42
Dr. VIKAS KUMAR Associate Professor of Pharmacology Neuropharmacology Laboratory Department of Pharmaceutics Institute of Technology Banaras Hindu University Varanasi-221 005, U.P., Potential Medicinal Plants for Diabetes and Obesity

IDDST-2011 Detailed PPT

Embed Size (px)

Citation preview

Dr. VIKAS KUMARAssociate Professor of PharmacologyNeuropharmacology LaboratoryDepartment of PharmaceuticsInstitute of TechnologyBanaras Hindu UniversityVaranasi-221 005, U.P., India

Potential Medicinal Plants for Diabetes and Obesity

2

Diabetes & Obesity Type 2 diabetes is three times more prevalent in obese

individuals than non-overweight persons, and 80% of people with type 2 diabetes are obese.

Diabesity, a term denoting clinical association of type 2 diabetes and obesity, represents a substantial economic burden on health expenditure.

Insulin resistance is the main culprit in diabesity. The molecular link between obesity and insulin resistance

include: Insulin: induces receptor down regulation. Free fatty acids: impair insulin action. Circulating peptides: TNF-α, IL-6 and the "adipokines"

adiponectin and resistin.

3

The psychological disorders associated with diabetes are mainly depression, anxiety and memory deficits.

Diabetes mellitus is accompanied by numerous structural, biochemical and behavioural alterations of the CNS.

Several comorbid complications have been described in rodent models of diabetes including depression and anxiety.

Prevalence of depression in diabetic patients are 10-15 % . Chances of cognitive dysfunction and dementia are

almost double in diabetic patients.

Diabetes mellitus and its comorbid neurological complications

4

Hypericum perforatum: Dried 50 % ethanolic extract (HpE) standardised by HPLC to contain not less than 3.00 % hyperforin and 0.30 % hypericines.

Picrorhiza kurroa: Dried aqueous extract (PkE) standardised by HPTLC to contain not less than 5.00 % kutkin.

Quassia amara L.: Dried methanolic extract (QaE) standardised by HPLC to contain 0.27% of total quassin.

Plant Extracts

5

Oral glucose tolerance test

STZ induced diabetes

GLUT-4 assay

Histopathology

Anti-diabetic Activity

6

Figure-1: Effect of HpE, PkE & QaE on oral glucose tolerance test in normal rats

Values are mean ± SEM, *p<0.05 vs. Normal Control. n=6.

7

Figure-2: Effect of HpE, PkE & QaE on fasting blood glucose level in diabetic rats

*p<0.05, **p<0.01, ***p<0.001 vs. Nondiabetic Control; †p<0.001 vs. Diabetic Control. n=6.

8

Figure-3: Effect of HpE, PkE & QaE on plasma insulin level in diabetic rats

*p<0.01 vs. Nondiabetic Control; †p<0.01, ††p<0.001 vs. Diabetic Control. n=6.

9

Table-1: Effect of HpE, PkE & QaE on body weight of diabetic rats

Group Body weight (g) Initial body weight Final (14th day)

Normal Control (CMC) 186.00 ± 2.19 190.67 ± 2.06

Diabetic Control (CMC) 183.00 ± 2.37 159 ± 3.52 **

Diabetic + HpE 100 mg/kg 184.00 ± 3.57 170.67 ± 3.5 * †

Diabetic + HpE 200 mg/kg 188.17 ± 3.54 177 ± 4.09 * †

Diabetic + PkE 100 mg/kg 182.25 ± 4.02 180.27 ± 3.08 * †

Diabetic + PkE 200 mg/kg 185.87 ± 4.26 186.00 ± 2.80 ††

Diabetic + QaE 100 mg/kg 184.00 ± 3.57 180.17 ± 2.77 *†

Diabetic + QaE 200 mg/kg 188.17 ± 3.54 192.00 ± 2.80 ††

Diabetic + Glibenclamide 10 mg/kg 185.16 ± 3.8 176.5 ± 3.08 * †

*p< 0.01, **p<0.001 vs. Normal Control; †p<0.01, ††p< 0.001 vs. Diabetic Control. n=6.

