76
Identical particles Identical particles Quantum mechanics 2 - Lecture 1 Igor Lukaˇ cevi´ c UJJS, Dept. of Physics, Osijek 14. prosinca 2011. Igor Lukaˇ cevi´ c Identical particles

Identical particles - Quantum mechanics 2 - Lecture 1 · 2016. 9. 30. · 2m (1 + 2) + V = E A question What happens with S.E. if we interchange the coordinates of particles? S.E

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • Identical particles

    Identical particlesQuantum mechanics 2 - Lecture 1

    Igor Lukačević

    UJJS, Dept. of Physics, Osijek

    14. prosinca 2011.

    Igor Lukačević Identical particles

  • Identical particles

    Contents

    1 Two-particle wave equation

    2 Symmetric and antisymmetric solutions

    3 Example: He spectrum

    4 Antisymmetry principle

    5 Example: H molecule

    6 Literature

    Igor Lukačević Identical particles

  • Identical particles

    Two-particle wave equation

    Contents

    1 Two-particle wave equation

    2 Symmetric and antisymmetric solutions

    3 Example: He spectrum

    4 Antisymmetry principle

    5 Example: H molecule

    6 Literature

    Igor Lukačević Identical particles

  • Identical particles

    Two-particle wave equation

    Which interactions exist here and what istheir nature?

    Igor Lukačević Identical particles

  • Identical particles

    Two-particle wave equation

    H =1

    2m1p21 +

    1

    2m2p22 + V (r1, r2)

    Igor Lukačević Identical particles

  • Identical particles

    Two-particle wave equation

    H =1

    2m1p21 +

    1

    2m2p22 + V (r1, r2)

    pk →~i∇k

    Igor Lukačević Identical particles

  • Identical particles

    Two-particle wave equation

    H =1

    2m1p21 +

    1

    2m2p22 + V (r1, r2)

    pk →~i∇k

    − ~2m1

    ∆1Ψ−~

    2m2∆2Ψ + V (r1, r2)Ψ = EΨ

    Igor Lukačević Identical particles

  • Identical particles

    Two-particle wave equation

    H =1

    2m1p21 +

    1

    2m2p22 + V (r1, r2)

    pk →~i∇k

    − ~2m1

    ∆1Ψ−~

    2m2∆2Ψ + V (r1, r2)Ψ = EΨ

    Ψ = Ψ(x1, y1, z1, x2, y2, z2) visualization is lost

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    Contents

    1 Two-particle wave equation

    2 Symmetric and antisymmetric solutions

    3 Example: He spectrum

    4 Antisymmetry principle

    5 Example: H molecule

    6 Literature

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    Assumption: no interaction!

    electron 1 electron 2

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    − ~2m1

    ∆1Ψ +V1(r1)Ψ−~

    2m2∆2Ψ +V2(r2)Ψ = EΨ Ψ(r1, r2) = u(r1)v(r2)

    @@@R

    ���������)

    Separationofvariables

    +r1 → 1r2 → 2

    ?

    − ~2m1

    ∆1u + V1(1)u = E1u

    − ~2m2

    ∆2v + V2(2)v = E2v

    }99K E1 + E2 = E

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    No interaction:

    probability density Ψ∗Ψ = u(1)∗v(2)∗u(1)v(2) = u(1)∗u(1)v(2)∗v(2)

    particles do not correlate

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    Assumption: allow interaction!

    nucleus electrons

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    Assumption: allow interaction!

    1 e-e: V12 =e2

    r12, r12 =

    √(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

    2 n-e: V1 = −2e2

    r1, V2 = −

    2e2

    r2

    3 total: V = −2e2

    r1−

    2e2

    r2+

    e2

    r12

    S.E. ⇒ − ~2

    2m(∆1 + ∆2)Ψ + VΨ = EΨ

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    Assumption: allow interaction!

    1 e-e: V12 =e2

    r12, r12 =

    √(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

    2 n-e: V1 = −2e2

    r1, V2 = −

    2e2

    r2

    3 total: V = −2e2

    r1−

    2e2

    r2+

    e2

    r12

    S.E. ⇒ − ~2

    2m(∆1 + ∆2)Ψ + VΨ = EΨ

    A question

    What happens with S.E. if we interchange the coordinates of particles?

