IEEE_C57 19 100-2012

Embed Size (px)

Citation preview

  • 8/13/2019 IEEE_C57 19 100-2012

    1/42

  • 8/13/2019 IEEE_C57 19 100-2012

    2/42

  • 8/13/2019 IEEE_C57 19 100-2012

    3/42

    IEEE Std C57.19.100TM

    -2012(Revision of

    IEEE Std C57.19.100-1995)

    IEEE Guide for Application of PowerApparatus Bushings

    Sponsor

    Transformers Committeeof theIEEE Power and Energy Society

    Approved 5 December 2012

    IEEE-SA Standards Board

  • 8/13/2019 IEEE_C57 19 100-2012

    4/42

    Abstract:Guidance on the use of outdoor power apparatus bushings is provided. The bushingsare limited to those built in accordance with IEEE Std C57.19.00TM-1991. General information andrecommendations for the application of power apparatus bushings when incorporated as part ofpower transformers, power circuit breakers, and isolated-phase bus are provided.

    Keywords:circuit breakers, IEEE C57.19.100TM, isolated-phase bus, power apparatus bushings,transformers

    The Institute of Electrical and Electronics Engineers, Inc.

    3 Park Avenue, New York, NY 10016-5997, USA

    Copyright 2013 by The Institute of Electrical and Electronics Engineers, Inc.All rights reserved. Published 22 February 2013. Printed in the United States of America.

    IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and ElectronicsEngineers, Incorporated.

    PDF: ISBN 978-0-7381-8132-5 STD98087Print: ISBN 978-0-7381-8133-2 STDPD98087

    IEEE prohibits discrimination, harassment and bullying. For more information, visithttp://www.ieee.org/web/aboutus/whatis/policies/p9-26.html.No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permissionof the publisher.

  • 8/13/2019 IEEE_C57 19 100-2012

    5/42

    Notice and Disclaimer of Liability Concerning the Use of IEEE Documents : IEEE Standards documents are developedwithin the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA)Standards Board. IEEE develops its standards through a consensus development process, approved by the American NationalStandards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product.Volunteers are not necessarily members of the Institute and serve without compensation. While IEEE administers the processand establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, orverify the accuracy of any of the information or the soundness of any judgments contained in its standards.

    Use of an IEEE Standard is wholly voluntary. IEEE disclaims liability for any personal injury, property or other damage, ofany nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the

    publication, use of, or reliance upon any IEEE Standard document.

    IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and expressly disclaimsany express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or thatthe use of the material contained in its standards is free from patent infringement. IEEE Standards documents are supplied "AS

    IS."

    The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, orprovide other goods and services related to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time astandard is approved and issued is subject to change brought about through developments in the state of the art and commentsreceived from users of the standard. Every IEEE standard is subjected to review at least every ten years. When a document ismore than ten years old and has not undergone a revision process, it is reasonable to conclude that its contents, although still ofsome value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the

    latest edition of any IEEE standard.

    In publishing and making its standards available, IEEE is not suggesting or rendering professional or other services for, or on

    behalf of, any person or entity. Nor is IEEE undertaking to perform any duty owed by any other person or entity to another.Any person utilizing any IEEE Standards document, should rely upon his or her own independent judgment in the exercise ofreasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining theappropriateness of a given IEEE standard.

    Translations: The IEEE consensus development process involves the review of documents in English only. In the event thatan IEEE standard is translated, only the English version published by IEEE should be considered the approved IEEE standard.

    Official Statements: A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards BoardOperations Manual shall not be considered the official position of IEEE or any of its committees and shall not be considered to

    be, nor be relied upon as, a formal position of IEEE. At lectures, symposia, seminars, or educational courses, an individualpresenting information on IEEE standards shall make it clear that his or her views should be considered the personal views ofthat individual rather than the formal position of IEEE.

    Comments on Standards: Comments for revision of IEEE Standards documents are welcome from any interested party,regardless of membership affiliation with IEEE. However, IEEE does not provide consulting information or advice pertainingto IEEE Standards documents. Suggestions for changes in documents should be in the form of a proposed change of text,together with appropriate supporting comments. Since IEEE standards represent a consensus of concerned interests, it isimportant to ensure that any responses to comments and questions also receive the concurrence of a balance of interests. Forthis reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instantresponse to comments or questions except in those cases where the matter has previously been addressed. Any person whowould like to participate in evaluating comments or revisions to an IEEE standard is welcome to join the relevant IEEEworking group at http://standards.ieee.org/develop/wg/ .

    Comments on standards should be submitted to the following address:

    Secretary, IEEE-SA Standards Board445 Hoes LanePiscataway, NJ 08854-4141USA

    Photocopies: Authorization to photocopy portions of any individual standard for internal or personal use is granted by TheInstitute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center.To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive,Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educationalclassroom use can also be obtained through the Copyright Clearance Center.

  • 8/13/2019 IEEE_C57 19 100-2012

    6/42

    ivCopyright 2013 IEEE. All rights reserved.

    Notice to users

    Laws and regulations

    Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with

    the provisions of any IEEE Standards document does not imply compliance to any applicable regulatoryrequirements. Implementers of the standard are responsible for observing or referring to the applicable

    regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not

    in compliance with applicable laws, and these documents may not be construed as doing so.

    Copyrights

    This document is copyrighted by the IEEE. It is made available for a wide variety of both public and

    private uses. These include both use, by reference, in laws and regulations, and use in private self-

    regulation, standardization, and the promotion of engineering practices and methods. By making thisdocument available for use and adoption by public authorities and private users, the IEEE does not waive

    any rights in copyright to this document.

    Updating of IEEE documents

    Users of IEEE Standards documents should be aware that these documents may be superseded at any timeby the issuance of new editions or may be amended from time to time through the issuance of amendments,

    corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the

    document together with any amendments, corrigenda, or errata then in effect. In order to determine whether

    a given document is the current edition and whether it has been amended through the issuance of

    amendments, corrigenda, or errata, visit the IEEE-SA Website at http://standards.ieee.org/index.html or

    contact the IEEE at the address listed previously. For more information about the IEEE StandardsAssociation or the IEEE standards development process, visit the IEEE-SA Website at

    http://standards.ieee.org/index.html.

    Errata

    Errata, if any, for this and all other standards can be accessed at the following URL:

    http://standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for errata

    periodically.

  • 8/13/2019 IEEE_C57 19 100-2012

    7/42

    vCopyright 2013 IEEE. All rights reserved.

    Patents

    Attention is called to the possibility that implementation of this standard may require use of subject matter

    covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to

    the existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant

    has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on theIEEE-SA Website http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may

    indicate whether the Submitter is willing or unwilling to grant licenses under patent rights without

    compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of

    any unfair discrimination to applicants desiring to obtain such licenses.

    Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not

    responsible for identifying Essential Patent Claims for which a license may be required, for conducting

    inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or

    conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing

    agreements are reasonable or non-discriminatory. Users of this standard are expressly advised thatdetermination of the validity of any patent rights, and the risk of infringement of such rights, is entirely

    their own responsibility. Further information may be obtained from the IEEE Standards Association.

  • 8/13/2019 IEEE_C57 19 100-2012

    8/42

    viCopyright 2013 IEEE. All rights reserved.

    Participants

    At the time this guide was submitted to the IEEE-SA Standards Board for approval, the Guide forApplication of Power Apparatus Bushings Working Group had the following membership:

    Thomas Spitzer,Chair

    Jesse Patton, Vice Chair

    Carlo ArpinoRay BartnikasJeffrey Benach

    Gene BlackburnJohn BrafaFlorian Costa

    John CrouseLarry DavisArturo Del RioLonnie Elder

    Fred ElliottKeith EllisMary Foster

    Charles GarnerJoseph GarzaJohn Graham

    Roger HayesChungduck KoReiner KrumpMario Locarno

    Van Nhi Nguyen

    Leslie RecksiedlerRandolph RensiDevki Sharma

    Craig SteigemierJohn SteinJane Vermer

    Eric WeatherbeeMichael WilliamsShibao ZhangPeter Zhao

    The following members of the individual balloting committee voted on this guide. Balloters may have

    voted for approval, disapproval, or abstention.

