58
Complex Ginzburg-Landau Equation Lecture I Igor Aranson & Lorenz Kramer, Reviews of Modern Physics, The World of the Complex Ginzburg-Landau Equation, v 74, p 99 (2002)

Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Complex Ginzburg-Landau EquationLecture I

Igor Aranson & Lorenz Kramer, Reviews of Modern Physics,The World of the Complex Ginzburg-Landau Equation,v 74, p 99 (2002)

Page 2: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Tentative plan

• Lecture 1. General Introduction. Real GLE• Lectures 2 & 3. Complex GLE

Page 3: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Complex Ginzburg-Landau Equation

• A(x,y,z,t) –complex amplitude

• Laplace operator

• b – linear dispersion• c – nonlinear dispersion

Page 4: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Preamble

• The complex Ginzburg-Landau equation (CGLE)is one of the most-studied nonlinear equations inthe physics community.

• It describes phenomena from nonlinear waves tosecond-order phase transitions, superconductivity,superfluidity and Bose-Einstein condensation etc.

• Our goal is to give an overview of phenomena in1D, 2D and 3D.

Page 5: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Some Historic Comments

• Vitalii Ginzburg received Nobel Prize inPhysics 2003 for writing the GL equation

• Alex Abrikosov received Nobel Prize inPhysics 2003 for a particular (and incorrect)stationary solution to the GL equation

• What would Landau have said about CGLE?Pathological Science?

Page 6: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Why do we need to study the CGLE?

Page 7: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Definitions

• CGLE describes isotropic extended systems nearthe threshold of long-wavelength supercriticaloscillatory instability (Hopf Bifurcation).

• Near the threshold the equation assumes universalfrom.

• Equation is written in terms of complex amplitudeof the most unstable oscillatory mode.

Page 8: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Examples

• B-Z type chemical reactions (2D, 3D)• Wide-aperture lasers (2D)• Electro-convection in liquid crystals (1D)• Hydrodynamic flows (1D)• Flames (1D, 2D)• Micro-organisms colonies (2D)• System near the threshold of orientation transition

(2D)

Page 9: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors
Page 10: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors
Page 11: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors
Page 12: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Cardiac activity

Page 13: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Self-Assembling Microtubules andMolecular Motors

T. Surray, F. Nedelec, S. Leibler & E. Karsenti, Physical Properties Determining Self-Organizationof Motors & Microtubules, Science, 292 (2001)

Page 14: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Superconductivity and Superfluidity

NOBEL PRIZE WINNER — Argonne physicist Alexei A. Abrikosovhas won the 2003 Nobel Prize for Physics, along with Anthony Leggettof the University of Illinois, Urbana-Champaign,and Vitaly Ginzburg of the P.N. Lebedev Physical Institute in Moscow.

Page 15: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Observed Patterns in the CGLE

Page 16: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Connections to Condensed Matter

• (real) Ginzburg-Landau Equation (b,c=0)Superconductivity, superfluidity near Tc

• Nonlinear Schrödinger Equations Superconductivity, superfluidity for T=0 , nonlinear optics

(fully integrable system in 1D)

Page 17: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

History: Hopf Bifurcation (0D)•Poincare considered the problem too trivial to write down….•Andronov & Leontovich did it on the plane ( ~1938).•Hopf generalized it to many degrees of freedom (1942).

|A|=r/g - radius of the cycle, r ~ marg A - angle, w – frequency

Landau or normal form equation (amplitude equation)

u0,v0-steady state solutionAt m=0 real part of 2 complex roots cross zeroPeriodic motion emerges (limit cycle)

Page 18: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Stability of fixed point

•Linear stability analysis

u

v

u

v

m<0

m>0 limit cycle

u0

v0

Re l

Im lw-w

. .

Page 19: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Example: Limit cycle in the van der Pol Equation

Asymptotic method: perturbative solution

Substituting in the first order we obtain linear equation for the correction term

From the condition that no resonance we obtain the Landau equation

Page 20: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Solving the Landau Equation

Polar coordinates A= R ei j

R=1 – stable point, R=0 unstable point. Stable solution is a circle of radius R=1

General case (the complex Landau equation)

Page 21: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Home work: derive the Landau equation from

Page 22: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Generalization to arbitrary order system of eqns

U – vector of dimension N, L – NxN matrix, F – nonlinearity,w – eigenfrequency, U0 – eigenvector

Expansion (transition into a rotating frame)

Page 23: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Solvability conditions (Fredholm alternative)

Zero eigenvector of conjugated system

From linear algebra

Page 24: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Spatially Extended SystemsPhenomenologically: Newell and Whitehead 1970/1971Derived for destabilization of plane Couette flowStewartson & Stuart, DiPrima, Ekhaus and Siegel, 1971

•Amplitude equation should reproduce linear dispersion relationin the long-wavelength limit•Local evolution near the threshold should reproduce Landauequation or normal form (because u(t),v(t) are solutions of full system)

Page 25: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Linear Stability Analysis

Page 26: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Linearized System

Page 27: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Linear Behavior

• for q=0 (Hopf bifurcation)

