ISM effects● Clock correction● Transformation to the SSB

TOAs – predicted TOAs from timing model=

Residuals

Timing model

Pulsar Timing Arrays

7A. Chalumeau YERAC - 27/08/19

Probe very low-frequency gravitational waves effects in a combined set of residuals of a full array of pulsars !

PTA_NRAO_Outreach_animation

SMBHB (stochastic background +

single sources)

Cosmic strings, primordial GWs, ...

Cre

dit 

: D. C

ham

pio

n

Pulsar Timing Arrays

8A. Chalumeau YERAC - 27/08/19

cf. M

igar

ellli

& M

inga

relli

2

018

Gravitational wave background (GWB) upper-limits Individual sources upper-limits

[Babak et al. 2016

][Arz

oum

ania

n et

al.

2018

]

Our motivations

9A. Chalumeau YERAC - 27/08/19

GWB Amplitude PDF vs. Solar-system ephemerides (SSEs)

Problem : GWB results seem dependent of the chosen ephemeris model !

BAYESEPHEM model (11 params) to « unfix » ephemeris parameters

GWB constraint gets robust against SSE errors

But modelling SSE errors can absorb some of the GWB signal

Possible to fix it by modelling some SSE parameters

[Arz

oum

ania

n et

al.

2018

]

Solar system ephemerides

10A. Chalumeau YERAC - 27/08/19

Pos. & vel. predicted from numerical integration of eq. of motions fitted to the observational data

Various solutions given by various collaborations !JPL, IMCCE (INPOP),...

➔ Different data➔ Different uncertainties➔ Different models (i.e. eq. & params)

Difference of Earth-Moon barycenter (EMB) position (left) & velocity (right) w.r.t. SSB frame between by INPOP17a & JPL DE436

Solar system ephemerides

11A. Chalumeau YERAC - 27/08/19

Pos. & vel. predicted from numerical integration of eq. of motions fitted to the observational data

Various solutions given by various collaborations !JPL, IMCCE (INPOP),...

Difference of Earth-Moon barycenter (EMB) position (left) & velocity (right) w.r.t. SSB frame between by INPOP17a & JPL DE436

Work with INPOP data (cf. A. Fienga)

A first approach – SSE perturbation

12A. Chalumeau YERAC - 27/08/19

INPOP data (cf. A. Fienga)

● Covariance matrix of orbital parameters● Linear model coefficients

Linear approximation + perturbation of planet positions (EMB & 4 outer planets) at initial conditions

Max & min values of EMB position errors after perturbations at 1σ (2000 perturb.)

A first approach – SSE perturbation

13A. Chalumeau YERAC - 27/08/19

INPOP data (cf. A. Fienga)

● Covariance matrix of orbital parameters● Linear model coefficients

Linear approximation + perturbation of planet positions (EMB & 4 outer planets) at initial conditions

Post-fit astrometric parameters of J1909-3744 after perturbations at 1σ vs. Non perturbed (2000 perturb.)

A first approach – SSE perturbation

14A. Chalumeau YERAC - 27/08/19

INPOP data (cf. A. Fienga)

● Covariance matrix of orbital parameters● Linear model coefficients

Linear approximation + perturbation of planet positions (EMB & 4 outer planets) at initial conditions

Max & min values of post-fit residuals of J1909-3744 after perturbations at 1σ (2000 perturb.)

Model SSE uncertainties as gaussian process

15A. Chalumeau YERAC - 27/08/19

Description of SSE noise as Gaussian process in residuals with the PTA analysis Bayesian framework software : enterprise (cf. M. Vallisneri)

Method(s)

Marginalize over the SSE parameters (orbital elements)

Perform a GW searches

Sample for SSE parameter uncertainties & GW parameters together

Get SSE uncertainties params by marginalizing

over other signals

Get constraints on priors that take into account

possible systematic biases

Add SSE errors into a full noise model using

dipolar correlations

YERAC - 27/08/1918A. Chalumeau

Conclusions

● SSE studies very important to increase PTA sensibility

● Need to take into account ephemeris uncertainties in GW analysis

● Possible to model ephem uncertainties as Gaussian process

Next steps :

● Study systematics between SSEs (importance of probing several ephemeris solutions)

● Find an optimal model for ephemeris uncertainties which takes into account dipolar spatial correlations

Thank you for your attention

YERAC - 27/08/19A. Chalumeau

Annexe 1cf

. Des

vign

es e

t al

. 20

16

● Astrometric parameters● Rotational parameters● Dispersion measure● Orbital parameters+ solar system ephemerides and clock correction

A timing model Effect of param errors on residuals

F0 error F1 error

Proper motion errorPos error

Annexe 2

A. Chalumeau YERAC - 27/08/19

Rømer delay Shapiro

Einstein delay

From the topocentric to the quasi-inertial solar system barycenter frame

Orbits of solar system bodies needed !

Atmospheric delay Parallax

Solar-system dispersion

Dominant term

Transformation to the SSB

YERAC - 27/08/19A. Chalumeau

Annexe 3

Gaussian processes

« Collection of random variables such that every finite collection of these has a multivariate normal distribution »

Approx. to the dominant term : Rømer delay

EMB displacement

Measurement noise vector

Residuals represented as Gaussian processes

Pulsar position

Gaussian Process with hyp. Params. θ

Signals modelization

[Van Haasteren & Vallisneri 2014]

Set of basis functions« design matrix »

Weights : Gaussian random variables« parameter errors »

Mean vector

Covariance matrix

YERAC - 27/08/19A. Chalumeau

Annexe 4

Gaussian process « duality »

Marginal likelihood of data (n TOAs) with GP noise description subject to Gaussian

measurement noise εi with covariance matrix N

Gaussian process covariance matrices

Marginal likelihood of the data given the Gaussian process