    Mohamed Abdel KhalekStephen AntoszCarlo ArpinoPeter Balma

    Robert BarnettBarry BeasterJeffrey BenachW. (Bill) J. Bergman

    Wallace BinderThomas Blackburn

    W. BoettgerJohn Brafa

    William BushArvind K. Chaudhary

    Bill ChiuRobert ChristmanKurt ClementeJerry Corkran

    John CrouseWillaim DarovnyGary DonnerFred Elliott

    Keith EllisGary EngmannJames FairrisJorge Fernandez Daher

    Patrick Fitzgerald

    Joseph FoldiMarcel FortinRobert Ganser

    Charles GarnerSaurabh GhoshDavid Giegel

    David GilmerJalal GohariEdwin GoodwinJames Graham

    William Griesacker

    Randall C. GrovesBal GuptaCharles HandDavid Harris

    Roger HayesLee HerronGary HeustonGary Hoffman

    Philip HopkinsonJohn Kay

    Gael KennedySheldon Kennedy

    Joseph L. KoepfingerJim Kulchisky

    Saumen KunduJohn LackeyChung-Yiu LamHua Liu

    Albert LivshitzThomas LundquistGreg LuriRichard Marek

    J. Dennis MarlowLee MatthewsAndrew McNultyGeorges Montillet

    Jerry Murphy

    Ryan MusgroveK. R. M. NairArthur Neubauer

    Michael S. NewmanJoe NimsTed Olsen

    Lorraine PaddenBansi PatelShawn PattersonJesse Patton

    Brian Penny

    Paul PillitteriAlvaro PortilloLewis PowellIulian Profir

    Reynaldo RamosJean-Christophe RiboudJohannes RickmannJohn Roach

    Michael RobertsJohn Rossetti

    Marnie RoussellThomas Rozek

    Daniel SauerBartien Sayogo

    Devki SharmaGil ShultzJames SmithJeremy Smith

    Jerry SmithBrian SparlingThomas SpitzerGary Stoedter

    John VergisJane VernerLoren WagenaarDavid Wallach

    Barry Ward

    Joe WatsonEric WeatherbeePeter Werelius

    Kenneth WhiteWael YoussefJian Yu

    Matthew ZeedykShibao ZhangPeter ZhaoXi Zhu

    Waldemar Ziomek

  • 8/13/2019 IEEE_C57 19 100-2012

    9/42

    viiCopyright 2013 IEEE. All rights reserved.

    When the IEEE-SA Standards Board approved this guide on 5 December 2012, it had the following

    membership:

    Richard H. Hulett,ChairJohn Kulick

    ,Vice ChairRobert Grow,Past Chair

    Konstantinos Karachalios,Secretary

    Satish AggarwalMasayuki AriyoshiPeter BalmaWilliam Bartley

    Ted BurseClint ChaplinWael Diab

    Jean-Philippe Faure

    Alexander GelmanPaul HouzJim HughesYoung Kyun Kim

    Joseph L. Koepfinger*David J. LawThomas Lee

    Hung Ling

    Oleg LogvinovTed OlsenGary RobinsonJon Walter Rosdahl

    Mike SeaveyYatin TrivediPhil Winston

    Yu Yuan

    *Member Emeritus

    Also included are the following nonvoting IEEE-SA Standards Board liaisons:

    Richard DeBlasio,DOE RepresentativeMichael Janezic,NIST Representative

    Patrick GibbonsIEEE Standards Program Manager, Document Development

    Erin SpiewakIEEE Standards Program Manager, Technical Program Development

  • 8/13/2019 IEEE_C57 19 100-2012

    10/42

  • 8/13/2019 IEEE_C57 19 100-2012

    11/42

    ixCopyright 2013 IEEE. All rights reserved.

    Contents

    1. Overview .................................................................................................................................................... 11.1 Scope ................................................................................................................................................... 11.2 Purpose ................................................................................................................................................ 1

    2. Normative references .................................................................................................................................. 23. Definitions .................................................................................................................................................. 24. Thermal loading above nameplate rating for bushings applied on power transformers ............................. 3

    4.1 General ................................................................................................................................................ 34.2 Temperature calculations for short-time loads above bushing rating .................................................. 54.3 Test procedures for derivation of mathematical model ....................................................................... 8

    5. Special considerations for application of bushings to power transformers ............................................... 115.1 General .............................................................................................................................................. 115.2 Loading of bushings with transformer top oil temperature rises between 55 C and 65 C .............. 115.3 Application of bushings in transformers with conservator oil preservation systems ......................... 125.4 Draw-lead application ........................................................................................................................ 125.5 Draw-rod application ......................................................................................................................... 13

    6. Thermal loading for bushings applied on circuit breakers ........................................................................ 137. Thermal loading for bushings used with isolated-phase bus .................................................................... 13

    7.1 Concerns for bushings used in isolated-phase bus ............................................................................. 137.2 Thermal coordination between the bushings and the isolated-phase bus ........................................... 14

    8. Allowable line pull (cantilever loading) ................................................................................................... 148.1 General (transformers and circuit breakers) ...................................................................................... 148.2 Mounting angles greater than 20 ...................................................................................................... 148.3 Circuit breaker applications ............................................................................................................... 15

    9. Application of bushings in unusual service conditions ............................................................................. 159.1 Contaminated environments .............................................................................................................. 159.2 High altitudes ..................................................................................................................................... 189.3 Application of outdoor bushings in indoor locations ......................................................................... 189.4 Bushing monitors ............................................................................................................................... 18

    10. Bushing maintenance practices .............................................................................................................. 1810.1 Mechanical maintenance and inspection ......................................................................................... 1810.2 Bushing repair .................................................................................................................................. 2010.3 Routine and special tests .................................................................................................................. 2110.4 Bushing storage ............................................................................................................................... 2310.5 Bushing replacement ....................................................................................................................... 24

    11. Checklist ................................................................................................................................................. 25Annex A (informative) Examples of calculation procedures to determine hot-spot temperatures for

    bushings applied on transformers ................................................................................................................. 26Annex B (informative) Bibliography............................................................................................................ 30

  • 8/13/2019 IEEE_C57 19 100-2012

    12/42

  • 8/13/2019 IEEE_C57 19 100-2012

    13/42

    1Copyright 2013 IEEE. All rights reserved.

    IEEE Guide for Application of PowerApparatus Bushings

    IMPORTANT NOTICE: IEEE Standards documents are not intended to ensure safety, health, or

    environmental protection, or ensure against interference with or from other devices or networks.

    Implementers of IEEE Standards documents are responsible for determining and complying with all

    appropriate safety, security, environmental, health, and interference protection practices and allapplicable laws and regulations.

    This IEEE document is made available for use subject to important notices and legal disclaimers.

    These notices and disclaimers appear in all publications containing this document and may

    be found under the heading Important Notice or Important Notices and Disclaimers

    Concerning IEEE Documents. They can also be obtained on request from IEEE or viewed at

    http://standards.ieee.org/IPR/disclaimers.html.

    1. Overview

    1.1 Scope

    Guidance on the use of outdoor power apparatus bushings is provided in this document. The bushings are

    limited to those built in accordance with IEEE Std C57.19.00TM-1991 (not the latest revision).1The latest

    revision, IEEE Std C57.19.00TM-2004, does not address the use of condenser bushings in oil circuit breakers

    and several voltage classes were dropped that are still in use.

    1.2 Purpose

    The purpose of this guide is to present general information and recommendations for the application of

    power apparatus bushings when incorporated as part of power transformers, power circuit breakers, andisolated-phase bus. The loading model developed in this guide is based on oil-impregnated, paper-

    insulated, capacitance-graded bushings. Similar loading models could be developed for other bushingconstructions.

    1Information about references can be found in Clause2.

  • 8/13/2019 IEEE_C57 19 100-2012

    14/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    2Copyright 2013 IEEE. All rights reserved.

    2. Normative references

    The following referenced document is indispensable for the application of this document (i.e., it must beunderstood and used, so each referenced document is cited in text and its relationship to this document is

    explained). For dated references, only the edition cited applies. For undated references, the latest edition of

    the referenced document (including any amendments or corrigenda) applies.

    IEEE Std 4TM, IEEE Standard Techniques for High-Voltage Testing.2,3

    IEEE Std C37.010TM, IEEE Application Guide for AC High-Voltage Circuit Breakers Rated on a

    Symmetrical Current Basis (including Supplement IEEE Std C37.010d).

    IEEE Std C37.017TM, IEEE Standard for Bushings for High Voltage [over 1000V(ac)] Circuit Breakers and

    Gas-Insulated Switchgear.

    IEEE Std C37.23TM, IEEE Standard for Metal-Enclosed Bus and Calculating Losses in Isolated-Phase Bus.

    IEEE Std C57.12.00TM, IEEE Standard for General Requirements for Liquid-Immersed Distribution, Power,

    and Regulating Transformers.

    IEEE Std C57.19.00TM-1991, IEEE General Requirements and Test Procedures for Outdoor Apparatus

    Bushings.

    IEEE Std C57.19.00TM-2004, IEEE General Requirements and Test Procedures for Power Apparatus

    Bushings.

    IEEE Std C57.19.01TM, IEEE Standard Performance Characteristics and Dimensions for Outdoor Apparatus

    Bushings.

