30
Divine Maalouf , Ahmed Chemori , Vincent Creuze Laboratory of Informatics, Robotics and Microelectronics of Montpellier LIRMM, University of Montpellier 2 - CNRS 161, rue Ada 34095 Montpellier, France Florence, December, 13 th , 2013 IEEE CDC 2013 Regular session : Maritime Control

IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Divine Maalouf , Ahmed Chemori , Vincent Creuze

Laboratory of Informatics, Robotics and Microelectronics of Montpellier

LIRMM, University of Montpellier 2 - CNRS

161, rue Ada 34095

Montpellier, France

Florence, December, 13th, 2013

IEEE CDC 2013 Regular session : Maritime Control

Page 2: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 2

Outline of the presentation

o L1 adaptive control and its extended version Background on L1 adaptive control

Time lag limitation : A simple example

Proposed solution : Basic idea

First validation : Back to the simple example

o Stability analysis of the extended version Basic idea

First validation : Back to the simple example

o Application in underwater robotics Our demonstrator (experimental setup)

Its dynamic modeling

Application of the proposed solution for depth control

o Real-time experimental results Scenario 1 : Control in nominal case

Scenario 2 : External disturbance rejection

o Conclusion & future work

Page 3: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 3

L1 adaptive Stability analysis Application Experiments Conclusion

Background on L1 adaptive control

Time lags limitation : A simple example

Proposed extension : Basic idea

First validation : Back to the simple example

Page 4: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 4

Background on L1 adaptive control

Main features

Recently developed controller [Hovakimyan 2010]

Inspired from MRAC controller (+ low pass filter)

Decoupling robustness from adaptation

Fast adaptation can be guaranteed

Validated on various systems (mainly in aerospace)

L1 adaptive Stability analysis Application Experiments Conclusion

Page 5: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 5

Background on L1 adaptive control

Inspired by direct MRAC (Model Reference Adaptive Control)

µ : is a vector of unknown constant parameters

µ̂ : is the estimate of µ

r : is a piecewise-continuous bounded reference signal

L1 adaptive Stability analysis Application Experiments Conclusion

Page 6: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 6

Background on L1 adaptive control

Inspired by direct MRAC (Model Reference Adaptive Control)

With a State predictor instead of the reference model

The tracking error is replaced by the prediction error

L1 adaptive Stability analysis Application Experiments Conclusion

Page 7: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 7

Background on L1 adaptive control

Inspired by direct MRAC (Model Reference Adaptive Control)

With a State predictor instead of the reference model

With low pass filter

C(s) : is a stable and strictly proper transfer function

C(s) = 1 Direct MRAC

L1 adaptive Stability analysis Application Experiments Conclusion

Page 8: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 8

Background on L1 adaptive control

Inspired by direct MRAC (Model Reference Adaptive Control)

With a State predictor instead of the reference model

With a low pass filter

With a projection operator to bound the estimated parameters

L1 adaptive Stability analysis Application Experiments Conclusion

Page 9: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 9

Background on L1 adaptive control

u= ua+um

um =¡kTmx(t)!(t) : is an unknown constant representing

uncertainty on the input gain

¾(t) : is a parameter modeling input disturbances

µ(t) : is a vector of unknown constant parameters

General case of MIMO systems

µ(t)!(t) ¾(t)

L1 adaptive Stability analysis Application Experiments Conclusion

Am = A¡ bkTm

Page 10: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 10

Time lag limitation : A simple example

0 10 20 30 40 50-150

-100

-50

0

50

100

150

Time (s)

Ou

tpu

t y(t

)

Consider the following system [Hovakimyan 2010]

For a bounded reference trajectory to be tracked :

r(t) = 100cos(0:2t)

A =

·0 1

¡1 ¡1:4

¸; B =

·0

1

¸; C =

£1 0

¤; µ =

·4

¡4:5

¸

_x(t) = Ax(t) +B³u(t) + µ(t)Tx(t)

´; x(0) = x0

y(t) = Cx(t)

C(s) =!kD(s)

1+!kD(s)= 160

s+160, ¡ = 10000 , km = 0

The proposed design parameters are the following:

A time lag in the tracking is noticed

Due to the presence of the filter in the control loop

L1 adaptive Stability analysis Application Experiments Conclusion

Page 11: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 11

Proposed Solution : Basic idea

The new control law in this case :

The adaptive term

The state-feedback term

The proposed extension term

u= ua+um+uPID

L1 adaptive Stability analysis Application Experiments Conclusion

Proposed extension

Page 12: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 12

First validation : Back to the simple example

C(s) = 160s+160

, ¡ = 10000 , km = 0

The proposed design parameters are the same:

The same reference trajectory to be tracked :

r = 100cos(0:2t)

The obtained tracking for both controllers :

The time lag is very reduced

L1 adaptive Stability analysis Application Experiments Conclusion

Page 13: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 13

Illustration example

Effects of the PID gains on stability

L1 adaptive Application Experiments Conclusion Stability analysis

Page 14: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 14

L1 adaptive Application Experiments Conclusion Stability analysis

Illustrative example

The estimated parameters are away from bounds

The parameters of the PID extension are :

The adaptation gain and the low pass filter :

KP = 3 ; KI = 0:5 ; KD = 0:2

¡ = 100000 ; C(s) = 1s+1

Page 15: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 15

L1 adaptive Application Experiments Conclusion Stability analysis

Illustrative example

The controlled system :

State predictor :

Adaptation stage :

Control input :

Let’s now compute the loop transfer function for both cases :

L1 adaptive control :

Proposed extended version :

_x(t) =¡x(t) + µ(t) +u(t)

_̂x(t) =¡x̂(t) + µ̂(t) + u(t)

_̂µ(t) = ¡¡~x(t)

u(t) =¡C(s)(µ̂¡ r(t)) + uPID

Gextended(s) =¡(s+ ¡

s+1)uPID+¡C(s)

s(s+1)+¡(1¡C(s))

Gnominal(s) =¡C(s)

s(s+1)+¡(1¡C(s))

Nyquist plot to evaluate stability and its margins

Page 16: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 16

L1 adaptive Application Experiments Conclusion Stability analysis

Illustrative example

Gnominal(s)

Gextended(s)

Both systems are stable

Stability margins are slightly increased

What about the affects of the gains ?