10

Table-2: Effect of HpE, PkE & QaE on lipid profile of diabetic rats

Group TC (mg/dl) TG (mg/dl) HDL-C (mg/dl) LDL-C (mg/dl)Normal Control 79.53 ± 2.29 46.85 ± 1.47 38.67 ± 0.77 31.48 ± 2.59Diabetic Control 143.27 ± 6.68 ** 115.31 ± 6.58 ** 24.47 ± 1.43 ** 95.74 ± 7.1 **

Diabetic + HpE 100 mg/kg

103.8 ± 1.78 ** †† 78.07 ± 3.24** †† 28.18 ± 0.40 ** † 60.00 ± 2.36 ** ††

Diabetic + HpE 200 mg/kg

85.67 ± 2.69 †† 59.16 ± 1.7 †† 31.74 ± 0.3 ** †† 42.09 ± 3.2 ††

Diabetic + PkE 100 mg/kg

86.93 ± 1.90 †† 65.41 ± 4.43 ** 27.39 ± 1.44 **† 46.46 ± 2.37 ** ††

Diabetic + PkE 200 mg/kg

71.42 ± 2.64 †† 56.25 ± 1.62 ** 31.71 ± 1.14 **†† 28.46 ± 2.69 ** ††

Diabetic + QaE 100 mg/kg

119.59 ± 7.32** † 76.58 ± 6.22 ** 25.76 ± 1.58 ** 78.52 ± 9.27 †

Diabetic + QaE 200 mg/kg

98.25 ± 4.2 * †† 73.87 ± 4.63 ** 28.90 ± 0.89**† 54.57 ± 4.53 ** ††

Diabetic+Glibenclamide 10 mg/kg

73.1 ± 2.55 †† 69.37 ± 2.4 * †† 33.94 ± 0.77 * †† 25.28 ± 2.71 ††

*p< 0.01, **p<0.001 vs. Normal Control; †p<0.05, ††p< 0.001 vs. Diabetic Control. n=6.

11

Figure-4: Effect of HpE, PkE & QaE on liver glycogen content in diabetic rats

*p< 0.01, **p<0.001 vs. Normal Control; †p<0.05, ††p< 0.001 vs. Diabetic Control. n=6.

12

Figure-5: Effect of HpE, PkE & QaE on LPO in diabetic rats

*p< 0.05, ***p<0.001 vs. Normal Control; †p<0.05, ††p< 0.01, †††p< 0.001 vs. Diabetic Control. n=6.

13

Figure-6: Effect of HpE, PkE & QaE on SOD in diabetic rats

*p< 0.05, **p< 0.01, ***p<0.001 vs. Normal Control; †p<0.05, ††p< 0.01, †††p< 0.001 vs. Diabetic Control. n=6.

14

Figure-7: Effect of HpE, PkE & QaE on catalase level in diabetic rats

*p< 0.05, **p< 0.01, ***p<0.001 vs. Normal Control; †p<0.05, ††p< 0.01, †††p< 0.001 vs. Diabetic Control. n=6.

15

DC NC PkE QaE HpE Glib

GLUT4 - 53KDa

GAPDH - 37KDa

*p<0.01, ** p<0.001 vs. Normal Control; †p<0.001 vs. Diabetic Control. n=6.

Figure-8: Typical immunoblot of GLUT-4 in the total membrane fraction of skeletal muscle

16

Figure-9: Histopathology of Pancreas (H & E; X100)

Normal Control Diabetic Control Diabetic + Glibenclamide

Diabetic + HpE Diabetic + PkE Diabetic + QaE

17

Figure-10: Histopathology of Liver (H & E; X100)

Normal Control Diabetic + Glibenclamide

Diabetic + HpE Diabetic + PkE Diabetic + QaE

Diabetic Control

18

Figure-11: Histopathology of Kidney (H & E; X100)

Normal Control Diabetic Control Diabetic + Glibenclamide

Diabetic + HpE Diabetic + PkE Diabetic + QaE

19

Hypolipidemic & Anti-obesity activity

Hypolipidemic activity

High fat fed model

Fructose fed model

20

Table-3: Effect of HpE, PkE & QaE on lipid-parameters in normal rats

Group Total-C (mg/dl)