    IEEE Std C57.91TM, IEEE Guide for Loading Mineral-Oil-Immersed Transformers.

    3. Definitions

    For the purposes of this document, the following terms and definitions apply. The IEEE StandardsDictionary Onlineshould be consulted for terms not defined in this clause. 4

    For definitions of terms used in this standard, also see IEEE Std C57.19.00-1991.

    draw-lead bushing:A bushing that will allow the use of a current-carrying draw-lead conductor drawn

    through the hollow tube and enabling its connection to the top terminal.

    draw-lead conductor:A cable or a solid conductor that has one end connected to the transformer or areactor winding lead and the other end drawn through the bushing hollow tube and connected to the top

    terminal of the bushing. A solid conductor can be either one piece or multiple pieces connected together.

    draw-rod:A non-current-carrying rod (current is carried by the bushing tube) that has one end connectedto the transformer/reactor lead end terminal and the other end drawn through the bushing hollow tube and

    connected to the top end of the bushing. A draw-rod can be either one piece or multiple pieces connected.

    2This publication is available from The Institute of Electrical and Electronics Engineers (http://standards.ieee.org/).3The IEEE standards or products referred to in this clause are trademarks of The Institute of Electrical and Electronics Engineers, Inc.4 IEEE Standards Dictionary Online subscription is available at: http://www.ieee.org/portal/innovate/products/standard/standards_dictionary.html.

  • 8/13/2019 IEEE_C57 19 100-2012

    15/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    3Copyright 2013 IEEE. All rights reserved.

    draw-rod bushing:A bushing that allows the use of a non-current-carrying rod drawn through the hollow

    tube and enabling a connection between the bushings inboard end terminal and the transformer or reactor

    winding lead.

    4. Thermal loading above nameplate rating for bushings applied on powertransformers

    4.1 General

    The thermal loading capability of bushings varies with the way they are loaded, the way they are designed,and the ambient conditions in which they are applied.

    4.1.1 Basis of rating and rationalization of thermal requirements rating

    Capacitance-graded, paper-insulated bushings that, at rated current, meet the requirements of

    IEEE Std C57.19.00-1991 and earlier versions of that standard may be applied in either 55 C or 65 C risetransformers. IEEE Std C57.19.00-1991 states that the temperature of the oil in which the lower end of the

    bushing is immersed shall not exceed 95 C when averaged over a 24 h period. Refer to IEEE Std C57.91TMfor loading requirements and operating oil temperatures of power transformers.

    4.1.1.1 Operation above normal temperature

    When operating a bushing at rated current in conjunction with a 65 C average winding rise rated

    transformer, the hottest-spot temperature of the bushing is limited to a 65 C rise over ambient or a 105 C

    total temperature because of the use of temperature index 105 insulating paper for the bushing condenser. If

    it should be determined that a transformer develops a top oil rise of 65 C at rated current when operatingin a 40 C ambient, then the hottest-spot temperature of the bushing can be expected to exceed 105 C. In

    addition, transformers can be expected to have bushing temperatures above 105 C when loaded inaccordance with IEEE Std C57.91.

    In each instance, the normal life expectancy of the bushing will be shortened by the higher operating

    temperatures. The loss-of-life of a bushing will, like transformers, be a function of the actual temperatureand the time operating at that temperature.

    The severity of loss-of-life in a bushing can be minimized by installing bushings that have nameplate

    ratings greater than the transformer current ratings or by using bushings with special high-temperature

    insulation. An alternative is to operate the bushing with the higher inherent temperatures and accept a

    moderate degree of accelerated aging, as it is presently recognized for transformers.

    4.1.1.2 Factors influencing bushing aging

    There are several factors that tend to decrease the severity of bushing aging. These are as follows:

    a) The top oil rise of many transformers is significantly below 65 C when the transformer is operatedat nameplate loading. This is most likely to occur on forced oil-cooled (OFAF or ODAF)transformers.

    b) Bushings are totally sealed from the atmosphere at the time of manufacture, thus preserving theirdielectric and thermal integrity.

  • 8/13/2019 IEEE_C57 19 100-2012

    16/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    4Copyright 2013 IEEE. All rights reserved.

    c) Bushing insulation is generally processed to a greater degree of dryness than transformer insulation,thus providing a lower power factor, lower dielectric losses, and consequently prolonged life at any

    temperature.

    d) The end-of-life of cellulose insulation in transformers may be governed by its ability to withstandmechanical forces that are associated with fault currents through the transformers. Celluloseinsulation in bushings is not subjected to similar forces.

    e) Although end-of-life of insulating materials is typically based on a given change in mechanical orchemical properties, no similar relationship for dielectric characteristics has been established.

    However, considering increased insulation power factor and capacitance as important criteria, well-

    dried bushing cellulose material is probably equal in life expectancy to thermally upgraded (65 C)

    transformer insulation.

    f) The use of bushings with current ratings greater than the transformer current ratings as described in4.1.1.1 reduces the temperature rise inside the bushing at rated transformer current.

    4.1.2 Overload concerns

    When a bushing is loaded above nameplate, it is exposed to the risks described in4.1.2.1 through4.1.2.5.

    4.1.2.1 Pressure buildup

    When load current through a bushing exceeds the nameplate rating, internal pressures can develop that

    could cause one or more of the sealing gaskets to leak or fail. This pressure increase is caused by the

    expansion of the insulating oil within the bushing. The rate of oil expansion is normally considered to beapproximately 0.0725% to 0.0755% per C temperature increase for temperatures ranging from 0 C to

    100 C.

    4.1.2.2 Gasket seals

    Gasket materials will age according to the temperature adjacent to the gasket surface and the duration at

    that temperature. Usually gaskets will perform well at elevated temperatures; however, progressive changesin physical properties will occur when excessive temperatures are maintained for long durations. Thesechanges could result in loss of seal and consequent loss of dielectric strength. Therefore, repeated

    occurrences at high temperature will require inspection for oil leaks and corrective actions where necessary.

    4.1.2.3 Power factor and capacitance

    There are many reasons why insulation power factor and/or capacitance may increase over the life of a

    bushing. In fact, some slight increase of power factor can be tolerated. However, degradation of that

    portion of the insulation that operates at greatly elevated temperature could result in a substantial increasein power factor. An unusual increase in power factor may become an indicator of the detrimental

    mechanical and electrical effects of loading beyond nameplate rating. Bushings that have been loaded

    beyond nameplate rating should be tested more frequently.

    4.1.2.4 Dielectric performance at elevated temperatures

    When bushing insulation is subjected to high electrical stress at above its normal operating temperatures,the insulation power factor increases due to increased dielectric loss. When the increase in dielectric loss

    exceeds the ability of the insulation to dissipate this increased loss, the temperature of the dielectric is

  • 8/13/2019 IEEE_C57 19 100-2012

    17/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    5Copyright 2013 IEEE. All rights reserved.

    further increased. Under some extreme conditions, thermal runaway may occur. This risk should be

    considered when the guide is applied.

    Special capacitance-graded bushings built with insulation systems such as thermally upgraded paper or

    resin impregnated paper, rated higher than temperature index 105 insulation class, are sometimes used.

    These insulation systems may have higher power factors particularly at higher temperatures and may

    experience thermal runaway if loaded significantly beyond the nameplate rating. For specific information,the manufacturer should be contacted.

    4.1.2.5 Stray magnetic flux

    Additional heating may occur in bushings placed in the magnetic field of the windings and leads. The

    heating can result from the eddy current flowing in the metallic portions of the bushing below the mounting

    flange. The magnetic flux will increase with the load current.

    Magnetic fields can create high eddy current losses in tanks, flanges, and bus enclosures during overload

    conditions, causing them to reach high temperatures. High temperatures of the part itself may not be ofconcern, but the heat may transfer to the bushing causing high-temperature bushing concerns.

    4.2 Temperature calculations for short-time loads above bushing rating

    The hottest-spot temperature of a bushing is of importance when it is loaded under various conditions. The

    five key elements that affect the bushing hottest spot are the bushing current, the ambient air temperature,the surrounding oil temperature, the air-end-connection temperature, and the oil-end-connection

    temperature. Easley and McNutt [B3]5gave an expression that contains each of these elements.

    Accurate information about the end-connection temperatures and coefficients is usually not available.

    Therefore, this guide uses a more conservative method that requires information only about the bushing

    current, the ambient air temperature, and the surrounding oil temperature to calculate the bushing hottest-spot temperature.

    This method was developed from experimental data for bushings with no appreciable dielectric losses and

    no cooling ducts. Three constants are determined as described in4.3.3.These constants are then used to

    estimate the steady-state and transient bushing hottest-spot temperatures. Mathematical models for

    bushings with appreciable dielectric losses and/or with cooling ducts may be developed in the future and

    could be used in the same manner.