Page 17: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 17

L1 adaptive Application Experiments Conclusion Stability analysis

Effects of the PID gains on the stability

KP = 3, KP = 15, KP = 30 KI = 0:5, KI = 2:5, KI = 5 KD = 0:1, KD = 0:2, KD = 0:3

Proportional gain Integral gain Derivative gain KP = 3 KI = 0:5 KD = 0:1

Page 18: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 18

Our demonstrator : Experimental setup of the AC-ROV

Dynamic modeling of the AC-ROV

Application of the proposed solution for depth control

L1 adaptive Experiments Conclusion Stability analysis Application

Page 19: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 19

Commercialized experimental setup

Control computer, Power Input,

Emergency stop,

Video input, Umbilical plug,

Ethernet plug, Video screen,

Ombilical, AC-ROV

Modified experimental setup

Our demonstrator : Experimental setup of the AC-ROV

L1 adaptive Experiments Conclusion Stability analysis Application

Page 20: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 20

Our demonstrator : Experimental setup of the AC-ROV Ha

rdw

are

Con

figur

atio

n

L1 adaptive Experiments Conclusion Stability analysis Application

Page 21: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 21

Frames definition

)(

)()()(

J

GDCM

Forces produced

by the thrusters

matrixsformation TranJ

putscontrol inVector of τ

cy forcesn / buoyangravitatioVector of G

, Damping), Coriolisices (MassModel matrM,C,D

eearth frams in the Coordinate

nd angularposition aVector of

ψθΦzyx

dy frame in the bovelocitiesVector of

rqpwvu

Τ

Τ

][ η

][ ν

Based on SNAME notation [SNAME1950]

[Fossen2002]

Pitch Yaw

Roll

SNAME : Society of Naval Architects and Marine Engineers

Dynamic model of the AC-ROV

L1 adaptive Experiments Conclusion Stability analysis Application

Page 22: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 22

Mz _w+Dzw¡ cos(')cos(#)(W ¡B) = ¿z +wdz

¿z = TKu

M¤z (´)Ä́+D¤z(º; ´) _́ + g¤z(´) = ¿¤z +w¤zd

·_́1_́2

¸=

"0 1

0¡D¤zM¤z

#·´1´2

¸¡"

0g¤zM¤z¡ w¤dz

M¤z

#+

·01M¤z

¸!¿z

¤

¾(t)

µ(t)

Dynamic model of the AC-ROV

The depth dynamics of he system writes :

The model can be expressed in earth-fixed-frame as :

In a state space representation :

: is a parameter regrouping the gravity, buoyancy and external disturbances

: represents the uncertainties on damping

Two controllers are implemented : L1 adaptive controller

Extended L1 adaptive controller

u=K¡1T¡1JT (ua +um+uPID) 2 R2

·_́1_́2

¸= Am

·´1´2

¸+

·01M¤z

¸(ua + µ(t)jj´(t)jjL1 + ¾(t) ) ; y = ´1

L1 adaptive Experiments Conclusion Stability analysis Application

5

6

Page 23: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 23

L1 adaptive Conclusion Stability analysis Application Experiments

2 experimental scenarios

External disturbances Nominal case

Scenario 1 Scenario 2

Depth

Page 24: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 24

Scenario 1: Control in nominal case

Time history of depth tracking Time history of the estimated parameters

The closed-loop behavior is improved

L1 adaptive Conclusion Stability analysis Application Experiments

PID Augmentation

PID Augmentation

Page 25: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 25

Scenario 2: External disturbance rejection

L1 adaptive Conclusion Stability analysis Application Experiments

Time history of depth tracking Time history of the control inputs

Page 26: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 26

Scenario 2: External disturbance rejection

Time history of the estimated parameters

L1 adaptive Conclusion Stability analysis Application Experiments

Page 27: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 27

Real-time experiments : An illustration movie

L1 adaptive Conclusion Stability analysis Application Experiments

Page 28: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 28

Conclusion

Future work

L1 adaptive Stability analysis Application Experiments Conclusion

Page 29: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 29

Problem: Control of underwater vehicles

Difficulties inherent to that systems:

• High nonlinear dynamics

• Unknown/variable model parameters

• Non measurable states

Proposed Solution: An extension of L1 adaptive based on a PID controller

Validation: In real-time through experiments on the AC-ROV

Advantages of the proposed solution :

• Invariant fast adaptation

• No a priori knowledge of the parameters is needed

• Robustness towards uncertainties / disturbance rejection

• Time lag cancelation

Future work : Multivariable case

Implementation on the vehicle L2ROV

Control using vision

Conclusion & future work

L1 adaptive Stability analysis Application Experiments Conclusion

Page 30: IEEE CDC 2013chemori/Temp/Afef/Presentation_Conf/ACROV_CDC1… · IEEE CDC 2013 (Florence, Italy) Speaker: A. CHEMORI (LIRMM / CNRS, France) 2 Outline of the presentation o L1 adaptive

Speaker: A. CHEMORI (LIRMM / CNRS, France) IEEE CDC 2013 (Florence, Italy) 30

Conclusion & future work

L1 adaptive Stability analysis Application Experiments Conclusion