HDL-C (mg/dl)

LDL-C (mg/dl)

Triglyceride (mg/dl)

Control (CMC) 83.98 ± 1.34 31.89 ± 1.21 41.46 ± 2.21 53.10 ± 2.49

HpE 100 mg/kg 73.29 ± 2.10** 35.24 ± 1.56 29.02 ± 2.73** 45.11 ± 2.70

HpE 200 mg/kg 70.51 ± 1.61** 36.64 ± 1.42 25.20 ± 1.60** 43.33 ± 3.67

PkE 100 mg/kg 73.72 ± 2.06** 39.72 ± 1.01* 26.26 ± 2.58** 38.67 ± 2.52*

PkE 200 mg/kg 66.45 ± 2.17*** 42.20 ± 1.76** 17.02 ± 2.27*** 36.22 ± 2.73**

QaE 100 mg/kg 72.65 ± 1.50** 39.67 ± 1.31* 23.42 ± 3.16*** 47.78 ± 2.71

QaE 200 mg/kg 67.31 ± 2.31*** 41.68 ± 2.67** 16.00 ± 0.78*** 44.66 ± 2.91

Clofibrate 100 mg/kg

64.96 ± 2.04*** 42.19 ± 1.09** 15.17 ± 3.25*** 38.00 ± 2.14*

*p<0.05, **p<0.01, ***p<0.001 vs. Normal Control. n=6.

21

Figure-12: Effect of HpE, PkE & QaE on food intake in high fat fed rats

*p<0.01 vs. HFD Control. n=6.

22

Table-4: Effect of HpE, PkE & QaE on body weight in high fat fed rats

Group Average body weight (g)1st day 8th day 15th day 22nd day 30th day

Normal Control (NPD + CMC)

151.00± 1.44 159.33±1.36 171.67±2.47 180.17±2.41 188.83±1.92

HFD Control (HFD + CMC)

151.67±1.52 171.50±2.71** 188.17±2.34*** 204.00±2.57*** 226.17±2.915***

HFD + HpE 100 mg/kg

152.83±1.25 171.00±1.61** 187.83±1.94*** 194.33±1.94** 196.33±1.42††

HFD + HpE 200 mg/kg

151.50±1.52 170.50±2.19** 187.00±2.46*** 193.83±2.83** 190.33±2.40††

HFD + PkE 100 mg/kg

150.83±1.35 169.83±1.96** 186.33±2.06*** 193.67±2.08** 197.17±2.33††

HFD + PkE 200 mg/kg

151.33±1.84 169.00±1.93** 185.67±2.29*** 189.50±2.43*† 193.50±2.19††

HFD + QaE 100 mg/kg

150.00±1.46 167.83±1.64** 185.67±2.31*** 200.00±2.77*** 219.50±1.84***

HFD + QaE 200 mg/kg

149.50±1.50 168.83±1.97** 184.50±2.43*** 197.00±2.84*** 218.33±1.99***

*p<0.05, **p<0.01, ***p<0.001 vs. Normal Control; †p<0.01, ††p<0.001 vs. HFD Control. n=6.

23

Table-5: Effect of HpE, PkE & QaE on lipid parameters in high fat fed rats

Group Total-C(mg/dl)

HDL-C (mg/dl)

LDL-C (mg/dl)

Triglyceride (mg/dl)

Normal Control (NPD + CMC)

53.60 ± 2.27 34.65 ± 0.92 33.55 ± 3.07 53.60 ± 2.27

HFD Control (HFD + CMC)