    4.2.1 Steady-state hottest-spot temperature calculations

    The steady-state temperature rise at the hottest spot of the conductor for bottom connected bushings with

    no appreciable dielectric losses and no cooling ducts is estimated withEquation (1):

    HS 1 2 0

    nK I K = + (1)

    where

    HS

    is the steady-state bushing hottest-spot rise over ambient (C)

    0 is the steady-state immersion oil rise over ambient (C) (transformer top oil rise)

    5The numbers in brackets correspond to those of the bibliography inAnnex B.

  • 8/13/2019 IEEE_C57 19 100-2012

    18/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    6Copyright 2013 IEEE. All rights reserved.

    I is the per unit load current based on bushing rating

    n,K1, andK2 are constants that can be determined as described in4.3

    Typical values of K1 range from 15 to 32. Typical values of K2 range from 0.6 to 0.8. The exponent n

    generally ranges between 1.6 and 2.0, with 1.8 being the most common value.

    When a bushing is operated in the draw-lead mode, the thermal performance is dominated by an integralpart of the transformer that is inserted through the tube of the bushing. This lead is not an integral part of

    the bushing, so the thermal performance cannot be directly related to a specific design of bushing that may

    also be operated in other transformers with different size draw leads.

    The temperature of the hottest spot of the conductor, when operated in the draw-lead mode, may be

    determined in the same manner, withIbeing the per unit load current of the draw lead.

    4.2.2 Transient hottest-spot temperature calculations

    After changes in load current or ambient temperature occur, both the immersion oil temperature and

    bushing hottest-spot temperature will change with time from the initial to the final value in an exponential

    manner. Therefore, it is necessary to determine the initial and final transformer top oil temperature and therate of change by the procedures established in IEEE Std C57.91. After the changed per unit current I, the

    transformer top oil rise 0, and the transformer top oil time constant ot have been established, the

    transient response of the bushing may be determined usingK1,K2, n, and the bushing time constant t.

    K1,K2, and nare the same constants and exponent used for the steady-state bushing calculations.

    The bushing time constant tois the length of time required for the temperature change to reach 63.2% of the

    final temperature change.

    4.2.2.1 Iterative method

    One method is to simulate the exponential rise by making a series of repeated calculations of the bushing

    hottest-spot temperature rise in successive time increments following steps AF.

    where

    T is the elapsed time of the transient load (minutes)

    t is the an arbitrary time increment to divide the elapsed time of the transient load

    into steps for calculation (minutes)

    t1 is the initial time at start of an increment (minutes)

    t2 is the time when transformer oil 0reaches practical equilibrium (minutes)

    is the bushing time constant (minutes)

    o is the oil time constant of transformer (minutes)

    HS(t1) is the bushing hottest-spot temperature rise at time t1(C)HS(t2) is the ultimate bushing hottest-spot temperature rise as calculated from the steady-

    stateEquation (1)

    For the new load (C)

    HS(T) is the bushing hottest-spot temperature rise at the end of the transient load period

    or

    HS(T) = HS(t1+t) (C)

    O(t1) is the immersion oil temperature rise as determined for time t1(C)

  • 8/13/2019 IEEE_C57 19 100-2012

    19/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    7Copyright 2013 IEEE. All rights reserved.

    O(t2) is the ultimate immersion oil temperature rise as determined from

    IEEE Std C57.91 for the new load conditions that apply during the transient load

    (C)

    O(t1 + t) is the new immersion oil temperature rise at end of time increment t1+ t, (C),

    as calculated in Equation (2):

    ( ) ( ) ( ) ( ) ( )0/0 1 0 1 0 2 0 1 1 t

    t t t t t e + = + (2)

    HS

    (t1+t) is the new bushing hottest-spot temperature rise at end of

    time increment t1+ t, (C), as calculated in Equation (3):

    ( ) ( ) ( ) ( ) 0( / )HS 1 HS 1 HS 2 HS 1 1t

    t t t t t e + = + (3)

    Step A: Determine initial bushing hottest-spot temperature rise at start of first increment, HS(t1) fromEquation (1) for prior per unit loadIand O(t1).

    Step B: Determine new transformer immersion oil temperature rise at end of first increment,O(t1+ t) fromEquation (2).

    Step C: Determine the new ultimate bushing hottest-spot rise HS (t2) for the conditions that

    apply from Equation (1) using O(t1+ t) from step B.

    Step D: Calculate the new transient bushing hottest-spot rise HS(t1+t) at the end of the timeincrement fromEquation (3) using HS(t1) and HS (t2) from steps A and C.

    Step E: Use this new transient bushing hottest-spot rise HS (t1+t) as the new HS (t1) forinput to the subsequent incremental step.

    Step F: Repeat the incremental procedure of Steps AE until the end of the transient load period(t = T).

    See the example inFigure 1.

  • 8/13/2019 IEEE_C57 19 100-2012

    20/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    8Copyright 2013 IEEE. All rights reserved.

    Figure 1 Bushing hottest-spot transient response

    4.2.2.2 Single step method

    A simpler but less precise method is to make a single step calculation using Equation (4).This method

    yields a higher bushing hottest-spot temperature and therefore can be considered more conservative thanthe method in4.2.2.1.

    ( ) ( ) ( ) ( ) ( )( )( ) ( ){ }{ }0( / ) ( / )HS HS 1 1 2 0 1 0 2 0 1 HS 1 1 1n T T t T t K I K t t t e t e = + + + (4)

    4.3 Test procedures for derivation of mathematical model

    When performance is to be determined by test, it is highly desirable that a uniform procedure be followed

    so that data may be accumulated on a consistent basis. These procedures are in no way to be construed as a

    mandatory design test for all bushings.

  • 8/13/2019 IEEE_C57 19 100-2012

    21/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    9Copyright 2013 IEEE. All rights reserved.

    4.3.1 Procedure for performance testing of bottom-connected bushings

    This procedure applies to bushings that comply with Table 3 through Table 6 of IEEE Std C57.19.01TM.

    a) Prepare the test unit by installing thermocouples on each terminal and in at least four locations

    not more than 762 mm (30 in) apart on the center conductor. The thermocouples may beattached directly to the outside of the conductor by removing portions of the insulation, or the

    thermocouples may make contact with the inside of a hollow conductor by means of a phosphor

    bronze thermocouple brush. The thermocouple leads may be threaded through the bottom end ofa hollow center conductor, through a small hole in the top terminal, or brought out at some

    convenient location above the internal oil level.

    b) Install a pressure gage in such a way that the additional gas space of the gage and connectionswill not exceed 0.5% of the normal gas space. Seal the test unit with the gas chamber chargedwith the proper gas at the sealing pressure. If the thermocouple connections of item a) have

    disturbed the sealing characteristics of the test unit, then a duplicate unit may be prepared for

    pressure monitoring. If the test tank is of sufficient size to avoid proximity effects, then the

    pressure unit may be mounted adjacent to and connected in series with the test unit. As analternative, the pressure unit may be tested separately.

    c) Mount the bushing on a suitable nonmagnetic metal plate that complies with the minimum sizetab calculated as follows:

    Bushing mounting plate

    bolt circle

    Cover plate size

    (square or round)

    Thickness

    (in) (mm) (in) (mm) (in) (mm)6 to 9 1/4 152 to 235 18 457 6.4

    13 to 15 337 to 400 24 610 1321 to 25 530 to 635 36 914 5/8 16

    d) Attach oil-end terminal connectors suitable for the rated current.

    e) Attach air-end terminal connectors suitable for the rated current.

    f) Attach air-end bus at least 1 m (3 ft) long, projecting from the terminal connector in a horizontalplane. The cross section of the bus should be such that at rated current the temperature rise at a

    location 1 m (3 ft) from the bushing should be at least 30 C above ambient.

    g) Attach thermocouples to the bus work connectors, mounting plate, and exterior of the bushing.

    h) Mount the bushing so that the oil level complies with either 5.4.1 of IEEE Std C57.19.00-1991or the level required in the actual bushing application after the steady-state test tank oil

    temperature has been achieved.

    i) Heat and circulate the oil to maintain a minimum vertical temperature gradient over the bushingimmersion depth without oil flow being directed at the test bushing.

    j) The ambient environment should be indoor air between 10 C and 40 C.

    k) Make load tests, as required, for obtaining the data necessary for a good statistical basis for a

    bushing mathematical model. Some suggested conditions are as follows:

    I o

    Current (pu) Oil rise (C)

    0.0 55

    0.7 55

    1.0 55

    1.25 55

  • 8/13/2019 IEEE_C57 19 100-2012

    22/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    10Copyright 2013 IEEE. All rights reserved.