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    Assumption: allow interaction!

    1 e-e: V12 =e2

    r12, r12 =

    √(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

    2 n-e: V1 = −2e2

    r1, V2 = −

    2e2

    r2

    3 total: V = −2e2

    r1−

    2e2

    r2+

    e2

    r12

    S.E. ⇒ − ~2

    2m(∆1 + ∆2)Ψ + VΨ = EΨ

    A question

    What happens with S.E. if we interchange the coordinates of particles?S.E. is symmetrical wrt that interchange!

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    Assumption: allow interaction!

    1 e-e: V12 =e2

    r12, r12 =

    √(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

    2 n-e: V1 = −2e2

    r1, V2 = −

    2e2

    r2

    3 total: V = −2e2

    r1−

    2e2

    r2+

    e2

    r12

    S.E. ⇒ − ~2

    2m(∆1 + ∆2)Ψ + VΨ = EΨ

    Second question

    What about its solutions then?

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    Assumption: allow interaction!

    1 e-e: V12 =e2

    r12, r12 =

    √(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

    2 n-e: V1 = −2e2

    r1, V2 = −

    2e2

    r2

    3 total: V = −2e2

    r1−

    2e2

    r2+

    e2

    r12

    S.E. ⇒ − ~2

    2m(∆1 + ∆2)Ψ + VΨ = EΨ

    Second question

    What about its solutions then?

    Ψ(1, 2)

    Ψ(2, 1)

    Ψ = c1Ψ(1, 2) + c2Ψ(2, 1)

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    Assumption: allow interaction!

    1 e-e: V12 =e2

    r12, r12 =

    √(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

    2 n-e: V1 = −2e2

    r1, V2 = −

    2e2

    r2

    3 total: V = −2e2

    r1−

    2e2

    r2+

    e2

    r12

    S.E. ⇒ − ~2

    2m(∆1 + ∆2)Ψ + VΨ = EΨ

    Second question

    What about its solutions then?

    Ψ(1, 2)

    Ψ(2, 1)

    Ψ = c1Ψ(1, 2) + c2Ψ(2, 1)

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    Assumption: allow interaction!

    1 e-e: V12 =e2

    r12, r12 =

    √(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

    2 n-e: V1 = −2e2

    r1, V2 = −

    2e2

    r2

    3 total: V = −2e2

    r1−

    2e2

    r2+

    e2

    r12

    S.E. ⇒ − ~2

    2m(∆1 + ∆2)Ψ + VΨ = EΨ

    Second question

    What about its solutions then?

    Ψ(1, 2)

    Ψ(2, 1)

    Ψ = c1Ψ(1, 2) + c2Ψ(2, 1)

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    Assumption: allow interaction!

    1 e-e: V12 =e2

    r12, r12 =

    √(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

    2 n-e: V1 = −2e2

    r1, V2 = −

    2e2

    r2

    3 total: V = −2e2

    r1−

    2e2

    r2+

    e2

    r12

    S.E. ⇒ − ~2

    2m(∆1 + ∆2)Ψ + VΨ = EΨ

    Third question

    How many linear combinations arethere and which of them can wechoose?

    Ψ(1, 2)

    Ψ(2, 1)

    Ψ = c1Ψ(1, 2) + c2Ψ(2, 1)

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    A principle

    Electrons are identical particles...they cannot be distinguished betweeneachother.

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    A principle

    Electrons are identical particles...they cannot be distinguished betweeneachother.

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    A principle

    Electrons are identical particles...they cannot be distinguished betweeneachother.

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    A principle

    Electrons are identical particles...they cannot be distinguished betweeneachother.

    electron 1 electron 2

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    A principle

    Electrons are identical particles...they cannot be distinguished betweeneachother.

    electron 2 electron 1

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    A principle

    Electrons are identical particles...they cannot be distinguished betweeneachother.=⇒ probability density must be unchanged if we interchage their coordinates

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    A principle

    Electrons are identical particles...they cannot be distinguished betweeneachother.=⇒ probability density must be unchanged if we interchage their coordinates

    Fourth question

    Which linear combinations satisfy this condition?