105.03 ± 4.87*** 24.62 ± 0.79*** 116.49 ± 6.68*** 105.03 ± 4.87***

HFD + HpE 100 mg/kg

86.27 ± 2.51***†† 28.24 ± 0.89***† 80.72 ± 3.83***††† 86.27 ± 2.51***††

HFD + HpE 200 mg/kg

80.42 ± 3.61***††† 30.19 ± 0.93**††† 62.85 ± 4.21***††† 80.40 ± 3.61***†††

HFD + PkE 100 mg/kg

88.78 ± 4.19***† 28.85 ± 0.92***† 70.21 ± 4.54***††† 88.78 ± 4.20***†

HFD + PkE 200 mg/kg

69.18 ± 3.52**††† 31.89 ± 0.99*††† 55.41 ± 4.34**††† 69.18 ± 3.52**†††

HFD + QaE 100 mg/kg

97.49 ± 3.33*** 25.83 ± 0.89*** 96.84 ± 5.42***† 97.49 ± 3.33***

HFD + QaE 200 mg/kg

89.28 ± 3.44***†† 26.38 ± 0.63*** 90.52 ± 4.65***†† 89.28 ± 3.44***††

*p<0.05,**p<0.01,***p<0.001 vs. Normal Control; †p<0.05, ††p<0.01, †††p<0.001 vs. HFD Control. n=6.

24

Table-6: Effect of HpE, PkE & QaE on blood glucose and insulin in high fat fed rats

Group Glucose(mg/dl)

Plasma Insulin(µIU/ml)

Normal Control (NPD + CMC) 84.96 ± 3.58 16.61 ± 0.86

HFD Control (HFD + CMC) 130.89 ± 3.70 ** 62.14 ± 2.95 **

HFD + HpE 100 mg/kg 112.15 ± 3.08 ** † 36.47 ± 2.25 ** ††

HFD + HpE 200 mg/kg 98.89 ± 3.01 * †† 28.78 ± 1.53 ** ††

HFD + PkE 100 mg/kg 108.22 ± 2.61** †† 31.22 ± 1.16 ** ††

HFD + PkE 200 mg/kg 93.11 ± 3.54 †† 24.92 ± 1.60 * ††

HFD + QaE 100 mg/kg 119.85 ± 3.84**† 40.34 ± 1.48 ** ††

HFD + QaE 200 mg/kg 107.56 ± 4.03** †† 33.25 ± 1.23 ** ††

*p<0.01, **p<0.001 vs. Normal Control; †p<0.01, ††p<0.001 vs. HFD Control. n=6.

25

Figure-13: Effect of HpE, PkE & QaE on adipose tissue weight in high fat fed rats

*p<0.01, **p<0.001 vs. Normal Control; †p<0.01, ††p<0.001 vs. HFD Control. n=6.

26

Figure-14: Effect of HpE, PkE & QaE on water intake in fructose fed rats

*p<0.05, **p<0.01 vs. Normal Control; †p<0.01 vs. Fructose Control. n=6.

27

Table-7: Effect of HpE, PkE & QaE on body weight gain in fructose fed rats

Group Body weight gain (g)Normal Control ( drinking water + CMC) 12.33 ± 1.05

Fructose Control (Fructose + CMC) 26.83 ± 2.59*

Fructose + HpE 100 mg/kg 21.00 ± 3.62

Fructose + HpE 200 mg/kg 18.83 ± 2.09

Fructose + PkE 100 mg/kg 18.67 ± 1.69

Fructose + PkE 200 mg/kg 15.17 ± 3.14†

Fructose + QaE 100 mg/kg 21.17 ± 3.12

Fructose + QaE 200 mg/kg 20.17 ± 2.17

*p<0.01 vs. Normal Control; †p<0.05 vs. HFD Control. n=6.

28

Table-8: Effect of HpE, PkE & QaE on lipid parameters in fructose fed rats

Group Total-C(mg/dl)

HDL-C (mg/dl)

LDL-C (mg/dl)

Triglyceride (mg/dl)

Normal Control (Water + CMC)

81.68 ± 2.36 36.21 ± 1.41 35.98 ± 1.65 47.48 ± 3.15

Fructose Control (Fructose + CMC)