    I o

    Current (pu) Oil rise (C)

    0.0 70

    1.0 70

    1.5 70

    2.0 70

    l) Record temperatures at appropriate intervals until the thermal conditions become constant or untilthe measured temperatures do not increase by more than 1 C for 2 h for bushings up through

    900 kV basic insulation level (BIL) and not more than 1 C for 4 h for bushings 1050 kV BIL and

    above.

    m) Report initial and final values of conductor hottest-spot rise, top and bottom terminal connectorrises, and increase in pressure. Also report the bushing time and temperature readings.

    4.3.2 Tests on draw-lead bushings

    When the thermal performance of a bushing with aspecific transformer lead is to be determined by test, a

    procedure similar to the applicable portions of 4.3.1 may be followed.

    4.3.3 Derivation of model constants

    Nominal values of theK1,K2, and nconstants can be determined as follows:

    a) Obtain a steady-state temperature profile at rated current with the bottom end immersed in hotoil by the procedure discussed in 4.3.1. This establishes

    o(I= 1 pu) and

    HS(I= 1 pu).

    b) Reduce the current to zero and determine the steady-state temperature of the location that wasthe hottest spot at rated current. This establishes o(I= 1 pu) and HS(I= 0 pu).

    c) The constantsK1andK2can be calculated usingEquation (5) and Equation (6):

    ( ) ( )2 HS o 0 pu / 0 puK I I= = = (5)

    ( ) ( )1 HS 2 o 1 pu [ 1 pu ]K I K I= = = (6)

    d) The exponent ncan be calculated from additional tests usingEquation (7):

    ( )] [ ( ) ( )HS 2 o 1[1/ ln pu ln{ pu pu ] / }n I X I X K I X K = = = = (7)

    whereXis the per unit value of the current.

    e) The bushing time constant can be determined by analysis of the timetemperature curves fromthe tests.

    Additional tests as recommended in item k) in 4.3.1 will confirm the nominal values of constants K1,K2,and nor give additional data to refine the estimates by graphical or statistical means.

  • 8/13/2019 IEEE_C57 19 100-2012

    23/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    11Copyright 2013 IEEE. All rights reserved.

    5. Special considerations for application of bushings to powertransformers

    5.1 General

    The temperature limits of bushings applied to power transformers can be exceeded by the transfer of heatfrom transformer components and accessories. If the thermal coordination of these sources is not correct,

    then the bushing hottest-spot temperature may exceed 105 C. The result may be accelerated aging. An

    additional concern is that the higher temperatures may deteriorate sealing gaskets. Potential sources of heattransferred to the bushing include the following:

    a) Operation of bushings in transformers with top oil temperature rise greater than 55 C

    b) Increased transfer of heat into the bushing from top oil in transformers with conservator oilpreservation systems

    c) Improper thermal coordination of isolated-phase bus equipment (see Clause7)

    d) Stray flux heating in the flange and other metallic bushing parts

    5.2 Loading of bushings with transformer top oil temperature rises between 55 Cand 65 C

    If a transformer has a top oil temperature rise greater than 55 C but less than or equal to 65 C, then a

    bushing with a higher nameplate current rating than the transformer current rating may be applied by using

    an appropriate derating factor. If the bushing thermal constants are known, then the derated currentIdmay

    be determined from the following:

    Id= dIr (8)

    where

    Id is the derated current at new transformer top oil temperature rise o

    d is the [(65 K2 o) /K1]1/n

    Ir is the bushing current rating

    K1,K2, and n are as defined in4.2 and4.3

    If the bushing thermal constants are not known, then the curve in Figure 2, derived by setting K1= 21,

    K2= 0.8, and n= 1.6 inEquation (8),may be used to determine itemd) in5.1.

  • 8/13/2019 IEEE_C57 19 100-2012

    24/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    12Copyright 2013 IEEE. All rights reserved.

    Figure 2 Bushing current derating factor for transformer top oil temperature risesbetween 55

    C and 65

    C

    5.3 Application of bushings in transformers with conservator oil preservationsystems

    IEEE Std C57.19.00-1991 establishes bushing current ratings based on thermal tests run with the lower endof the bushing immersed to the minimum oil level, normally the bottom of the ground sleeve. When

    bushings are applied to transformers with conservator oil preservation systems, the bushing lower end is

    totally immersed in oil. If the transformer top oil temperature is higher than the bushing internal

    temperature, then additional heat from the transformer oil will transfer into the bushing reducing its

    current-carrying capability. Consult the bushing manufacturer for appropriate derating factors for these

    applications.

    5.4 Draw-lead application

    The following guidelines can be used when bushings are used in a draw-lead application mode.

    5.4.1 Bushing current rating

    The maximum continuous current rating of the bushing in the draw-lead mode is limited to the rating

    specified on the bushing nameplate. The maximum continuous current rating of the draw-lead cable is

    determined by the size and type of the cable supplied by the transformer manufacturer. Since the draw-lead

    cable is an integral part of the transformer, the current rating specified on the transformer nameplate

  • 8/13/2019 IEEE_C57 19 100-2012

    25/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    13Copyright 2013 IEEE. All rights reserved.

    determines the rating of the draw-lead cable. When the bushing manufacturer supplies the draw-lead

    conductor as part of the bushing, the current is limited to the rating specified on the bushing nameplate.

    5.4.2 Draw-lead cable/bushing loading

    The current-carrying capacity of the draw lead cable is determined by the size and type of the cable used bythe transformer manufacturer. The current is limited to the rating specified on the transformer nameplate.

    When applying bushings in the draw-lead mode, the bushing manufacturer should be consulted for

    guidelines on draw-lead sizes, ratings, and loading. To minimize cable insulation loss of life during

    overloads, it would be preferable to choose a cable with current rating of at least 20% above the ratedcurrent of the transformer. If higher overloads are anticipated, then cables with even greater margin should

    be considered.

    Although specific guidelines should be obtained from bushing or transformer manufacturers, following

    general guidelines can be used for rating draw-lead cables with thermally upgraded 65 C insulation.

    Maximum ambient 40 C

    Maximum cable hottest-spot temperature rise above ambient air at rated current 80 C

    Maximum cable hottest-spot temperature rise above ambient air under overload condition100 C

    The 80 C rise limit agrees with the maximum winding hottest-spot temperature rise for 65 C rise

    transformers as per IEEE Std C57.12.00.

    The 100 C hottest-spot temperature rise limit is based on maximum oil temperature of 140 C withmaximum ambient air temperature of 40 C. Operation at hottest-spot temperature above 140 C may result

    in gassing of oil/paper insulation.

    Because it is not possible to detect the absolute hottest spot in the cable, it is prudent to keep temperatures

    below these maximums.

    5.5 Draw-rod application

    In a draw-rod bushing, the load current is carried mainly by the bushing central tube. The thermal

    characteristics of such a bushing are essentially the same as a conventional bushing.

    6. Thermal loading for bushings applied on circuit breakers

    Bushings applied on power circuit breakers will be subject to the requirements in IEEE Std C37.010TMand

    IEEE Std C37.017TM.

    7. Thermal loading for bushings used with isolated-phase bus

    7.1 Concerns for bushings used in isolated-phase bus

    Bushings used with isolated-phase bus meeting the requirements of IEEE Std C37.23TMmay be subjected

  • 8/13/2019 IEEE_C57 19 100-2012

    26/42

  • 8/13/2019 IEEE_C57 19 100-2012

    27/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    15Copyright 2013 IEEE. All rights reserved.

    Standard bushings may not be acceptable for replacements on mobile transformers or substations. Always

    consult with the bushing manufacturer regarding the specific application before selecting a replacement.

    8.3 Circuit breaker applications

    Condenser bushings applied on oil circuit breakers should be capable of withstanding the forces specified inTable 1 of IEEE Std C37.017-2010.

    If the bushing is not identified as being transformer breaker interchangeable (TBI), the manufacturer needs

    to be contacted to ensure that the bushing will withstand the forces of the breaker operation.

    9. Application of bushings in unusual service conditions

    Usual service conditions are described in subclause 4.1 of IEEE Std. C57.19.00-1991.

    9.1 Contaminated environments

    Standard bushing characteristics are specified for a standard clean environment. This promotes a common

    understanding between manufacturers and users of what bushing ratings mean.

    Proper application of bushings in environments different from the standard requires knowledge of how

    bushing performance changes from one environment to another.

    The purpose of this subclause is to highlight those issues that need to be considered in applying bushings invaried environments.

    9.1.1 Types of environments

    Contaminated environments can be divided into the general types summarized inTable 1.

    9.1.2 Types of contaminants

    9.1.2.1 Natural deposits

    Natural deposits on bushings include such things as salts, dust, sand, and so on, left on the bushings as the

    result of natural action. They may be airborne, waterborne, or left behind after the melting of snow and ice.