    Igor Lukačević Identical particles

  • Identical particles

    Symmetric and antisymmetric solutions

    A principle

    Electrons are identical particles...they cannot be distinguished betweeneachother.=⇒ probability density must be unchanged if we interchage their coordinates

    Fourth question

    Which linearcombinations satisfythis condition?

    There are two possibilities (Hund & Wigner)

    Ψ+ = Ψ(1, 2) + Ψ(2, 1) - symmetric solutionΨ− = Ψ(1, 2)−Ψ(2, 1) - antisymmetric solution

    Igor Lukačević Identical particles

  • Identical particles

    Example: He spectrum

    Contents

    1 Two-particle wave equation

    2 Symmetric and antisymmetric solutions

    3 Example: He spectrum

    4 Antisymmetry principle

    5 Example: H molecule

    6 Literature

    Igor Lukačević Identical particles

  • Identical particles

    Example: He spectrum

    Energy values are relative to the ground state of

    He+, i.e. one has to subtract 54.4 eV.

    Igor Lukačević Identical particles

  • Identical particles

    Example: He spectrum

    Energy values are relative to the ground state of

    He+, i.e. one has to subtract 54.4 eV.

    Bohr’s theory cannot explain this, although it was known that toparahelium and ortohelium belonged the singlet (antiparallel spin) andtriplet (parallel spin) states

    Igor Lukačević Identical particles

  • Identical particles

    Example: He spectrum

    Energy values are relative to the ground state of

    He+, i.e. one has to subtract 54.4 eV.

    Bohr’s theory cannot explain this, although it was known that toparahelium and ortohelium belonged the singlet (antiparallel spin) andtriplet (parallel spin) states

    Solution Heisenberg in 1926.

    Igor Lukačević Identical particles

  • Identical particles

    Example: He spectrum

    Assumptions:

    un = electron wave functions in state n! (n, l ,m)

    again, no interaction ⇒{

    Ψ = u0(1)un(2)E = E0 + En

    e-e interaction is a small perturbation

    Igor Lukačević Identical particles

  • Identical particles

    Example: He spectrum

    Assumptions:

    un = electron wave functions in state n! (n, l ,m)

    again, no interaction ⇒{

    Ψ = u0(1)un(2)E = E0 + En

    e-e interaction is a small perturbation

    What do we need, if we want to estimate the e-e interaction energy?

    Igor Lukačević Identical particles

  • Identical particles

    Example: He spectrum

    Assumptions:

    un = electron wave functions in state n! (n, l ,m)

    again, no interaction ⇒{

    Ψ = u0(1)un(2)E = E0 + En

    e-e interaction is a small perturbation

    What do we need, if we want to estimate the e-e interaction energy?

    Ψ+ =

    1√2

    [u0(1)un(2) + u0(2)un(1)]

    Ψ− =1√2

    [u0(1)un(2)− u0(2)un(1)]

    Igor Lukačević Identical particles

  • Identical particles

    Example: He spectrum

    Assumptions:

    un = electron wave functions in state n! (n, l ,m)

    again, no interaction ⇒{

    Ψ = u0(1)un(2)E = E0 + En

    e-e interaction is a small perturbation

    What do we need, if we want to estimate the e-e interaction energy?

    Ψ+ =

    1√2

    [u0(1)un(2) + u0(2)un(1)]

    Ψ− =1√2

    [u0(1)un(2)− u0(2)un(1)]

    1√2

    are normalization

    factors

    Igor Lukačević Identical particles

  • Identical particles

    Example: He spectrum

    Expectation of e-e interaction energy

    E ′ =

    ∫ ∫Ψ∗

    e2

    r12Ψdτ1dτ2

    Igor Lukačević Identical particles

  • Identical particles

    Example: He spectrum

    Expectation of e-e interaction energy

    E ′ =

    ∫ ∫Ψ∗

    e2

    r12Ψdτ1dτ2

    E ′ = Eex ± Ecorr , Eex > 0, Ecorr > 0

    For calculation details seeRefs. [1] and [3].

    Igor Lukačević Identical particles

  • Identical particles

    Example: He spectrum

    Expectation of e-e interaction energy

    E ′ =

    ∫ ∫Ψ∗

    e2

    r12Ψdτ1dτ2

    E ′ = Eex ± Ecorr , Eex > 0, Ecorr > 0

    For calculation details seeRefs. [1] and [3].