117.12 ± 5.12*** 27.38 ± 1.35 *** 62.04 ± 4.89 ** 138.52 ± 4.88***

Fructose + HpE 100 mg/kg

106.01 ± 4.35 ** 30.12 ± 0.92* 57.25 ± 5.57 * 93.24 ± 4.12 ***†††

Fructose + HpE 200 mg/kg

96.99 ± 4.25 † 33.69 ± 1.01†† 47.21 ± 4.84 80.50 ± 4.80 ***†††

Fructose + PkE 100 mg/kg

96.70 ± 3.91 † 31.98 ± 1.02 † 48.05 ± 4.44 83.33 ± 3.94***†††

Fructose + PkE 200 mg/kg

84.09 ± 3.88 ††† 35.67 ± 1.14 ††† 35.42 ± 2.98 †† 64.94 ± 3.31 ***†††

Fructose + QaE 100 mg/kg

110.21 ± 5.78*** 30.71 ± 1.16 * 57.24 ± 5.32* 111.32±3.83***†††

Fructose + QaE 200 mg/kg

104.21 ± 3.71** 32.73 ± 1.26 † 54.49 ± 4.25* 84.91 ± 3.93 ***†††

*p<0.05,**p<0.01,***p<0.001 vs. Normal Control; †p<0.05, ††p<0.01, †††p<0.001 vs. Fructose Control. n=6.

29

Table-9: Effect of HpE, PkE & QaE on blood glucose and insulin in fructose fed rats

Group Glucose(mg/dl)

Plasma Insulin(µIU/ml)

Normal Control (Water + CMC)

80.52 ± 3.44 18.05 ± 0.79

Fructose Control (Fructose + CMC)

149.66 ± 4.49 *** 35.03 ± 1.24 ***

Fructose + HpE 100 mg/kg 125.44 ± 5.70 *** †† 32.32 ± 1.10 ***

Fructose + HpE 200 mg/kg 105.15 ± 3.88 *** †† 30.58 ± 0.83 *** †

Fructose + PkE 100 mg/kg 114.25 ± 4.56 *** †† 27.55 ± 0.91 *** ††

Fructose + PkE 200 mg/kg 92.75 ± 3.78 * †† 22.65 ± 0.88 ** ††

Fructose + QaE 100 mg/kg 121.09 ± 4.01 *** †† 29.63 ± 1.17 *** †

Fructose + QaE 200 mg/kg 107.01 ± 3.81 *** †† 25.62 ± 1.01 *** ††

• p<0.05, **p<0.01, ***p<0.001 vs. Normal Control; †p<0.01, ††p<0.001 vs. Fructose Control. n=6.

30

Diabetes associated CNS disorders

•Porsolt’s forced swim testDiabetes

associated Depression

• Open-field exploration test• Elevated plus maze test

Diabetes associated

Anxiety

• Active avoidance test• Passive avoidance test

Diabetes associated memory-

impairment

31

Figure-15 : Effect of HpE, PkE and QaE on forced swim test

• p<0.001 vs. Normal Control; † p<0.001 vs. Diabetic Control. n=6.

32

Table-10: Effect of HpE, PkE & QaE in open field exploration test

Group Ambulation (N) Rearing(N)

Self Grooming(N)

Fecal dropping(N)

Normal Control (CMC)

42.67 ± 2.16 13.17 ± 1.01 24.83 ± 1.45 3.50 ± 0.22

Diabetic Control (CMC)

38.50 ± 2.45 8.83 ± 0.95* 18.16 ± 0.95* 3.83 ± 0.31

Diabetic ± HpE 100 mg/kg

40.33±2.11 11.5±1.15 20.83±0.86 3.17±0.28

Diabetic ± HpE 200 mg/kg

45.17±2.27 13.5±1.23† 21.67±1.69† 3.00±0.33

Diabetic ± PkE 100 mg/kg

40.00 ± 2.77 8.33 ± 0.84* 18.50 ± 0.96 3.67 ± 0.56

Diabetic ± PkE 200 mg/kg

42.002.79 9.17 ± 0.65 19.17 ± 1.83 4.00 ± 0.58

Diabetic ± QaE 100 mg/kg

39.17 ± 1.49 8.17 ± 0.75* 17.00 ± 1.86* 3.00 ± 0.26

Diabetic ± QaE 200 mg/kg

37.67 ± 1.45 8.33 ± 0.84* 16.17 ± 1.40** 3.17 ± 0.61

• p<0.05, ** p<0.01 vs. Normal Control; † p<0.05 vs. Diabetic Control. n=6.