    9.1.2.2 Automotive/industrial effluents

    These are by-products put into the air as a result of industrial/commercial activity. They include

    particulates and gaseous materials that condense on bushing surfaces.

  • 8/13/2019 IEEE_C57 19 100-2012

    28/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    16Copyright 2013 IEEE. All rights reserved.

    Table 1 General types of contaminated environments

    Contamination level Typical environments

    Light Areas without industries and with a low density of emission-producing residential

    heating systems. Areas with some industrial or residential density but subject tofrequent winds and/or precipitation. Agricultural areas (exposure to wind-bornefertilizer spray or crop-burning residues can lead to higher contamination levels).

    Mountainous areas. These areas are not exposed to sea winds or located near the sea.Typical measured equivalent salt deposit density (ESDD) levels are 0.03 mg/cm 2 to0.08 mg/cm2.

    Medium Areas with industries not producing highly polluting smoke and/or with an averagedensity of emission-producing residential heating systems. Areas with high industrialand/or residential density but subject to frequent winds and/or precipitation. Areas

    exposed to sea winds but not located directly on the coast. Typical measured ESDDlevels are 0.08 mg/cm2to 0.25 mg/cm2.

    Heavy Areas with high industrial density and large city suburbs with a high density ofemission-producing residential heating systems. Areas close to the sea or exposed tostrong sea winds. Typical measured ESDD levels are 0.25 mg/cm2to 0.6 mg/cm2.

    Extra heavy Small areas subject to industrial smoke-producing thick conductive deposits. Smallcoastal areas exposed to very strong and polluting sea winds. Typical measured

    ESDD levels are above 0.6 mg/cm2.

    9.1.2.3 Other deposits

    Other types of deposits such as agricultural residues can also occur as a result of specific types of activitiesin the vicinity of a bushing location.

    9.1.3 Artificial contamination testing

    A design or production test method that fully duplicates an actual environment where a bushing will be

    applied is usually not practical. Therefore, artificial test methods have been developed that are intended to

    provide a realistic assessment of the characteristic being tested (see reports by the General ElectricCompany [B4] and the IEEE Working Group on Insulator Contamination [B11] for discussions of test

    methods). The three major categories of testing are discussed in9.1.3.1 through9.1.3.3.

    9.1.3.1 Salt fog

    A bushing is energized at a constant test voltage and subjected to a salt fog of controlled salinity. Typicalsalinity values range from 2.5 g to 160 g of salt per cubic meter of fog solution. The fog is sprayed on the

    bushing through an array of nozzles with compressed air. The withstand salinity is the salinity at which

    there is a withstand in at least three of four 1 h test periods.

    9.1.3.2 Wet-contamination

    Artificial contamination is applied to a bushing by a spray or flow-coating method. Three to five minuteslater, before the contaminant has time to dry, a test voltage is applied to the bushing. The voltage is either

    raised until the bushing flashes over or raised to a test value and held constant until the bushing flashes over

    or the contaminant dries out and all scintillation activity stops. The contaminant is a mixture of water and

    kaolin or other nonconductive material with a controlled amount of salt added.

    A withstand value is sometimes determined by either three successful withstands without a flashover at a

    given test voltage or by statistical analysis of a number of trials.

    This method has an advantage over the other methods in simplicity, ease of use, and low test cost.

  • 8/13/2019 IEEE_C57 19 100-2012

    29/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    17Copyright 2013 IEEE. All rights reserved.

    9.1.3.3 Clean fog

    A dry, artificially contaminated bushing is subjected to clean fog and test voltage. In one variation, the fog

    is applied to the bushing and then it is energized. In the other variation, the bushing is energized and then

    the fog is applied to it.

    9.1.4 Natural contamination testing

    The primary way to identify the types of natural contaminant on a bushing is through chemical analysis and

    testing. This is especially important for cases of industrial pollutants when the identity of the polluting

    agent is not immediately known. In addition, special tests can be used to quantify the effect of the

    contaminants on the electrical bushing characteristics.

    The primary test for this purpose is the ESDD. This test is used to establish the conductivity of the water-soluble deposits on a bushing surface in terms of the density of a standard soluble salt deposited on a

    surface that would produce the same conductivity.

    A measured surface area on a bushing is washed in a known amount of water of very low conductivity. The

    resistivity of the wash water is then measured and the amount of sodium chloride (NaCl) needed to producethe same conductivity in the known quantity of wash water is calculated. The result is expressed as

    milligrams of NaCl per square centimeter of washed bushing surface area (mg/cm2).

    Additional information on this method is contained in Appendix 1C of IEEE Std 4TM-1995.

    9.1.5 Countermeasures

    The user will need to evaluate the following and any other options available to determine their suitability to

    the situation:

    a) Install extra creep distance bushings. The following minimum creep values based on thebushing nominal line-to-ground kV rating are recommended. These values may need to be

    adjusted for factors such as shape, number of sheds, and bushing inclination.

    Contamination Creep distance

    Light 28 mm/kV

    Medium 35 mm/kV

    Heavy 44 mm/kV

    Extra heavy 54 mm/kV or greater

    b) Apply protective coatings. Protective coatings can be applied to the surface of the bushings toimprove their dielectric performance. There are temporary coatings, such as silicone grease, thatrequire periodic replacement and permanent coatings that are nonremovable. These coatings

    may cause power factor testing issues and they may become contaminated.

    c) Install conductive glaze bushings. Consult the manufacturer for specific application information.

    d) Install composite insulated bushings with nonceramic, contamination-resistant externalinsulation. Consult the manufacturer for specific application information.

    e) Periodic cleaning of bushing surfaces. Bushings with known contamination cycles can becleaned periodically as part of a maintenance program.

    f) Eliminate air bushings. Installations can be designed to minimize the number of bushingsexposed to atmospheric contamination.

  • 8/13/2019 IEEE_C57 19 100-2012

    30/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    18Copyright 2013 IEEE. All rights reserved.

    9.2 High altitudes

    Refer to IEEE Std C57.19.00-2004 for altitude correction factors.

    9.3 Application of outdoor bushings in indoor locations

    Bushings designed for outdoor application can also be applied indoors; however, the following should be

    considered:

    a) The rating of bushings is assigned at an ambient air temperature not exceeding 40 C, and theaverage temperature of the ambient air is not exceeding 30C in any 24 h period. These limits

    may be exceeded in the indoor locations. If it should be determined that the ambient air

    temperatures will exceed the allowable temperature, then the user may either select a bushing

    with higher rating or accept a moderate degree of accelerated aging.

    b) The environmental contamination should be reviewed. If the ventilation system allows the airfrom the outdoors to circulate freely indoors without any filtration, contaminants present

    outdoors will be indoors and will be deposited on the bushing. However, unlike outdoor

    bushings where the contaminants are washed away by rain, the contamination level on indoorbushings will keep increasing. The user may select bushings with higher creepage distance and

    institute maintenance programs to include bushing insulator cleaning.

    9.4 Bushing monitors

    Bushing monitors are installed on bushing voltage/test taps to allow for on-line testing and monitoring of

    the bushing power factor. These allow for continuous monitoring or periodic testing of bushings without

    removing the bushing from service. Since the monitors replace the existing voltage/test tap cover, the user

    should ensure proper fit of the monitor to prevent moisture ingress into the test tap. A voltage is thenbrought from the monitor to an accessible area of the transformer to perform the monitoring. The user

    should consult with the manufacturer of the monitor to determine the voltage levels that are normallyexpected and the maximums that could be reached should the device fail. Operational guidelines can then

    be developed by the user to determine the level of safety requirements and experience of personnel whoshould have access to the devices.

    10. Bushing maintenance practices

    The in-service maintenance frequency of bushings will normally vary according to circumstances and is

    generally combined with the inspection and maintenance of the associated equipment.

    10.1 Mechanical maintenance and inspection

    10.1.1 External porcelain

    Inspect the porcelain for damage and pollution deposits. At least the following guidelines should be

    considered during the examination.

    Small chips or breaks in the sheds are generally of no concern. The exposed unglazed surface may be

    painted with a suitable paint to improve the appearance. Large breaks or chips may reduce the creep

    distance and may require bushing replacement.

  • 8/13/2019 IEEE_C57 19 100-2012

    31/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    19Copyright 2013 IEEE. All rights reserved.

    Small cracks in the sheds may be ground off to prevent further propagation. Large cracks may require

    bushing replacement.

    Any damage to the main porcelain body would be a cause for concern and may require bushing

    replacement.

    Bushings may be periodically cleaned by either hand-washing (deenergized installation) or by a suitablespray or jet method using low conductivity water.

