50
III V ili ht it ti III-V silicon heterogeneous integration Dries Van Thourhout – IPRM ‘08, Paris InP/InGaAsP epitaxial layer stack Si WG DVS- BCB SiO 2 200nm

III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

III V ili h t i t tiIII-V silicon heterogeneous integrationDries Van Thourhout – IPRM ‘08, Paris

InP/InGaAsPepitaxial layer stack

Si WG

DVS-BCB

SiO2 200nm

Page 2: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

III V ili h t i t tiIII-V silicon heterogeneous integrationDries Van Thourhout – IPRM ‘08, Paris

InP/InGaAsPepitaxial layer stack

Si WG

DVS-BCB

SiO2 200nm

1. Silicon photonics is great !!!2. But we still need InP

3 III-V silicon integration3. III-V silicon integration4. Devices

Page 3: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

AcknowledgementsPh t i R h GPhotonics Research Group

III-V silicon integration: G. Roelkens, J. Van Campenhout, J. Brouckaert, L. Liu

Silicon ProcessingW. Bogaerts, P. Dumon, S. Selvarajan, R. Baets

EU IST-PICMOS teamJ.M. Fedeli, L. Di Cioccio (LETI) (molecular bonding, processing)C. Seassal, P. Rojo-Romeo, P. Regreny, P. Viktorovitch (INL) (processing, epitaxy)R. Notzel, X.J.M. Leijtens (TU/e) (epitaxy)C. Lagahe, B. Aspar (TRACIT) (planarization)

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Page 4: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

III V ili h t i t tiIII-V silicon heterogeneous integration

InP/InGaAsPepitaxial layer stack

Si WG

DVS-BCB

SiO2 200nm

1. Silicon photonics is great !!!2. But we still need InP

3 III V silicon integration3. III-V silicon integration4. Devices

Page 5: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Silicon photonicsthe solution to all our problems?

Width (500nm) x Height (220nm)

… the solution to all our problems Transparent at telecom wavelengths (1.3 µm, 1.55 µm)High refractive index contrast ultra-compact circuits

?

SiO (1 2 )High refractive index contrast ultra compact circuits“Compatible” with CMOS-processing

Highest quality processesHigh yield high repeatability

SiO2 (1-2 µm)

SiliconHigh yield, high repeatability

Integration with electronicsPattern definition: DUV litho`

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Page 6: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Photonic wiringLow loss bends <0.3dB excess loss for splitters

0°]

0 09dB/90°

d lo

ss [d

B/9

0

0.08

0.06

0.09dB/90

Exce

ss b

end 0.04

0.02

00.004dB/90°0.01dB/90°

0.027dB/90°

E 1 2 3 4 5Radius [um]

97% transmission in crossings

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

(b)

97% transmission in crossings

Page 7: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Wavelength dependent devices

-5

0FSR

-15

-10

mis

sion

[dB

]

1 2 3 4 8 16 1

30

-25

-20

tran

sm

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

1520 1525 1530 1535 1540 1545 1550 1555 1560wavelength [nm]

-30

Page 8: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Increasing Index Contrast

Glass based devicesBend Radius ~ 5 mm

5 mm

5 cm

200 µm

InP/InGaAsP(bend radius ~ 500um)

Silicon photonic ICs

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Bend Radius < 5µm

Page 9: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Silicon PhotonicsIntel 40GHz Detector

Ceramic Package

Fiber cable plugs here

Luxtera Ethernet Tranceiver

IBM Modulator

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Page 10: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Silicon PhotonicsSilicon photonics comes in many flavorsSilicon photonics comes in many flavors …

Large rib type waveguides Small core devices

Easy coupling with fiber

Optimized for nanophotonics

Small device size

This work and many others

Large device size

e.g. www.kotura.comFull CMOS integration

Fabricated in CMOS process

Directly integrated with electronics

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

e.g. www.luxtera.com

Page 11: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

III-V on silicon ?Sili h t i iSilicon photonics gives us:

Excellent passives

F t d l t f t h t d t tFast modulators, fast photodetectors

But: (almost) no light …

N d f i t ti ith III VNeed for integration with III-Vs

RequirementsHigh density (~10-20um device pitch)

High alignment accuracy (~100nm)

Waferscale processes

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Page 12: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

III V ili h t i t tiIII-V silicon heterogeneous integration

InP/InGaAsPepitaxial layer stack

Si WG

DVS-BCB

SiO2 200nm

1. Silicon photonics is great !!!2. But we still need InP

3 III V silicon integration3. III-V silicon integration4. Devices

Page 13: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

III-V on siliconThere are several ways to integrate III V on SOIThere are several ways to integrate III-V on SOI