33

Figure-16: Effect of HpE, PkE & QaE in elevated plus maze test

• p<0.05, *** p<0.001 vs. Normal Control; ††† p<0.001 vs. Diabetic Control. n=6

34

Figure-17: Effect of HpE, PkE & QaE in active avoidance test

Normal C

ontrol (C

MC)

Diabetic C

ontrol (C

MC)

HpE 100 mg/kg

HpE 200 mg/kg

PkE 100 mg/kg

PkE 200 mg/kg

QaE 100 mg/kg

QaE 200 mg/kg

0102030405060708090

***

†***

†††*

******

******

% A

void

ance

Res

pons

e

*p<0.05, ***p<0.001 vs. Normal Control; †p<0.05, †††p<0.001 vs. Diabetic Control. n=6.

35

Figure-18: Effect of HpE, PkE & QaE in passive avoidance test

Acquisition Trial (Day 14) Retention Test (Day 15)0

5

10

15

20

25

30

***

†*

†***

****

*** ***

Normal Control (CMC) Diabetic Control (CMC)HpE 100 mg/kg HpE 200 mg/kgPkE 100 mg/kg PkE 200 mg/kgQaE 100 mg/kg QaE 200 mg/kg

Step

-thr

ough

Lat

ency

(Sec

)

*p<0.05, ***p<0.001 vs. Normal Control; †p<0.001 vs. Diabetic Control. n=6.

36

Conclusions HpE, PkE and QaE demonstrated anti-diabetic activity.

GLUT4 protein level is significantly increased in skeletal

muscle of PkE and QaE treated diabetic rats indicating

improved insulin mediated glucose transport across the

skeletal muscle membrane.

All the three extracts have shown hypolipidemic activity in

normal rats.

HpE and PkE demonstrated anti-obesity activity.

HpE Showed anxiolytic, antidepressant and nootropic

activity in diabetic animal.

37

Summary Present study demonstrated efficacy of Hypericum perforatum in

rodent model of diabetes and obesity. Additionally, HpE also found effective in diabetes associated depression, anxiety and memory-impairment; therefore, potentially beneficial for patients suffering from co-morbid diabetes and CNS disorders

Observed antidiabetic activity of Picrorhiza kurroa is consonant to its traditional use as anti-diabetic medication in North- Eastern Himalayan tribes in India. Picrorhiza kurroa is found to be most effective in normalising lipid abnormalities induced by diabetes, high fat diet or fructose feeding, therefore, PkE could be a valuable alternative therapy for co-morbid condition of diabetes and obesity. PkE did not show significant improvement in diabetes associated CNS disorders

38

Observed anti-hyperglycemic activity of Quassia amara supports its traditional use as anti-diabetic remedy in Costa Rica and Guatemala. QaE showed reversal of lipid parameters in high fat and high fructose fed rats but did not protect weight gain and accumulation of visceral fat in high fat fed rats. QaE also did not show any significant improvement in diabetes associated CNS disorders

In view of safety data available and wide spread use of these medicinal plants across the globe, these plants are free from serious adverse effect unlike various synthetic anti-diabetic drugs. Therefore, these herbs are potential candidates for further clinical evaluation

39

Publications

1. Husain GM, Chatterjee SS, Singh PN, Kumar V. Beneficial effect of Hypericum perforatum on depression and anxiety in a type 2 diabetic rat model. Acta Poloniae Pharmaceutica – Drug Research (Accepted for Publication, 2011).

2. Kumar V., Husain GM, Chatterjee SS. Search for Plants Against Diabesity : A comparative preclinical Study. LAP Lambert Academic Publishing AG Co KG, Germany, 2011. (ISBN 978-3-8443-9087-2).

3. Husain GM, Singh PN, Singh RK, Kumar V. Anti-diabetic activity of standardised extract of Quassia amara in nicotinamide-streptozotocin-induced diabetic rats. Phytotherapy Research, 2011 (DOI: 10.1002/ptr.3491).