• for small q – long-wavelength oscillatory instability max growth-rate for homogeneous oscillations

Re(l)

q

Re(l)

qx

qy

Page 28: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Weakly Non-Linear Analysis

Page 29: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

CGLE-result of solvability conditions

• Substitute anzatz into original system• Collect terms at O(e3/2)• Orthogonalization with respect to eigenvector (U1,V1)

• D,g can be scaled out

Page 30: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Home work: derive the Ginzburg-Landau equationfrom

Page 31: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Classification of Bifurcation Scenario

• General form of linear growth-rate in generic anisotropicsystems (expanded near critical wavenumber qc and frequencywc)

• vg-linear group velocity, t and x characteristic time and length

Page 32: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Real Ginzburg-Landau Equation

(i) wc=b=0, qc = 0 – real GLE (e.g. 1D)

Examples: stationary bifurcation in Rayleigh-Benard

convection, superconductivity & superfluidity (but fortotally different reason), system near orientationtransition in 2D

Page 33: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Complex Ginzburg-Landau Equation

(ii) wc≠ 0, qc = 0 – classic CGLE Examples: oscillatory chemical reactions, certain class of

wide-aperture lasers, biological systems

Page 34: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Coupled Complex Ginzburg-LandauEquations

(iii) wc≠ 0, qc ≠ 0 – 2 CGLE for counter-

propagating waves A,B Examples: many 1D hydrodynamic and optical systems

Page 35: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Short Wave Instability: Swift-Hohenberg Equation• Linear growth-rate is max at |q|=qc General form of linear

growth-rate in isotropic systems Complex Swift-Hohenberg Equation

qx

qy

Rel(q)

Wensink et al, Mesoscale turbulence in livingfluids, PNAS, 2012

Page 36: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Generic Properties of CGLE

• Translation Invariance: r→r+const• Isotropic: angle q→q+const• Gauge Invariant: A→Aeij, j=const• Inversion in param space: (b,c,A)→(-b,-c,A*)• Hidden symmetries (inherited from the NSE)

Page 37: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Select Solutions of the CGLE

• Plane Waves Solutions: 1D• Vortices and Spirals: 2D• Vortex Filaments or Lines: 3D

Page 38: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Plane-wave solutions

For b=c=0 (real GLE) Vg=w=0

Page 39: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Plane-wave solutions

Page 40: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Plane-wave solutions

For b=c=0 (real GLE) Vg=w=0

Page 41: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Difference with linear wavesLinear waves Nonlinear Waves in the CGLE

Frequency does not depend onamplitude

Frequency is function of amplitudeW= - b q2 – c A2

Amplitude does not depend onwavenumber q

Amplitude depends on thewavenumber A2=1- q2

Waves decay due to dissipation Waves do not decay, system isactive, consumes energy

Waves do not interact, linearsuperposition

Waves interact, nonlinear collisionsand shocks

No frequency selection Topological defects and boundariesselect unique frequency

Linear wave equation

Page 42: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Spiral Solution

F(r)

y(r)

For real GLE y=w=0

Page 43: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

3D vortex filaments

Page 44: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Few facts about real GLE• 1D Stationary GLE is fully integrable. We write it for amplitude-phase

variable A=I eij

• “Integral of Motion” from the second equations

• Home work: find the solution to stationary 1D GLE

Page 45: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Vortices in 2D case

Page 46: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Asymptotic Behaviors

for m=±1

F

r

Page 47: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Slowly Drifting Vortex Solution

Page 48: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Derivation of the Drift Velocity

Page 49: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Zero modes of adjoint operator

Consider Nonlinear PDE L(U)=0. Let U0(r) is the solution, L(U0(r))=0 anddL(U0(r))w=0 is corresponding linearized equation. If L(U) does not depend explicitlyon r, then satisfies the linearized equation

Page 50: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Adjoint Eigenfunctions

Page 51: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Equations of motion

Page 52: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

A Big Trouble with the Mobility

•The mobility diverges for Rè∞???• The vortex does not move???

Page 53: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Saving the Theory

• Regularization of the Mobility (by LorenzKramer et al, and later by Len Pismen)

• Main issue: moving defects do not perturbthe phase far away from the cores

• One needs more accurate approximation for r→∞

Page 54: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Simple Way:

• Introduce cut-off radius Rc ~1/V

• From balance of main terms

Page 55: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Equation for the phase of A

Page 56: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Regularization of the Mobility

To read more: Len Pismen, Vortices in Nonlinear Fields, Oxford, 1999

Page 57: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Regularized Equation of Motion

•Mobility is velocity-dependent•The dependence is non-analytic•Equations of motion are highly nonlinear

Page 58: Igor on, x g on, v 74, p 99 (2002)W = - b q2 A 2 nd on r q he r A 2=1- q2 on s gy r on ons ks on s y on. on (r) y (r) y =w=0. s. E • y e e I eij • “ on ” ons • E. e. ors

Application to Vortex Interactiony

x

First vortex: x=0,y=0,m=1Second vortex: x=x0,y=0,m=-1

v v

oppositely charged –attractionlikely charged – repulsion