    Terms

    + 99K paraterms− 99K ortoterms

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Contents

    1 Two-particle wave equation

    2 Symmetric and antisymmetric solutions

    3 Example: He spectrum

    4 Antisymmetry principle

    5 Example: H molecule

    6 Literature

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Spin s =

    {+ 1

    2, spin up, parallel to the outer mag. field

    − 12, spin down, antiparallel to the outer mag. field

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Spin s =

    {+ 1

    2, spin up, parallel to the outer mag. field

    − 12, spin down, antiparallel to the outer mag. field

    wave function:

    Ψ(x , y , z , s) =

    {Ψ(x , y , z ,+ 1

    2) = Ψ+(x , y , z)

    Ψ(x , y , z ,− 12) = Ψ−(x , y , z)

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Spin s =

    {+ 1

    2, spin up, parallel to the outer mag. field

    − 12, spin down, antiparallel to the outer mag. field

    wave function:

    Ψ(x , y , z , s) =

    {Ψ(x , y , z ,+ 1

    2) = Ψ+(x , y , z) = Ψ(x , y , z)α

    Ψ(x , y , z ,− 12) = Ψ−(x , y , z) = Ψ(x , y , z)β

    α� spin wave function for parallel spinβ � spin wave function for antiparallel spin

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Assumptions

    z we have 2 electrons: α(1) and β(2)

    z their spins are independent

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Assumptions

    z we have 2 electrons: α(1) and β(2)

    z their spins are independent

    A question

    What will total spin wave functions look like?

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Assumptions

    z we have 2 electrons: α(1) and β(2)

    z their spins are independent

    Total spin wave functions

    Spin orientationelectron 1 electron 2

    α(1)α(2) ↑ ↑β(1)β(2) ↓ ↓α(1)β(2) ↑ ↓β(1)α(2) ↓ ↑

    Second question

    Can you guess any other?

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Total spin wave functions

    Spin orientationelectron 1 electron 2

    α(1)α(2) ↑ ↑β(1)β(2) ↓ ↓α(1)β(2) ↑ ↓β(1)α(2) ↓ ↑

    Total spin wave functions

    S MSα(1)α(2) 1 1

    α(1)β(2) + α(2)β(1) 1 0 symmetric ⇒ tripletβ(1)β(2) 1 -1

    α(1)β(2)− α(2)β(1) 0 0 antisymmetric ⇒ singlet

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Ok, let us now construct the total wave function:

    ♠ spatial wave function♠ spin wave function

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Ok, let us now construct the total wave function:

    ♠ spatial wave function♠ spin wave function

    Remember

    Ψr =

    {u(1)v(2) + u(2)v(1), symmetricu(1)v(2)− u(2)v(1), antisymmetric

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Ok, let us now construct the total wave function:

    ♠ spatial wave function♠ spin wave function

    Total wave function

    Ψr,s =

    u(1)v(2) + u(2)v(1)×

    α(1)α(2) symmα(1)β(2) + α(2)β(1) symmβ(1)β(2) symmα(1)β(2)− α(2)β(1) antisymm

    u(1)v(2)− u(2)v(1)×

    α(1)α(2) antisymmα(1)β(2) + α(2)β(1) antisymmβ(1)β(2) antisymmα(1)β(2)− α(2)β(1) symm

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Total wave function

    Ψr,s =

    u(1)v(2) + u(2)v(1)×

    α(1)α(2) symmα(1)β(2) + α(2)β(1) symmβ(1)β(2) symmα(1)β(2)− α(2)β(1) antisymm

    u(1)v(2)− u(2)v(1)×

    α(1)α(2) antisymmα(1)β(2) + α(2)β(1) antisymmβ(1)β(2) antisymmα(1)β(2)− α(2)β(1) symm

    A question

    Which of these w.f. come in nature?

    A hint...

    Use Pauli’s exclusion principle.

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Total wave function

    Ψr,s =

    u(1)v(2) + u(2)v(1)×

    α(1)α(2) symmα(1)β(2) + α(2)β(1) symmβ(1)β(2) symmα(1)β(2)− α(2)β(1) antisymm

    u(1)v(2)− u(2)v(1)×

    α(1)α(2) antisymmα(1)β(2) + α(2)β(1) antisymmβ(1)β(2) antisymmα(1)β(2)− α(2)β(1) symm

    A question

    Which of these w.f. come in nature?