    Silicone-based greases and coatings can be applied to increase the time interval between cleanings.

    However, this treatment prevents normal rainfall from cleaning the porcelain surfaces.

    10.1.2 Terminals

    Inspect bushings for overheated connections when the unit is energized and loaded. Infrared cameras are

    sometimes used to detect overheated terminal connections. Loose connections should be tightenedaccording to the bushing manufacturers recommendations.

    10.1.3 Mounting hardware

    Inspect the mounting hardware for tightness.

    10.1.4 Gaskets

    Gaskets that are part of the bushing normally do not require replacement. Be sure that replacement gasketsbetween the bushing flange and the associated equipment are the right thickness and suitable material.

    Gasket stop rings, if used, should be in place.

    Gaskets that are sensitive to ultraviolet radiation may deteriorate rapidly when exposed to combinedsunlight, high humidity, and contamination. These materials should be avoided in these conditions. As an

    added precaution, gaskets in these conditions should be protected from exposure to sunlight.

    10.1.5 Oil level

    Loss of oil threatens the integrity of a bushing; therefore, any bushing that shows an abnormal oil levelshould be investigated as soon as possible. Follow the manufacturers recommendations in correcting the

    cause of the abnormal oil level and in refilling the bushing.

    The associated apparatus should be checked to ensure that the lower end of the bushing is immersed in oil

    to the proper level.

    Special measures may be required to keep oil over internal insulation in bushings mounted at angles greater

    than 20 from vertical.

    10.1.6 Bushing taps

    Inspect the bushing voltage and test taps for proper gaskets and grounding. The voltage tap compartments

    shouldbe filled with insulating oil or compound when recommended by the bushing manufacturer.

  • 8/13/2019 IEEE_C57 19 100-2012

    32/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    20Copyright 2013 IEEE. All rights reserved.

    10.2 Bushing repair

    Maintenance and repair recommendations vary widely from one manufacturer to another. In all cases, the

    user is advised to consult the manufacturer prior to attempting any bushing repairs.

    Extreme care should be taken when working on or around damaged bushings. Many bushings are

    constructed with high compressive forces and can be dangerous when components are damaged. Iftransporting the bushing is required, check with local regulations prior to shipment to determine oil

    polychlorinated biphenyl (PCB) level limitations.

    The following are common repair needs that may be encountered by bushing users and generalrecommendations for each:

    a) Damaged porcelain: Small chips or breaks in porcelain are not detrimental to bushingperformance, as modern electrical porcelain is a nonporous material. Larger chips or breaks

    generally will not hinder performance either but may have improved appearance by painting

    over the area with a suitable paint (bright-colored paint is often used for safety purposes).

    Cracks in the main porcelain body are cause for immediate replacement. Damages to sheds thatsignificantly reduce creepage distances are also cause for bushing replacement or professional

    repair. Care should be taken when working with damaged porcelain, as broken edges are oftenextremely sharp.

    b) Damaged oil sight glasses: A cracked, chipped, or shattered oil sight glass often allows moistureto enter into the bushing and is cause for bushing replacement or professional repair. To

    minimize damage to the bushing core, it is recommended to wrap the affected area as soon aspossible. Field repairs are not recommended.

    c) Malfunctioning oil-level gages: An oil-level gage that does not correctly indicate the oil level inthe bushing can lead to future problems and is reason for repair. Many oil level gages can be

    replaced without disassembling the bushing. The mechanism that measures oil level, however, isinternal to the bushing and cannot usually be replaced in the field. The manufacturer or a

    professional repair service should be contacted to determine if the gage design can be replaced

    in the field.

    d) Leaking seals: Loss of oil threatens the integrity of a bushing and may be cause for bushingreplacement or professional repair. Gaskets that are bulging out between bushing sections,

    unevenly seated, cracked, overheated, have lost their elasticity, or appear in any way damaged,

    have most likely permanently ceased to protect the bushing and should be replaced, even if no

    leaks are in evidence, or at least the bushing should be closely monitored. Bushings that have

    been subjected to overload may have damaged gaskets. These should be examined closely and

    replaced if any signs of damage are present even if they are not currently leaking. Some leaksmay be temporarily sealed using an oil-compatible sealant, but it is important to repair the seal

    as soon as possible. Professional repair services can often eliminate the leak by disassembling

    the bushing and replacing the gaskets. The manufacturer or a professional repair service shouldbe contacted if a significant reduction in oil level has occurred.

    e) Leaking taps: Loss of oil into the bushing tap space can often be temporarily sealed with theprovided tap cover. Some bushing taps can be replaced in the field by positioning the bushing

    horizontally and installing a suitable replacement. The manufacturer or a professional repairservice should be contacted to determine if tap replacement is possible in the field.

    f) Damaged taps: Damage due to electrical activity at the bushing tap can cause high- or low-power factor readings and is reason for repair. Some bushing taps can be replaced in the field by

    positioning the bushing horizontally and installing a suitable replacement. The manufacturer or

    a professional repair service should be contacted to determine if tap replacement is possible in

    the field.

  • 8/13/2019 IEEE_C57 19 100-2012

    33/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    21Copyright 2013 IEEE. All rights reserved.

    g) Power factor or capacitance abnormalities Significant or rapid changes to power factor orcapacitance are often precursors to dielectric failure and may be cause for bushing replacement

    or professional repair. Investigation should follow manufacturer recommendations and the

    guidelines in10.3.1.Baking the bushing core in an oven, a popular remedy in the past, will not

    result in a long-term improvement in power factor. Field repairs are not recommended.

    h) Overheated terminals: Excessive heat at bushing terminals is most often caused by loose

    connections or damaged threads. This situation can be corrected by tightening connections orrepairing damaged threads, where needed. In these cases, consideration should be given to the

    duration the bushing was overheated and the impact on seals in proximity to the heat source.

    10.3 Routine and special tests

    10.3.1 Power factor and capacitance

    The bushing power factor and capacitance should be measured when a bushing is first installed and again

    one year after installation. After these initial measurements, the bushing power factor and capacitance

    should be measured at regular intervals (3 years to 5 years typically). If the bushing is installed in a

    transformer, then it is important to remember that the transformer winding can also influence the testresults.

    Since the power factor can vary with temperature, test results should be converted to a commontemperature base (usually 20 C) using temperature-correction data that are available from manufacturers

    and various industry sources. The following procedure should be used:

    a) Measure the bushings power factor

    b) Determine the bushings temperature

    c) Obtain the appropriate correction factor corresponding to the bushings temperature

    d) Multiply itema) and itemc)see example

    Example

    A 115 kV oil-impregnated bushing:

    Calculated power factor = 0.42%

    Bushing temperature = 30 C

    Multiplier from the temperature-correction table at 30 C = 1.11

    Corrected to 20 C power factor = 0.42% 1.11 = 0.47%

    These correction factors are average at best and therefore are subject to some error. The magnitude of the

    error is minimized if the tests are performed at temperatures near the reference temperature of 20 C. Ifquestionable power factors are recorded at a relatively high temperature, then the bushing should not be

    condemned until it has been allowed to cool down to near 20 C and repeat tests have been performed. This

    also applies to bushings tested near freezing where a large (greater than 1.00) correction may cause the

    result to be unacceptably high; in this case, the equipment should be retested at a higher temperature.

    Bushings should not be tested when their temperatures are below freezing because moisture may havechanged to ice, which has a significantly higher resistivity and therefore are undetected. In the case of

    bushings mounted in transformers, the bushing temperature is approximated by taking the average between

    the ambient and transformer top-oil temperatures.

  • 8/13/2019 IEEE_C57 19 100-2012

    34/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    22Copyright 2013 IEEE. All rights reserved.

    Any bushing that exhibits a history of continued power factor increase should be further investigated and

    considered for removal from service. The bushing manufacturer should be consulted for guidance. If any

    bushing exhibits an increase in power factor over a period of time, then the rate of change of this increase

    should be monitored by more frequent tests. The decision on when to increase test frequency or remove

    from service should consider manufacturer recommendations, user and industry experience with serviceaged equipment, and bushing design, among other factors. Some bushing manufacturers consider an

    increase between 1.5 and 2 times the initial reading to be significant. Bushing capacitance should be

    measured with each power factor test and compared carefully with both nameplate and previous tests inassessing bushing condition. This is especially important for capacitance-graded bushings where an

    increase in capacitance of 5% or more over the initial/nameplate value is cause to investigate the suitability

    of the bushing for continued service. The manufacturer should be consulted for guidance on specific

    bushings.

    It is usually impossible to make absolute ungrounded specimen test (UST) measurements of the bushing

    core capacitance and power factor of resistance-graded bushings because of the influence of the resistiveglaze on the surface of the bushing porcelain. Differences in the glaze can cause significant variations in

    measurements between different bushings of the same voltage class and type. In some instances, the

    measured UST power factor may even be negative.