Flip-chip integration of opto-electronic components☺ most rugged technology☺ most rugged technology☺ testing of opto-electronic components in advance

slow sequential process (alignment accuracy)low density of integration

Hetero-epitaxial growth of III-V on silicon☺ collective process high density of integration☺ collective process, high density of integration

mismatch in lattice constant, CTE, polar/non-polarcontamination and temperature budget

See other talks at this conferenceSee other talks at this conference

Bonding of III-V epitaxial layers☺ sequential but fast integration process☺ hi h d i f i i ll i i

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

☺ high density of integration, collective processing☺ high quality epitaxial III-V layers

Page 14: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Proposed integration processStarting point: Processed SOI-waveguide wafer

193nm or 248nm DUV lithographyFabricated in pilot CMOS-line

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Page 15: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Proposed integration process

Planarization

PlanarizationUsing BCB (50nm to 2um) (UGent/IMEC)Using SiO (TRACIT CEA LETI)

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Using SiO2 (TRACIT - CEA-LETI)

Page 16: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Proposed integration process

Die-to-wafer bonding

Bonding InP-dies on top of planarized SOI-waferLow alignment accuracy requiredFast pick and place

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Fast pick-and-place

Page 17: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Proposed integration process

Substrate removal

Remove InP-substrate down to etch stop layerRemove etch stopThin membrane remains (200nm 2 µm)

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Thin membrane remains (200nm ~ 2 µm)

Page 18: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Proposed integration processH d k d itiHardmask deposition

Micro-disk sources

Detectors

D t i ti d h d k d iti

DBR sources

Decontamination and hardmask depositionAlignment of waveguides and devices through lithographic methods

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Page 19: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Proposed integration processProcessing of InP-optoelectronic devices

Mesa etching and Metallization“Waferscale” processing !!!

on 2cm2 pieces (UGent INL)

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

on 2cm2 pieces (UGent, INL)on 200mm wafers (CEA-LETI)

Page 20: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

III-V/Silicon photonicsB di f III V it i l lBonding of III-V epitaxial layers

Molecular die-to-wafer bondingBased on van der Waals attraction between wafer surfacesased o a de aa s att act o bet ee a e su acesRequires “atomic contact” between both surfaces

- very sensitive to particlesvery sensitive to roughness- very sensitive to roughness

- very sensitive to contamination of surfacesAdhesive die-to-wafer bonding

Uses an adhesive layer as a glue to stick both surfacesRequirements are more relaxed compared to Molecular

- glue compensates for particles (some)g ( )- glue compensates for roughness (all)- glue allows (some) contamination of surfaces

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Page 21: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Bonding TechnologyR i t f th dh i f b diRequirements for the adhesive for bonding

Optically transparentHigh thermal stability (post-bonding thermal budget) 400C400C

<0.1dB/cm<0.1dB/cm

High thermal stability (post bonding thermal budget)Low curing temperature (low thermal stress)No outgassing upon curing (void formation)

400C400C

250C250COKOK

Resistant to all kinds of chemicals HCl,HHCl,H22SOSO44,H,H22OO22,…,…

DVS BCB satisfies these requirements

CH3 CH3

DVS-BCB satisfies these requirements

Si

CH3

Si

CH3

O

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

CH3 CH3

1,3-divinyl-1,1,3,3-tetramethyldisiloxane-bisbenzocyclobutene

Page 22: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Bonding TechnologyCross-sectional image of III-V/Silicon substrate

InP/InGaAsP

InP-InGaAsP

InP/InGaAsP epitaxial layer stack

epitaxial layer stack

DVS-BCBSiO2

Si Si WGDVS-BCB

200nm2

Si SiO2 200nm

300nm bonding layer routinely and reliably obtained

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Page 23: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Bonding TechnologyCross-sectional image of III-V/Silicon substrate

InP/InGaAsP

InP-InGaAsP

InP/InGaAsP epitaxial layer stack

epitaxial layer stack

DVS-BCBSiO2

Si Si WGDVS-BCB

200nm2

Si SiO2 200nm

300nm bonding layer routinely and reliably obtained

Recently also sub 100nm layers demonstrated

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Recently also sub-100nm layers demonstrated

Page 24: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

III V ili h t i t tiIII-V silicon heterogeneous integration

InP/InGaAsPepitaxial layer stack

Si WG

DVS-BCB

SiO2 200nm

1. Silicon photonics is great !!!2. But we still need InP

3 III V silicon integration3. III-V silicon integration4. Devices

Page 25: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Integrated Devices: laser diodeI t t d l di dIntegrated laser diodes

First only pulsed operation due to high thermal resistivity DVS-BCBIntegration of a heat sink to improve heat dissipationContinuous wave operation achieved this way

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Page 26: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Other groupsIntel / UCSB Hybrid laser CEA LETI / III V labIntel / UCSB Hybrid laser

p-type contact5 µm

CEA-LETI / III-V lab

n-type contact III-V etched facet

4

5

4

5

15°C

10°C

2

3

4

2

3

4

30°C

25°C

15 C

20°C

t pow

er (m

W)

Voltage (V

0

1

0 100 200 300 4000

140°C

35°C

Out

put

Current (mA)

V)

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

( )

(IPRM ‘08, paper MoA4.2)

Page 27: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

MSM detectorsInGaAs/ InAlAs

polyimide

•Etching of detectors in III-V•Spinning insulation layer of polyimide

polyimide

25µm long detector

R = 1.0A/W (1550nm), IQE = 80% (5V bias)

Id k = 3nA (5V bias)•Opening contact window•Metallization

40µm

contact window

Idark 3nA (5V bias)

SOI waveguides (30µm pitch)

40µm

L=30µm, d=400nm

no absorption

Ti/Au contact

contact window

IN

InGaAs absorption

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

40µm IN

Page 28: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Wavelength selective filter

V bias = 10VV_bias = -10V

1

)

0 01

0.1oc

urre

nt (m

A

1x4 demux, ∆λ=20nm,

280µm x 150µm 0.001

0.01

1480 1500 1520 1540 1560 1580 1600 1620

Phot

o

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

1480 1500 1520 1540 1560 1580 1600 1620

Page 29: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Integrated microdisk laserMi di k l d iMicrodisk laser design

Whispering-gallery modesCentral top contact

top contactbottom contact active layer

2Rdisk

Central top contactBottom contact on thin lateral contact layer (ts)

SiO2Si waveguide

tunnel junction

InP

dox

t

ts

Hole injection through a reverse-biased tunnel-junction

Si substrate

2Si waveguide

wSi

Microdisk thickness 0.5 < t < 1µm

Evanescent coupling to SOI wirep gwaveguide (500x220nm2)

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Page 30: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

On-chip optical interconnect ?I t t h t i i t t CMOS ?

SOI waveguide microdetectormicrolaserIII-V material

Integrate photonic interconnect on CMOS ?

SOI Optical pInterconnect

layer

Electrical Interconnect

layerlayer

Silicon transistor layer

Need integrated interconnect layer on top of CMOSSilicon wiring for interconnectIII V microdevices for sources and detectors

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

III-V microdevices for sources and detectors

Page 31: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

PICMOS 25 µm

A collaborative project …A collaborative project …

InP island

microdisk

SOI waveguide

IMEC: SOI-wafer fabricationIMEC: SOI-wafer fabrication

TU/e: detector etchingTU/e: detector etchingIMEC: metallizationIII-V processingIMEC: metallizationIII-V processing

microdisk

III V processingIII V processing

TRACIT: planarizationTRACIT: planarizationINL: substrate removalINL: substrate removal

INL: source etchingINL: source etching SiO2 Si wire

BCBInP - InGaAsP

LETI: bondingLETI: bondingLETI: hard maskLETI: hard maskSi substrate

130-nm bonding layer

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Six cleanrooms but still working devices …Six cleanrooms but still working devices …

Page 32: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Continuous-wave lasing1 thi k 7 5 d i hibit

30 2.5CW power

1-µm thick, 7.5-µm devices exhibitcontinuous-wave lasing

-200 9 A

20

25

wer

(µW

)

1.5

2

e (V

)

Pulsed peak power

CW Voltage

-50

-40

-30

wer

(dB

m)

0.9mA

5

10

15

Out

put p

ow

0.5

1 Volta

ge

80

-70

-60

Spec

tral

pow

0

5

0 0.5 1 1.5 2Current (mA)

0 -90

-80

1560 1580 1600 1620 1640Wavelength (nm)Current (mA)

Threshold current Ith = 0.5mA, voltage Vth = 1.5-1.7Vslope efficiency = 30µW/mA, up to 10µW

g ( )

BCB InP - InGaAsP

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

(Pulsed regime: up to 100µW peak power)J. Van Campenhout et al., "Electrically pumped inp-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit" Optics Express, May 2007Si substrate

SiO2 Si wire

InP - InGaAsP

130-nm b di

Page 33: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Temperature dependence“L i i t 70°C”“Laser emission up to 70°C”

(pulsed operation)

300

400

T=10T=10°°CCD = 6µm

1570

1571

1572

elen

gth

[nm

]

200

300

wer

[a.u

.]

T=20T=20°°CCT=30T=30°°CC

T=40T=40°°CC1567

1568

1569

0 10 20 30 40 50

peak

wav

e

1Kpm86 −≈dTdλ

100

pow T=40T=40 CC

T=50T=50°°CC T=60T=60°°CC

0 10 20 30 40 50Tamb [°C]

14 K012)( −−≈InPdTdn

0400 600 800 1000 1200 1400 1600 1800

T=70T=70°°CCdT

13 K017)( −−−≈BCBdTdn

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

current [uA]

Page 34: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Fit to experimental data30 3

20

25

30

(µW

)

2

2.5

3

)

10

15

20

cal P

ower

(

1

1.5

2

Volta

ge (V

pulsed data

0 0 5 1 1 5 2 2 5 30

5

10

Opt

ic

0

0.5

1 V

CW data

Model can be fitted to pulsed experimental data, assuming:uniform injection: injection efficiency =0.36x0.7=0.25

0 0.5 1 1.5 2 2.5 3Current (mA)

j j ycoupling loss = 3cm-1 (simulation)tunnel-junction p-doping Na = 2x1018cm-3

(design target Na = 2x1019cm-3, SIMS analysis: Na ~ 8x1018cm-3 )fitted scatter loss = 8cm-1 (passive ring resonators: 7-13cm-1)

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

fitted scatter loss 8cm (passive ring resonators: 7 13cm )

Consistent fit, except for tunnel-junction p-doping and saturation effect

Page 35: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Ultra-low-power Wavelength conversion

-30

-20

-10

Bm

/0.1

nm)

∆λFSR=32nm

dominant lasingwavelength of MDL

injected laserwavelength

tunable

polarizationcontroller

patterngenerator

variablemodulator

60

-50

-40 w/o injectionwith injection

de in

tens

ity (d

Blaser polarizationcontroller

attentuatormodulator

EDFAband-pass

filter

high-speeddetector

detector

oscilloscope

MDL

SOIwg.

1.56 1.58 1.6 1.62-70

-60

wavelength (µm)

moddetector

1

r (a.

u.)

• No control power needed.

• Wavelength conversion with

0

0.5 2ns

pow

er Wavelength conversion with only 6.4uW control power.

• 5Gbps dynamic results.

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

0 0.5 1 1.5 2 2.5time (ns)

p y

Page 36: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Full LinkD t t di ( t i 256 ti l li k )Demonstrator die (contains 256 optical links)

7mm

detector III-V dielaser III-V die

120 Microdisklasers

120 DBRmicrolasers

S S laser III-V die

-poi

nts -p

oint

sCO

UPL

ERS

cast

s CO

UPL

ERS

200mm SOI wafer

9mm

Poin

t-to-

links

Poin

t-to-

links

GR

ATIN

G C

Bro

adc

links

GR

ATIN

G C

264 Micro detectors(TU Ei dh / C b )

FIB

RE

G

FIB

RE

G

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

(TU Eindhoven / Cobra)

Page 37: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Pulsed operation of the linkDuty cycle = 8% Period = 1 µsmonitor grating

Detector not biased (0V), negligible dark current

on-chip detector

etecto ot b ased (0 ), eg g b e da cu e t

Performance under pulsed operation:Threshold current < 700 µA & Slope efficiency ~ 1.1 µW/mAD t t ffi i f 0 23 0 29 A/W

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Detector efficiency of 0.23-0.29 A/W.

Page 38: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Outlook & conclusionW d t t dWe demonstrated:

Ultra-dense waveguiding< 2 µm pitch (waveguide to waveguide)< 2 µm pitch (waveguide-to-waveguide)

A powerfull III-V on Silicon integration technology

Several proof-of-principle demonstratorsSeveral proof of principle demonstratorsElectrically pumped micro-disk sources on silicon platform

500 µA threshold current500 µA threshold current

Micro-detectors on silicon platform1.0A/W

Fabrication using waferscale processes

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Page 39: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Outlook & conclusionW till d t

Single wavelength

We still need to:Improve source performance

Towards 50 µA threshold current 10GHz modulation

Multi-wavelength sources

Towards 50 µA threshold current – 10GHz modulation speed – 30% internal efficiencyThrough improved processing

λ λ

λ1

λ2

λ3

λN

Through improved device designImproved high temperature operation

Full fabrication in CMOS pilot line

λ1

λ2

λ3

λN

λ1,λ2 ... λN-1,λN

λ λ λ λNFull fabrication in CMOS pilot-line

Integration with CMOS electronic driving circuit

Implement WDM-functionality

1 2 3N

λ1,λ2 ... λN-1,λN

Implement WDM functionality

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Page 40: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Multi-wavelength Laser4 a elength laser

D1 D2 D3 D4SM fiber

4-wavelength laser

gratingcoupler

-1023nmλ =

32nmFSRλ =-10

(a) (b)

10µm diameter 7.5µm diameter

40

-30

-2023nmFSRλ =

40

-30

-20D1

D4 D3D2 D1

D4D3

D2

biased at:4mA

biased at:3mAer

(dB

)

er (d

B)

-60

-50

-40

-60

-50

-40D1

D2

D1

D2

3po

we

pow

e

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

1.56 1.57 1.58 1.59 1.6 1.61 1.62-70

1.56 1.57 1.58 1.59 1.6 1.61 1.62-70

wavelength (µm) wavelength (µm)

Page 41: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Outlook & conclusionW till d tWe still need to:

Improve source performance Towards 50 µA threshold current 10GHz modulationTowards 50 µA threshold current – 10GHz modulation speed – 30% internal efficiencyThrough improved processingThrough improved device designImproved high temperature operation

Full fabrication in CMOS pilot lineFull fabrication in CMOS pilot-line

Integration with CMOS electronic driving circuit

Implement WDM-functionalityImplement WDM functionality

Simplify overall processing

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Page 42: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Outlook & conclusionSi lif iSimplify processing

Avoid critical patterning in the III-V layer

Silicon racetrack

III-V film

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Page 43: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

AcknowledgementsPh t i R h GPhotonics Research Group

III-V silicon integration: G. Roelkens, J. Van Campenhout, J. Brouckaert, L. Liu

Silicon ProcessingW. Bogaerts, P. Dumon, S. Selvarajan, R. Baets

PICMOS teamJ.M. Fedeli, L. Di Cioccio (LETI) (molecular bonding, processing)C. Lagahe, B. Aspar (TRACIT) (planarization)C. Seassal, P. Rojo-Romeo, P. Regreny, P. Viktorovitch (INL) (processing, epitaxy)R. Notzel, X.J.M. Leijtens (TU/e) (epitaxy)

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Page 44: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Page 45: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Fiber-chip coupling

1

Important:Low loss coupling

1µm Large bandwidth

Coupling tolerance

FabricationFabricationLimited extra processingTolerant to fabrication

SOI wire Low reflection

Polarization ?

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Single-mode fiber

Page 46: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Coupling to fiber – Grating couplerAlternative: Grating couplers

Waferscale testing

Waferscale packaging

High alignment tolerance

d t h

shallow fibre couplerFrom Fibre

70% efficiencymeasured

deep trench

Towards optical circuit

Single modefiber core

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Page 47: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Increase effieciency ?Top view Improving performance

Add bottom mirrorgrating coupler Apodize

“Other”

With mirror

BCB

Without mirror

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

FIB cross-section 1dB bandwidth > 40nm

Page 48: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

1 Coupling of light between III V and SiliconMain Challenges

1. Coupling of light between III-V and SiliconOption 1: evanescent

Guiding in siliconRequires thin bonding layerRequires III-V thinner than <250nm

Option 2: other (adiabatic grating coupler )Option 2: other (adiabatic, grating coupler …)Guiding in III-VThicker III-V layerSometimes thicker bondingSometimes thicker bonding

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Page 49: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

1 Coupling of light between III V and SiliconMain Challenges

1. Coupling of light between III-V and SiliconOption 1: evanescent

Guiding in siliconRequires thin bonding layerRequires III-V thinner than <250nm

Option 2: other (adiabatic grating coupler )Loss at metal contactOption 2: other (adiabatic, grating coupler …)Guiding in III-VThicker III-V layerSometimes thicker bondingSometimes thicker bonding

2. Electrical injection Metal contact on membrane devices without inducing additional loss

3. Thermal managementOvercome thermal barrier of bonding layer and BOX

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be

Overcome thermal barrier of bonding layer and BOX

Page 50: III-V ili h t i t tiV silicon heterogeneous integrationpcphotonics.intec.ugent.be/download/ocs110.pdf · III-V ili h t i t tiV silicon heterogeneous integration InP/InGaAsP epitaxial

Integrated Devices: laser diodeIntegrated laser diodesIntegrated laser diodes

Fabry-Perot laser cavity by etching InP/InGaAsP laser facets

Inverted adiabatic taper coupling approach

© intec 2007 - Photonics Research Group - http://photonics.intec.ugent.be