    A hint...

    Use Pauli’s exclusion principle.

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Possible total wave functions

    Ψr,s =

    u(1)v(2) + u(2)v(1)× α(1)β(2)− α(2)β(1) antisymm

    u(1)v(2)− u(2)v(1)×

    α(1)α(2) antisymmα(1)β(2) + α(2)β(1) antisymmβ(1)β(2) antisymm

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Possible total wave functions

    Ψr,s =

    u(1)v(2) + u(2)v(1)× α(1)β(2)− α(2)β(1) antisymm

    u(1)v(2)− u(2)v(1)×

    α(1)α(2) antisymmα(1)β(2) + α(2)β(1) antisymmβ(1)β(2) antisymm

    Antisymmetry principle (generalized Pauli’s principle)

    Total wave function of electrons has to be antisymmetric, wrt the interchangeof their (spatial and/or spin) coordinates.

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    If we turn back to helium...

    He electron wave functions

    ΨHer,s =

    u(1)v(2) + u(2)v(1)× α(1)β(2)− α(2)β(1) parahelium

    u(1)v(2)− u(2)v(1)×

    α(1)α(2)α(1)β(2) + α(2)β(1) ortoheliumβ(1)β(2)

    Antisymmetry principle (generalized Pauli’s principle)

    Total wave function of electrons has to be antisymmetric, wrt the interchangeof their (spatial and/or spin) coordinates.

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Generalizations

    ♣ to N-particle systems Ψ(1, 2, 3, . . .) = −Ψ(2, 1, 3, . . .)♣ to all fermions

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Generalizations

    ♣ to N-particle systems Ψ(1, 2, 3, . . .) = −Ψ(2, 1, 3, . . .)♣ to all fermions

    A question

    What about symmetric wave functions Ψ(1, 2, 3, . . .) = Ψ(2, 1, 3, . . .)?They describe the particles with spin 0, 1, 2, . . .

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Generalizations

    ♣ to N-particle systems Ψ(1, 2, 3, . . .) = −Ψ(2, 1, 3, . . .)♣ to all fermions

    A question

    What about symmetric wave functions Ψ(1, 2, 3, . . .) = Ψ(2, 1, 3, . . .)?They describe the particles with spin 0, 1, 2, . . .

    Igor Lukačević Identical particles

  • Identical particles

    Antisymmetry principle

    Generalizations

    ♣ to N-particle systems Ψ(1, 2, 3, . . .) = −Ψ(2, 1, 3, . . .)♣ to all fermions

    In conclusion

    Spin Symmetry Statistics

    0,1,2,. . . symmetric Einstein-Bose

    1

    2,

    3

    2, . . . antisymmetric Fermi-Dirac

    Igor Lukačević Identical particles

  • Identical particles

    Example: H molecule

    Contents

    1 Two-particle wave equation

    2 Symmetric and antisymmetric solutions

    3 Example: He spectrum

    4 Antisymmetry principle

    5 Example: H molecule

    6 Literature

    Igor Lukačević Identical particles

  • Identical particles

    Example: H molecule

    Let us first look at rotational spectrum of H molecule.(Mecke - first experimental observation; Heisenberg & Hund - theoreticalexplanation in 1928.)

    Igor Lukačević Identical particles

  • Identical particles

    Example: H molecule

    Let us first look at rotational spectrum of H molecule.(Mecke - first experimental observation; Heisenberg & Hund - theoreticalexplanation in 1928.)

    The movement of nuclei determines the following properties:

    vibration

    rotation

    spin

    Igor Lukačević Identical particles

  • Identical particles

    Example: H molecule

    Let us first look at rotational spectrum of H molecule.(Mecke - first experimental observation; Heisenberg & Hund - theoreticalexplanation in 1928.)

    The movement of nuclei determinesthe following properties:

    vibration

    rotation

    spin

    These properties are independent

    Ψ = ψvibψrotψspin

    Igor Lukačević Identical particles

  • Identical particles

    Example: H molecule

    These properties are independent

    Ψ = ψvibψrotψspin

    A question

    What happens with this w.f. if weinterchange the coordinates?