    Standard practice during diagnostic testing of resistance-graded bushings is to record the measured UST

    values of capacitance and power factor for comparison with other measurements made on the samebushing. When there is evidence of a permanent increasing or decreasing trend in the measured values, thebushing manufacturer should be consulted for assistance in evaluation of the condition of the bushing.

    Most modern high-voltage bushings are equipped with voltage or test taps. Voltage (or capacitance) tapsare used generally on bushings rated above 69 kV, and test (or power factor) taps are used generally on

    bushings rated at 69 kV and below. Routine bushing field tests should include power factor tests on the tap

    insulation. These measurements are effective for detecting problems such as deteriorated or contaminated

    oil, defective tap compartment seals, mechanical damage to the tap insulators, and the failure of the topterminal gaskets. Abnormal readings can alert the user to a potential failure hazard before the C1 insulation

    is affected. While the test tap (C2) insulation is not controlled during the manufacturing process, significant

    changes in either the C2 capacitance and/or power factor from an initial value may be indicative of a

    problem. The manufacturer should be contacted.

    10.3.2 Gas in oil

    This test is not recommended as a routine test because it requires that the bushing be opened up and

    exposed to the outside atmosphere. This introduces the possibility of moisture entering the bushing while

    the bushing is open or after improper sealing of the opening. While this test is performed by some

    companies, the degree of expertise to perform and interpret it makes it impractical for most users. There are

    no IEEE values for DGAs in bushings. Transformer values are not applicable due to the differences in oilvolumes and paper/oil ratios. IEC/TS 61464 [B7] may be used for a reference.

    The gas-in-oil test should only be used for diagnostic purposes on bushings that are suspect due to high-

    power-factor measurements or other reasons. Gas-in-oil results should be compared with test results from

    other bushings and not with power transformer test results. The different mixture of materials in bushingsand in transformers will give different results. Experts with experience in interpreting bushing gas-in-oil

    tests should be consulted if help is needed.

    A good noninvasive alternative to taking an oil sample is to perform the C2 test. This test energizes the oil

    in the vicinity of the energized tap lead near the bushing flange and thus includes any watts loss caused by

    contamination of that oil in the results. This contamination would be apparent as long as there was a

    sufficient amount in the tap lead area and if the tap housing area were clean and dry so as not to mask the

    contamination in the oil.

  • 8/13/2019 IEEE_C57 19 100-2012

    35/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    23Copyright 2013 IEEE. All rights reserved.

    The bushing manufacturer should be consulted for assistance in taking samples and interpreting results. The

    bushing oil level should be checked and adjusted if needed after oil samples are taken.

    10.3.3 Dielectric tests

    Bushing dielectric tests are sometimes performed in the field. Insulation dielectric strength generallydepends on the level of insulation degradation. When dielectric tests are performed on service aged

    bushings, the following guidelines can help in determining the appropriate test levels:

    a) Transformer bushings that will be removed from the transformer for testing should undergo60 Hz tests at the 100% voltage test levels specified in IEEE Std C57.19.01. This will minimize

    any problems that may develop during the testing of the transformer after the bushing is

    reinstalled.

    b) Transformer bushings that will be tested while mounted in the transformer can only be tested atthe lower of either the applicable bushing or transformer test levels. Test levels of 60 Hz should

    be limited to 1.5 times rated line-to-ground voltage or 85% of the withstand voltage level,

    whichever is lower. The voltage application should be limited to 1 min.

    Partial discharges should be monitored during these tests to provide data for evaluating the condition of thebushing. IEEE Std C57.19.00-1991 gives additional information on partial discharge testing.

    10.4 Bushing storage

    10.4.1 New bushings

    It is recommended that the bushing manufacturer be consulted concerning bushing storage. They will

    provide instructions as to the proper storage of their bushing. Improper storage can result in damaging not

    only the bushing but also the equipment in which it is installed.

    New bushings should arrive from the manufacturer properly crated for short-term storage. If the bushingsare to be used in a short time (6 months maximum), storage in the original crate should be adequate. If the

    bushings are kept at a construction location, then they should be positioned to be where they are protected

    from accidental breakage or vandalism before they can be installed.

    New bushings for stores or spares are possibly going to remain unused for long periods. Since most crates

    are not designed for long-term storage, arrangements should be made to protect them from weather. This

    can be done by applying a waterproof covering, plastic sheeting, exterior rated plywood, roofing material,

    etc., or by storing them indoors. They can also be uncrated and stored in metal racks either indoors oroutdoors. Storage in this manner has the advantage that the bushings can be periodically tested. The

    disadvantage is the possibility of breakage as they are uncrated and then recrated for shipping. Since they

    are designed to be used in oil-filled equipment, storing them out of oil exposes them to air, moisture, and

    possibly ultraviolet rays. To ensure they are usable when needed, the manufacturer should be consulted for

    storage information. This is for both short- and long-term storage.

    10.4.2 Used bushings

    Bushings manufactured before 1980 may be PCB contaminated. Consult with your environmental expert

    concerning the local and Environmental Protection Agency laws before attempting to store these older

    bushings of unknown contents. Newer bushings should be tagged to be non-PCB. If the tag is missing, then

    the manufacturer may be able to assist you in determining the PCB content.

  • 8/13/2019 IEEE_C57 19 100-2012

    36/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    24Copyright 2013 IEEE. All rights reserved.

    The type of bushing and expected storage time should both be considered when determining storage

    options. Knowledge of bushing construction is helpful in developing storage plans. In all cases, the goal

    should be to cause no damage to the bushing and to keep it in good operating condition. If the bushings are

    subject to periodic testing, then the storage facility should be arranged such that this can be accomplished.

    10.5 Bushing replacement

    Bushing replacement is a common practice, taking place thousands of times every year. The most critical

    item to remember when replacing existing bushings is that you do not change the electrical geometry insidethe transformer. Any change to the electrical clearances or insulation structure inside the transformer may

    lead to a transformer failure. When specifying bushings, future replaceability should be a serious

    consideration.

    When replacing an existing bushing, a number of key items need to be addressed before a replacement

    bushing is selected. The following is a list of items to be considered:

    Bushing mounting flange configuration; bolt circle diameter and number of bolt holes.

    Bushing length below the flange, this is normally noted on the nameplate as the L dimension.

    How is the bushing connected to the transformer winding? Via draw lead cable or conductor orconnected to the bottom of the bushing.

    Bottom terminal; threaded stud, two-hole spade, or bottom plate.

    Height of bushing above the mounting flange.

    Bushing current rating.

    A complete list is included in Clause11when bushings must be ordered.

    10.5.1 Replacing bottom-connected bushings

    If the replacement bottom connected bushing meets all the dimensional requirements below the mounting

    flange as the existing bushing, then the only other item to consider is the shielding. The key item to confirm

    is the thickness and diameter of the bottom plate. It must not be thicker than the existing bushings bottomplate nor larger in diameter.

    Bushing shields are related to both transformer and bushing design. Determination of shielding

    requirements will need input from both parties or from knowledgeable consultants.

    10.5.2 Replacing draw lead connected bushings

    If the replacement draw lead bushing meets all the dimensional requirements below the mounting flange asthe existing bushing, then the only other item to consider is the shielding.

    Bushing shields are related to both transformer and bushing design. Determination of shielding

    requirements will need input from both parties or from knowledgeable consultants.

  • 8/13/2019 IEEE_C57 19 100-2012

    37/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    25Copyright 2013 IEEE. All rights reserved.

    11. Checklist

    The following is a checklist for ordering replacement bushings.

    Checklist for ordering replacement bushings

    Bushing manufacturer

    Year built

    Bushing style

    Outline drawing (to be attached with order)

    Insulation class kV

    BIL kV peak

    V max L-g kV

    V withstand/1 min kV

    Rated current Amp

    Conductor connection Bottom connected or draw lead

    Air side dimension inch

    Oil side dimension inch

    CT pocket lengtha

    inchFlange BCD/#Holes/ODa

    Minimum creep distance inch

    Arcing distance inch

    Insulator color

    Top terminal

    Bottom terminal

    Additional notes:aBCD = bolt circle diameter; CT = current transformer; OD = outside diameter.

  • 8/13/2019 IEEE_C57 19 100-2012

    38/42

    IEEE Std C57.19.100-2012IEEE Guide for Application of Power Apparatus Bushings

    26Copyright 2013 IEEE. All rights reserved.

    Annex A

    (informative)

    Examples of calculation procedures to determine hot-spot temperatures for

    bushings applied on transformers

    A.1 General information

    This annex contains examples showing the use of calculation procedures given in this guide. In general, the

    conditions to be evaluated will include a period