4. Husain GM, Chatterjee SS, Singh PN, Kumar V. Hypolipidemic and Antiobesity like Activity of Standardised Extract of Hypericum perforatum L. in Rats. ISRN Pharmacology 2011. (DOI:10.5402/2011/505247).

5. Husain GM, Singh PN, Kumar V. Beneficial effects of a standardized Hypericum perforatum extract against experimentally induced hyperglycaemia in rats. Drug Discoveries & Therapeutics 2009; 3(5):215-220.

6. Husain GM, Singh PN, Kumar V. Antidiabetic activity of standardized extract of Picrorhiza kurroa in rat model of NIDDM. Drug Discoveries & Therapeutics 2009; 3(3):88-92.

7. Husain GM, Singh PN, Kumar V. Anti-diabetic activity of Indian Hypericum perforatum L. on alloxan-induced diabetic rats. Pharmacologyonline 2008; 3:889-894.

Research Papers

40

Abstracts in National / International Scientific Conferences1. Husain GM, Singh PN, Singh RK, Kumar V. Effect of Hypericum perforatum, Picrorhiza kurroa and

Quassia amara on plasma insulin level in nicotinamide-streptozotocin induced diabetic rats. 43rd Annual Conference of Indian Pharmacological Society & International Conference on Pharmacology and Translational Research, organized by National Executive Committee 2010-IPS in Association with Food and Toxicology Research Centre, National Institute of Nutrition, Hyderabad, 2010.

2. Husain GM, Thakur AK, Singh PN, Kumar V. Effect of Picrorhiza kurroa & Quassia amara on high fat diet induced obesity in rats. Update Ayurveda, organized by Seth GS Medical College & KEM Hospital and TN Medical College & BYL Nair Ch. Hospital, Mumbai, 2010.

3. Husain GM, Singh PN, Kumar V. Improvement of cognitive functions by Hypericum perforatum in streptozotocin induced diabetic rats. International Symposium on Brain Aging and Dementia, Department of Zoology, Banaras Hindu University, Varanasi, 2010.

4. Husain GM, Geed M, Singh PN, Kumar V. Beneficial effect of Hypericum perforatum on high fat diet induced obesity in rats. 62nd Indian Pharmaceutical Congress, Manipal University, Manipal, 2010.

5. Husain GM, Thakur AK, Singh PN, Kumar V. Lack of antidepressant and anxiolytic activity of Picrorhiza kurroa and Quassia amara in streptozotocin induced diabetic rats. International Symposium on Brain Aging and Dementia, Department of Zoology, Banaras Hindu University, Varanasi, 2010.

6. Husain GM, Patel CG, Kumar V. Beneficial effect of Hypericum perforatum on depression and anxiety in nicotinamide-streptozotocin induced diabetic rats. 61st Indian Pharmaceutical Congress, Ahmedabad, 2009.

7. Husain GM, Singh PN, Kumar V. Anti-diabetic activity of Quassia amara in nicotinamide-streptozotocin-induced diabetic rats. 42nd Annual Conference of the Indian Pharmacological Society and International Conference on Integrative & Personalized Medicine, Kolkata, 2009.

8. Husain GM, Singh PN, Kumar V. Hypoglycemic activity of Indian Hypericum perforatum L. on alloxan-induced diabetic rats. 41st Annual Conference of Indian Pharmacological Society, organized by All India Institute of Medical Sciences, New Delhi, 2008.

41

Mr. Gulam Mohammed Husain, Former Ph.D. Scholar.

Dr. S.S. Chatterjee, Retired Pharmacologist, Dr. Willmar Schwabe, Germany.

Indian Herbs Ltd., Saharanpur, India.

Natural Remedies Pvt. Ltd., Bangalore, India.

Promed Research Centre, Gurgaon, India.

Dr. R.K. Singh, Assistant Professor, Department of Biochemistry, BHU.

University Grants Commission, New Delhi, India.

ACKNOWLEDGEMENTS

42

Thank You…..

Quassia amara L.Hypericum perforatum Picrorhiza kurroa