    Igor Lukačević Identical particles

  • Identical particles

    Example: H molecule

    These properties are independent

    Ψ = ψvibψrotψspin

    A question

    What happens with this w.f. if weinterchange the coordinates?

    vibration

    rotation

    spin

    ψvib = ψvib(r12), r12 = |r2 − r1|

    ~r → −~r =⇒ ψvib = ψvib

    Igor Lukačević Identical particles

  • Identical particles

    Example: H molecule

    These properties are independent

    Ψ = ψvibψrotψspin

    A question

    What happens with this w.f. if weinterchange the coordinates?

    vibration

    rotation

    spinψrot 99K Y

    ml =

    {Y ml , l even−Y ml , l odd

    ~r → −~r =⇒ ψrot = (−1)lψrot

    Igor Lukačević Identical particles

  • Identical particles

    Example: H molecule

    These properties are independent

    Ψ = ψvibψrotψspin

    A question

    What happens with this w.f. if weinterchange the coordinates?

    vibration

    rotation

    spin

    Igor Lukačević Identical particles

  • Identical particles

    Example: H molecule

    Quantum # l Spin orientation Total spin Statistical weigth NameEven ↑↓ 0 1 para H2Odd ↑↑ 1 3 orto H2

    Igor Lukačević Identical particles

  • Identical particles

    Example: H molecule

    Quantum # l Spin orientation Total spin Statistical weigth NameEven ↑↓ 0 1 para H2Odd ↑↑ 1 3 orto H2

    Note

    There can be no transitions between the states with different symmetrycharacter.

    Igor Lukačević Identical particles

  • Identical particles

    Example: H molecule

    Quantum # l Spin orientation Total spin Statistical weigth NameEven ↑↓ 0 1 para H2Odd ↑↑ 1 3 orto H2

    Note

    There can be no transitions between the states with different symmetrycharacter. para H2 : orto H2 = 1 : 3

    Igor Lukačević Identical particles

  • Identical particles

    Example: H molecule

    Quantum # l Spin orientation Total spin Statistical weigth NameEven ↑↓ 0 1 para H2Odd ↑↑ 1 3 orto H2

    Note

    There can be no transitions between the states with different symmetrycharacter. para H2 : orto H2 = 1 : 3

    A question

    What happens at T = 0 K?

    Igor Lukačević Identical particles

  • Identical particles

    Example: H molecule

    Quantum # l Spin orientation Total spin Statistical weigth NameEven ↑↓ 0 1 para H2Odd ↑↑ 1 3 orto H2

    Note

    There can be no transitions between the states with different symmetrycharacter. para H2 : orto H2 = 1 : 3

    A question

    What happens at T = 0 K? All hydrogen molecules go to para-state.

    Igor Lukačević Identical particles

  • Identical particles

    Example: H molecule

    Another confirmation (Dennison 1928.)

    Igor Lukačević Identical particles

  • Identical particles

    Literature

    Contents

    1 Two-particle wave equation

    2 Symmetric and antisymmetric solutions

    3 Example: He spectrum

    4 Antisymmetry principle

    5 Example: H molecule

    6 Literature

    Igor Lukačević Identical particles

  • Identical particles

    Literature

    Literature

    1 I. Supek, Teorijska fizika i struktura materije, II. dio, Školska knjiga,Zagreb, 1989.

    2 D. J. Griffiths, Introduction to Quantum Mechanics, 2nd ed., PearsonEducation, Inc., Upper Saddle River, NJ, 2005.

    3 A. Szabo, N. Ostlund, Modern Quantum Chemistry, Introduction toAdvanced Electronic Structure theory, Dover Publications, New York,1996.

    Igor Lukačević Identical particles

    ContentsTwo-particle wave equationSymmetric and antisymmetric solutionsExample: He spectrumAntisymmetry principleExample: H moleculeLiterature

    0.0: 0.1: 0.2: 0.3: 0.4: 0.5: 0.6: 0.7: 0.8: 0.9: 0.10: 0.11: 0.12: anm0: 1.0: 1.1: 1.2: 1.3: 1.4: 1.5: 1.6: 1.7: 1.8: 1.9: 1.10: 1.11: 1.12: 1.13: 1.14: 1.15: 1.16: 1.17: 1.18: 1.19: 1.20: 1.21: 1.22: 1.23: anm1: