64

I Contract - NASA

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: I Contract - NASA
Page 2: I Contract - NASA

I Contract NAS1-10873

A STUDY OF SYSTEMS REQUIREMENTS FOR PHOBOS/DEIMOS MISSIONS

F I N A L REPORT

V o l u m e I

Summary

A p p r o v e d

P r o g r a m M a n a g e r

MART1 N MARIETTA CORPORATION DENVER D I V I S I O N

D e n v e r , C o l o r a d o 80201

Page 3: I Contract - NASA

FOREWORD

This is Volume I of t h e F i n a l Report on A Study of Systems Requirements f o r Phobos/Deimos Miss ions , conducted by t h e Mar t in Marietta Corpora t ion .

Th i s s tudy w a s performed f o r t h e Langley Research Cen te r , NASA: under Con t rac t NAS1-10873, and w a s conducted du r ing t h e p e r i o d 4 June 1971 t o 4 June 1972. Langley Research Cen te r , NASA, was the Techn ica l R e p r e s e n t a t i v e of t h e Con t rac t ing O f f i c e r . The s tudy w a s j o i n t l y sponsored by t h e Advanced Concepts and Mission D i v i s i o n of t h e O f f i c e of Aeronaut ics and Space Technology (OAST) and t h e P l a n e t a r y Pro- grams Div i s ion of t h e O f f i c e of Space Sc iences (OSS) i n NASA Headquar te rs .

M r . Edwin F. Har r i son of

Th i s F i n a l Repor t , which summarizes t h e r e s u l t s and conclu- s i o n s of t h e three-phase s t u d y , c o n s i s t s of f o u r volumes a s fo l lows :

Volume I - Summary

Volume I1 - Phase I Resu l t s - S a t e l l i t e Rendezvous and Landing Miss ions

Volume I11 - Phase I1 R e s u l t s - S a t e l l i t e Sample Return Missions and S a t e l l i t e M o b i l i t y Concepts

Volume I V - Phase 111 Resu l t s - Combined Miss ions t o Mars and Its Sa te l l i t e s

ii

Page 4: I Contract - NASA

ACKNOWLEDGEMENT

M a r t i n Marietta wishes t o r e c o g n i z e t h e con-

t r i b u t i o n s of t h e fo l lowing NASA i n d i v i d u a l s

t o t h i s s t u d y :

Edwin F. H a r r i s o n of t h e NASA Langley Research C e n t e r , Technica l R e p r e s e n t a t i v e of t h e C o n t r a c t i n g O f f i c e r , f o r NASA management and d i r e c t i o n .

E . Br ian P r i t c h a r d of t h e NASA Langley Research C e n t e r , f o r g e n e r a l guidance and d i r e c t i o n .

James J . T a y l o r and Nickolas L. F a u s t of t h e NASA Manned S p a c e c r a f t C e n t e r , f o r i n f ormation on broken-plane t r a j e c t o r y performance c h a r a c t e r i s t i c s .

George F. Lawrence of OSS, NASA Headquar te rs , f o r t e c h n i c a l moni tor ing and g e n e r a l gu idance .

Robert H . R o l l i n s , I1 of OAST, NASA Headquar te rs , f o r t e c h n i c a l moni tor ing and g e n e r a l guidance.

Donald L. Young of t h e Jet P r o p u l s i o n L a b o r a t o r y , (JPL) f o r supply ing d a t a on JPL ' s s p a c e s t o r a b l e p r o p u l s i o n s t u d i e s .

iii

Page 5: I Contract - NASA

CONTENTS

Page Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . iii Conten t s . . . . . . . . . . . . . . . . . . . . . . . . . . . i v Abbrev ia t ions and Symbols . . . . . . . . . . . . . . . . . . v i i i

I. Why Explore t h e Moons of Mars? . . . . . . . . . 1-1

11. What do w e Know About Phobos and Deimos? . . . . 11-1 t h r u 11-3

111.

I V .

V.

V I .

S c i e n t i f i c Ob jec t ives o f Phobos/Deimos E x p l o r a t i o n 111-1

111-4 thru

Background and Approach f o r T h i s Study. . . . . . I v - 1 t h r u I V - 2

Phase I - S a t e l l i t e Rendezvous, Landing 6 Roving

A. Rendezvous and Landing Miss ion P r o f i l e

B. Rendezvous and Landing Miss ion B a s e l i n e

C. Rendezvous and Landing Miss ion Cost

Miss ion . . . . . . . . . . . . . . . . . . . . . V-1

v- 3

S p a c e c r a f t . . . . . . . . . . . . . . . . . V-5

E s t i m a t e . . . . . . . . . . . . . . . . . . . v-12

. . .

Phase 11 - S a t e l l i t e Sample Re tu rn .Miss ion . . . . VI-1 A. Sample Return Mission P r o f i l e . . . . . . . . V I - 2

B . Sample Return Mission B a s e l i n e S p a c e c r a f t . . V I - 5 C. Sample Return Mission Cost E s t i m a t e . . . . . VI-12

i v

Page 6: I Contract - NASA

VII.

VIII.

Page Phase I11 - Combined Mars and Phobos/Deimos

A. Combined Miss ion P r o f i l e . . . . . . . . . . VII-1 B. Combined Mission B a s e l i n e S p a c e c r a f t . . . . VI175 C. Combined Mission Cost E s t i m a t e . . . . . . . VII-9

Miss ions . . . . . . . . . . . . . . . . . . . . . VII-1

Conclusions . . . . . . . . . . . . . . . . . . . VIII-1 t h r u VIII-3

V

Page 7: I Contract - NASA

t LIST OF FIGURES

Figure 11-1 11-2 v-1 v-2

v-3 v-4 v-5 V-6

VI-1 VI-2

VI-3 VI-4 VI-5 VI-6 VII-1 VII-2 VII-3 VII-4

VII-5

Page Mariner 9 Photo of Phobos . . . . . . . . . . . .. 11-2 Deimos as Seen ~y Mariner 9 . . . . . . . . Overview of Miss ion P r o f i l e . . . . . . . . Phobos/Deimos Lander/Rover (Base l ine Conf igu ra t ion . . . . . . . . . . . . . . . P hob os /Deimos Lander /Rover. . . . . . . . . S a t e l l i t e Landing Sequence . . . . . . . . Phobos/Deimos Wheeled Roving Lander . . . . Phobos/Deimos Landed O r b i t e r (Landed Conf igura t ion . . . . . . . . . . . . . . . Overview of Mission P r o f i l e - Sample Return

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

11-3 v-4

V-6 v-7 v-9 v-lo

v-11 v1-3

Comparative AV Requirements f o r Sample Return Miss ions . . . . . . . . . . . . . . . . . . . . . VI-4 Base l ine Sample Return Conf igu ra t ion . . . . . . VI-7 Base l ine Sample Return Sequence . . . . . . . . . VI-8 P r e f e r r e d A l t e r n a t e Sample Return Sequence. . . . VI-lo Ear th Ent ry Module. . . . . . . . . . . . . . . . VI-11 Nominal Sc ience Payload A l l o c a t i o n . . . . . . . VII-2 Overview of Miss ion P r o f i l e . . . . . . . . . . . VII-3 Cmbined Miss ions Spacec ra f t Conf igu ra t ions . . . VII-6 Trans-Mars Spacec ra f t Weight vs Payload - 1979 - 97 Hour Orbit. . . . . . . . . . . . . . . VII-7 Combined Miss ions Base l ine S p a c e c r a f t (Cru i se Conf igu ra t ion ) . . . . . . . . . . . . . . VII-8

v i

Page 8: I Contract - NASA

LIST OF TABLES

Tab1 e 11-1 I 11-1 111-2

111-2

v-1

v-2 V I - 1 VI-2 VII-1

C h a r a c t e r i s t i c s of t h e S a t e l l i t e s of Mars . . . . Phobos/Deimos Sc ience Ques t ions . . . . . . . . . Science O b j e c t i v e s f o r Miss ions t o Phobos and Deimos . . . . . . . . . . . . . . . . . . . . Science O b j e c t i v e s f o r Miss ions t o Phobos and Deimos (Concluded) . . . . . . . . . . . . . . Phobos/Deimos S c i e n c e O b j e c t i v e s - F i r s t Mission. . . . . . . . . . . . . . . . . . . . . . Phase I Cost Summary - Phobos Landing. . . . . . . Candidate Sample Return Miss ion Elements . . . . . Sample Return Cost Summary . . . . . . . . . . . . Combined Miss ion Cost Summary . . . . . . . . . .

Page

11-1 111-2

111-3

111-4

v-2 V-13 VI-6 VI-1 3 VII-10

v i i

Page 9: I Contract - NASA

ABBREVIATIONS AND SYMBOLS

a

ACS

ARU

Ax, AY, Az

bPS CC&S

cg db

DLA

DSN

DSS

EL

ETC

Az

FOV

g

G&C

GCSC

g m s HZ i

IRU

JPL

kbps

km

L/E

o r b i t semi-major axis

a t t i t u d e c o n t r o l system

a t t i t u d e r e f e r e n c e system

body a c c e l e r a t i o n

azimuth ang le

b i t s pe r second

c o n t r o l computer and sequencer

c e n t e r of g r a v i t y

d e c i b e l

d e c l i n a t i o n of launch asymptote

Deep Space N e t

Deep Space System

e l e v a t i o n a n g l e

eng inee r ing tes t c a p s u l e

l a n d e r engine t h r u s t command

f i e l d of view

a c c e l e r a t i o n due t o g r a v i t y , E a r t h

guidance and c o n t r o l

gu idance , c o n t r o l and sequencing computer

g r a v i t y (ms)

h e r t z

o r b i t i n c l i n a t i o n

i n e r t i a l r e f e r e n c e u n i t

Jet Propuls ion Labora tory

k i l o b i t s per second

k i lome te r s

launch/encounter

v i i i

Page 10: I Contract - NASA

LOS

LP CA

LRC

mbps

MCC

MLI

MMC

M O I

NASA

NW

OSR

P9 49 r PTC

PTO

R

i RC S

RF

RS S

RTG

R9 9

s/c TA

TEI

T/M TMI T ' L A

UHF

uv VHE

l i n e - o f - s i g h t

l a n d e r p y r o t e c h n i c c o n t r o l assembly

Langley Research Center

megabi t s p e r second

midcourse c o r r e c t i o n

m u l t i l a y e r i n s u l a t i o n

Mar t in Marietta Corpora t ion

Mars o r b i t i n s e r t i o n

N a t i o n a l Aeronaut ics and Space A d m i n i s t r a t i o n

n e t load f a c t o r times weight

o p t i c a l s o l a r r e f l e c t o r

body a t t i t u d e r a t e s

proof test c a p s u l e

proof test o r b i t e r

range

range rate

r e a c t i o n c o n t r o l system

r a d i o frequency

root-sum-of-squares

r a d i o i s o t o p e t h e r m o e l e c t r i c g e n e r a t o r

99 p e r c e n t i l e c l o s e s t approach r a d i u s

s p a c e c r a f t

o r b i t t r u e anomaly

t r a n s - E a r t h i n j e c t i o n

t h r u s t - t o-mas s

trans-Mars i n j e c t i o n

t r a v e l i n g wave t u b e a m p l i f i e r

u l t r a - h i g h frequency

u l t r a v i o l e t

h y p e r b o l i c e x c e s s v e l o c i t y

i x

Page 11: I Contract - NASA

VM

vo VRU

W

a

AV

"STAT

E

0

IT

P

0

0 J,

k S

51

0 -

v e l o c i t y meter

Viking O r b i t e r

v e l o c i t y r e f e r e n c e u n i t

weight

s o l a r a b s o r p t i v i t y

d e l t a v e l o c i t y

n a v i g a t i o n u n c e r t a i n t y d e l t a v e l o c i t y

o r b i t e c c e n t r i c i t y

p i t c h a t t i t u d e a n g l e

3.1416

d e n s i t y

s t anda rd d e v i a t i o n

r o l l a t t i t u d e a n g l e

yaw a t t i t u d e a n g l e

Mars c e n t r a l g r a v i t y p o t e n t i a l c o n s t a n t

Mars l o n g i t u d e of ascending node

Mars argument of p e r i a p s i s

approximately

X

Page 12: I Contract - NASA

I

I . WHY EXPLORE THE MOONS OF MARS?

Phobos and Deimos, t h e two n a t u r a l satell i tes of Mars, h o l d

an ique p l a c e s i n t h e s o l a r system. The smallest of t h e 31 known

satellites, and e x h i b i t i n g extremely l o w a l b e d o s , t hey are thought

by some t o b e cap tu red a s t e r o i d s r a t h e r t h a n remnants of t h e Mars

a c c r e t i o n p r o c e s s . I f they are a s t e r o i d s , composed of p r i m o r d i a l

matter from t h e o r i g i n a l s o l a r nebula , they may h o l d c l u e s v i t a l

t o o u r unders tanding of t h e o r i g i n and e v o l u t i o n of our s o l a r

f a m i l y .

from t h e i r mother p l a n e t and have s i n c e been p rese rved i n a n un-

mod i f i ed state, they may y i e l d v a l u a b l e i n s i g h t i n t o the h i s t o r y

and e v o l u t i o n of Mars i n p a r t i c u l a r and p l a n e t s i n g e n e r a l . But

s t i l l o t h e r t h e o r i e s of o r i g i n have been o f f e r e d : t h a t t h e satel-

l i t es are f ragments of a l a r g e r synchronous companion of Mars t h a t

w a s des t royed i n a ca t ac lysmic c o l l i s i o n ; and , t h a t Phobos and

Deimos are of s e p a r a t e o r i g i n s , r e p r e s e n t i n g bo th ind igenous and

a l i e n material.

I f , on t h e o t h e r hand, Phobos and Deimos were d e r i v e d

I n s p i t e o f , o r perhaps more l i k e l y , because of t h e mystery

a n d disagreement t h a t sur rounds t h e Mar t ian satell i tes, t h e y have

s t i m u l a t e d cons ide rab ly sc ien t i f ic i n t e r e s t . The re fo re , s p a c e

f l i g h t mi s s ions t o observe and ana lyze t h e s e s m a l l bod ie s promise

r i c h s c i e n t i f i c r e t u r n s , c l o s e l y a t t u n e d t o ou r Na t ion ' s s t a t e d

o b j e c t i v e s f o r p l a n e t a r y e x p l o r a t i o n .

Page 13: I Contract - NASA

i

I PROPERTY

SEMIMAJOR AXIS OF ORBIT, km

ECCENTRICITY

INCLINATION OF ORBIT TO MARS

EQUATOR, deg

ORBITAL PERIOD, h r

ROTATIONAL PERIOD, h r

S I Z E , km

ALBEDO

SURFACE GRAVITY, EARTH G

11-1

11. WHAT DO WE KNOW ABOUT PHOBOS AND DEIMOS?

Phobos and Deimos were f i r s t d i scove red by Asap.h Eta11 in 1877

us ing a 66 cm r e f r a c t o r a t the Washington Obse&atdrp.

t i m e , t hey have been observed by t e l e s c o p e , caught f l e e t i n g l y by

t h e camera of t h e Mariner 7 f lyby s p a c e c r a f t , and mast r e c e n t l y

photographed by t h e t e l e v i s i o n imaging system of Mariner 9. Mariner 9 obse rva t ions* , t h e b e s t of which were a t a r ange of

abou t 5500 km, provided f e a t u r e r e s o l u t i o n on t h e s u r f a c e of Phobos

of approximate ly 450 meters.

Phobos showing t h e h e a v i l y c r a t e r e d s u r f a c e , and F i g u r e 11-2 is

one of Deimos t a k e n a t l o n g e r range.

S i n c e t h a t

The

Figure 11-1 i s a Mariner 9 photo of

From t h e Deimos image, one

might i n f e r a somewhat smoother s u r f a c e .

pho tos , p r a c t i c a l l y a l l t h e known p h y s i c a l d a t a on t h e Mar t i an

sa tel l i tes are summarized i n t h e fo l lowing t a b l e .

I n a d d i t i o n t o t h e v i s u a l c h a r a c t e r i s t i c s shown i n t h e s e

Table 1 1 - 1 Characteristics o f the Satellites o f Mars I

PHOBOS

9382

0.0170

0.95

7.654

7.654

21 x 25

.06

.OOl

DE IMOS

23480

0.0028

1.3

30.298

?

12 x 13.5

.05

.0005

* A s p r e d i c t e d by Edwin F. Harr ison and J a n e t W, Campbell, NASA Langley Research Center : "Reconnaissance of Mars S a t e l l i t e s . " J . of Spacecraft and Rockets, Vol. 7, No. 10, October 1970.

Page 14: I Contract - NASA

11-2

Figure 11-1 Mariner 9 Photo of Phobos

Page 15: I Contract - NASA

11-3

Figure 11-2 Deimos as Seen by Mariner 9

Page 16: I Contract - NASA

111-1

111. SCIENTIFIC OBJECTIVES OF PHOBOS/DEIMOS EXPLORATION

The s c i e n t i f i c o b j e c t i v e s f o r a p l a n e t a r y e x p l o r a t i o n mis s ion

can be most o f t e n expressed as a series of q u e s t i o n s . A f t e r

t a l k i n g t o a number of members of t h e s c i e n t i f i c community and

reviewing l i t e r a t u r e on t h e Mart ian sa te l l i t es , the q u e s t i o n s

summarized i n Table 111-1 emerged as t h e s c i e n t i f i c r a t i o n a l e f o r

e x p l o r i n g Phobos and Deimos.

I n o r d e r to prov ide answers t o such q u e s t i o n s , s p e c i f i c

s c i e n t i f i c o b s e r v a t i o n s and measurements must b e made. Table

111-2 o u t l i n e s t h e s c i e n c e i n v e s t i g a t i o n s and a s s o c i a t e d exper i -

men ta l and i n s t r u m e n t a l techniques t h a t should b e cons idered f o r

mis s ions t o t h e v i c i n i t y of t h e s a t e l l i t e s .

The t a b u l a t i o n shown h e r e i s , of cour se , n o t complete , b u t

i l l u s t r a t e s t h e k inds of experiments t h a t have been performed i n

p rev ious programs such as Apol lo , Surveyor , and Viking, t o d e t e r -

mine t h e composi t ion, o r i g i n , and e v o l u t i o n of p l a n e t a r y bodies .

I n c a r r y i n g ou t u s e f u l and p r a c t i c a l space mis s ions , s c i e n c e

teams, NASA management, and c o n t r a c t o r s must work t o g e t h e r t o

select ins t rumen t payloads t h a t w i l l r e t u r n h igh p r i o r i t y d a t a

f o r minimum c o s t inves tment . Decis ions l i k e whether age d a t i n g

shou ld be a t tempted i n s i t u o r whether i t j u s t i f i e s t h e per -

formance of sample r e t u r n mis s ions , are t y p i c a l of t h e mis s ion

s c i e n c e p lanning p rocess .

Page 17: I Contract - NASA

111-2

VI c Q

.- e= c i,

v, e- c 0 .-

0

3 .- CI -

VI 0 E .- e.

m - .- c

m a a, n

n

\ VI 0

0 r CL

B W L

i2 z e* c 0 CI Q, L u

.-

3

z v) L

b 0 v)

S m S

Q, E

c,

E

E 8 v)

L z v) L z 4

I U U U

aJ

I8 I-

c n

.- e- L Q, m L m 2

v) U .- e

b 0

cc. L U c m

L

8 A L 0 c, v)

b 0 v)

c m c,

c,

2 2 U

m c .- c 0

> .- Is

.- I

3 P

ti E m h

L

Q, = E

L Q, v, P 0

a > .- le n L r u

c, .. L m w c

0

3 .- CI - 9 w

e .. c L .- rn .- E

8 L 0

Page 18: I Contract - NASA

111-3

- + -

I l l

a- N

v)

0 .- c.

- I

m

>r Q, > L 3 z

3 3 m m

Page 19: I Contract - NASA

111-4

x

Q,

I c.

ET c I aJ .-

?i V v) Y V m

m lz

m

n - a

F

e c.

iE +- V aJ a cn aJ V c aJ V v)

0 3 LL x m

Qf

2 -

>I<

F

2

c

iE + V aJ cn x m Qf

n

z E m c3

F

e c. aJ E

c. u aJ

cn m c a

n

- a aJ > v) vl m a

.-

CT c aJ m V v) Y V m

h m Qf

.- I

+ c.

m

E 8 E

ET c m

4,

.- c. n

z aJ v) L m 0 0

v) + c iE aJ W I 0 c

-

.- 5 OZI 0 I

* -,

3

v) c c s E

c w E s

x s? - - m I aJ c

-0 aJ a m I

n

I-

+ 0

Page 20: I Contract - NASA

IV-1

I V . BACKGROUND AND APPROACH FOR T H I S STUDY

The o r i g i n a l work t o d e f i n e space f l i g h t m i s s i o n s t o Phobos

and Deimos w a s done a t t h e NASA Langley Research Center by

E. B r i a n P r i t c h a r d and Edwin F. Harrison*. P r i t c h a r d and

H a r r i s o n s t u d i e d t h e performance requi rements of a number of

m i s s i o n modes and concluded t h a t Phobos/Deimos e x p l o r a t i o n w a s

f e a s i b l e u s i n g c u r r e n t s p a c e v e h i c l e concepts and technology.

I n June of 1971, M a r t i n Mar ie t ta C o r p o r a t i o n ' s Denver D i v i s i o n

was awarded C o n t r a c t NAS1-10873, a s t u d y of Systems Requirements

f o r Phobos/Deimos miss ions . Our d i r e c t i o n was t o s t a r t w i t h t h e

P r i t c h a r d / H a r r i s o n work and proceed through t h e f o l l o w i n g g e n e r a l

s t e p s :

1. Assess s c i e n t i f i c i n t e r e s t i n Phobos and Deimos;

2 . Develop miss ion d e s i g n ( s ) ;

3. Define p r a c t i c a l systems and subsystems;

4 . Est imate c o s t s and schedules ;

5. Recommend b a s e l i n e program(s) ;

6 . I d e n t i f y technology requi rements .

O v e r a l l g u i d e l i n e s provided by t h e NASA Technica l R e p r e s e n t a t i v e

of t h e C o n t r a c t i n g O f f i c e r emphasized t h e f o l l o w i n g :

1. Design miss ions around r e a l i s t i c s c i e n c e o b j e c t i v e s and

payloads ;

2 . Minimize program c o s t s ;

3 . Emphasize 1979 and 1981 o p p o r t u n i t i e s ;

4 . Apply proven s p a c e c r a f t hardware (Mariner, Vik ing ,

P i o n e e r ) ;

5. Consider expendable and r e u s a b l e launch systems.

* See Phobos/Deimos Missions, AIM Paper No. 71-830, p r e s e n t e d a t t h e AIAA Space Systems Meeting a t Denver, Colorado, J u l y 19-20, 1971.

Page 21: I Contract - NASA

IV-2

The f i r s t two g u i d e l i n e s w e r e cons idered most i m p o r t a n t . The

s tudy w a s conducted under t h e assumption t h a t a Mars s a t e l l i t e

mission would be approved only i f a h igh v a l u e could b e e s t a b l i s h e d

and recognized f o r t h e p o t e n t i a l s c i e n t i f i c r e t u r n , and a t t h e same

t i m e , only i f t h e program c o s t s could be h e l d t o a range competi-

t i v e w i t h o t h e r d e s i r e d new space f l i g h t s t a r t s .

Our approach t o t h i s work w a s t o examine a se r ies of b a s e l i n e

miss ion concepts . I n Phase I of t h e s t u d y , a b a s i c Phobos o r

Deimos rendezvous and l a n d i n g m i s s i o n was d e f i n e d . I n Phase 11,

using t h e unders tanding of t h e landing m i s s i o n developed i n Phase

I , a b a s e l i n e s a t e l l i t e sample r e t u r n miss ion was d e r i v e d . Fin-

a l l y , i n Phase 111, a l a r g e number of combinat ion Mars and Phobos/

D e i m o s e x p l o r a t i o n m i s s i o n s was examined t o s e l ec t a recnmmended

b a s e l i n e combination p r o f i l e t h a t would o f f e r h i g h scievce r e t u r n

va lue f o r minimum c o s t . The r e s u l t s of t h e s e t h r e e s t u d y phases

a r e descr ibed i n d e t a i l i n Volumes 11, 111, and I V of t h i s r e p o r t

and a r e summarized i n t h e remaining pages of t h i s volume.

Page 22: I Contract - NASA

Phase I - Satellite Rendezvous, Landing and Roving Mission

Page 23: I Contract - NASA

v-1

V. PHASE I - S A T E L L I T E RENDEZVOUS, LANDING AND ROVING M I S S I O N

It was dec ided t h a t t h e i n i t i a l t h r e e months of t h e s t u d y

should be s p e n t i n compi l ing b a s i c in fo rma t ion needed f o r any

s a t e l l i t e miss ion d e s i g n and i n d e f i n i n g a b a s e l i n e rendezvous

and l and ing miss ion upon which o t h e r mis s ion modes could be b u i l t .

The f i r s t t a s k was t o develop a Phobos/Deimos Eng inee r ing

Model, p a t t e r n e d a f t e r t h e Mars Engineer ing Model used i n t h e

Viking P r o j e c t . The model, included i n Appendix A of Volume I1

of t h i s r e p o r t d e f i n e s t h e Phobos/Deimos s u r f a c e c h a r a c t e r i s t i c s

and environments t o which a s p a c e c r a f t would have t o be des igned .

Some of t h e more impor tan t s a t e l l i t e f e a t u r e s assumed i n t h e model

a r e :

1. Rough topography due t o s a t u r a t i o n c r a t e r i n g q u i t e l i k e l y ;

2 . Surface composi t ion could be :

a . Mar t i an - l ike ( B a s a l t i c )

b. M e t e o r i t e - l i k e

1 . 1 ) s t o n e s ( rock)

( 2 ) i r o n s ( m e t a l l i c , predominant ly Fe and Ni)

( 3 ) carbonaceous c h o n d r i t e s (h igh i n o r g a n i c s , v e r y

f r i a b l e ) ;

3 . S o i l b e a r i n g c a p a c i t y cou ld v a r y from ext remely poor ( loose r u b b l e ) t o e x c e l l e n t (bare r o c k o r i r o n ) ;

4 . Dust l a y e r assumed t o be one cen t ime te r t h i c k ;

5. Moisture f r e e s u r f a c e and n e g l i g i b l e g r a v i t a t i o n a l f o r c e s

w i l l enhance e l e c t r o s t a t i c e f f e c t s on d u s t ;

6 . Synchronous r o t a t i o n ( s p i n per iod e q u a l s o r b i t a l p e r i o d )

assumed.

The next t a s k was t o de f ine a r e a l i s t i c s c i e n c e payload f o r

a n i n i t i a l rendezvous and landing mission. Tab le V-1 o u t l i n e s

t h e s c i e n c e o b j e c t i v e s and recommended i n s t r u m e n t a t i o n f o r t h e

b a s e l i n e payload. The t o t a l weight of t h e s e in s t rumen t s , i n c l u d i n g

b o t h o r b i t a l and landed sc i ence , would be approximate ly 90 kg.

Page 24: I Contract - NASA

v -2

V aJ '3

0 n

v) 0 E

\ v) 0

0 r a

n

L IC, u aa P v)

e -0 c m aa

-

>

c 0 .- Y

L aa c. 92 t 0 L. c. u aa p. v)

m

m c3

2 E aa m 0

c 0 .-

5 w

v) CI c z aa w -

L L Q) Y

Page 25: I Contract - NASA

v-3

A. RENDEZVOUS AND LANDING MISSION PROFILE

The basic event sequence used t o rendezvous w i t h t h e sa te l l i tes

of Mars i s shown i n F i g u r e V-1. The o b s e r v a t i o n o r b i t ( s t e p 7) t a k e s advantage of t h e f a c t t h a t t h e o r b i t a l p e r i o d s of Deimos and

Phobos a r e v e r y c l o s e t o a r a t i o of 4 t o 1 (approximately 30 and

7.5 h o u r s ) . The o b s e r v a t i o n o r b i t , w i t h a per iod of 15 h o u r s ,

w i l l a l l o w c l o s e encounter with Deimos e v e r y o t h e r r e v o l u t i o n and

r e p e a t e d c l o s e c r o s s i n g s of Phobos. A d e c i s i o n t o rendezvous w i t h

e i t h e r s a t e l l i t e could be made a f t e r a n a l y z i n g d a t a g a t h e r e d i n t h e

o b s e r v a t i o n o r b i t . To rendezvous w i t h Deimos, the o b s e r v a t i o n

o r b i t i s c i r c u l a r i z e d w i t h a burn a t a p o a p s i s . To go t o Phobos,

t h e p e r i a p s i s of t h e o b s e r v a t i o n o r b i t must be r a i s e d from 2660 km

a l t i t u d e t o t h e 6000 Km a l t i t u d e of t h e Phobos o r b i t and c i r c u l a r i z e d

t h e r e .

The d e l t a v e l o c i t y requi rements f o r t h e . major maneuvers i n t h i s

sequence a r e :

Mars o r b i t i n s e r t i o n 980 mps (1979 launch)

P l a n e change 65 mps

T r a n s f e r t o o b s e r v a t i o n o r b i t 300 mps

R a i s e p e r i a p s e t o Phobos 200 rnps

C i r c u l a r i z e a t Phobos 430 mps

Rendezvous and landing 50 mps

Adding i n o t h e r misce l laneous v e l o c i t y requi rements b r i n g s

t h e t o t a l budget f o r t h e Phobos miss ion ( a f t e r t h e i n i t i a l i n s e r t i o n

from E a r t h o r b i t t o t h e trans-Mars t r a j e c t o r y ) t o 2375 mps. A

complete Monte C a r l o e r r o r a n a l y s i s s i m u l a t i o n was developed and

r u n f o r t h i s miss ion sequence t o prove t h a t a rendezvous w i t h

Phobos could be achieved 99% o f t h e t ime w i t h i n s u f f i c i e n t l y

Page 26: I Contract - NASA

v -4

c 0 .- w L Q) v) c .- e 0 Y, I

2

2 a, m

I Q) > 5 Q) c z CT c .- v) m c a. I 0 7 e 3 + a t3

-u N

Page 27: I Contract - NASA

v-5

c l o s e range t o p e r m i t f i n a l c l o s u r e under t h e c o n t r o l of a rendezvous

r a d a r . The e r r o r sources considered i n t h i s s i m u l a t i o p were:

Mars o r b i t i n s e r t i o n u n c e r t a i n t i e s ;

DSN t r a c k i n g u n c e r t a i n t i e s ;

S a t e l l i t e ephemeris u n c e r t a i n t i e s ;

S p a c e c r a f t e x e c u t i o n e r r o r s ;

TV camera p o i n t i n g e r r o r s .

B. RENDEZVOUS AND LANDING MISSION BASELINE SPACECRAFT

F i g u r e V-2 d e p i c t s t h e b a s e l i n e s p a c e c r a f t recommended as t h e r e s u l t of our Phase I s t u d y . A f t e r be ing launched, i n s e r t e d i n t o

E a r t h park ing o r b i t and t h e n i n j e c t e d i n t o t h e t rans-Mars t r a j e c t o r y

by a T i t a n I I IE/Centaur launch v e h i c l e , t h e modified Viking '75

O r b i t e r shown h e r e , d e l i v e r s t h e payload t o t h e M a r t i a n s a t e l l i t e .

To perform t h e o r b i t a l maneuvers a t Mars shown in the missian p r o f i l e , t h e Orbiter p r o p u l s i o n system must be " s t r e t c h e d " i n

c a p a c i t y by 38%. This i s done by i n c r e a s i n g t h e s i z e s of t h e main

p r o p e l l a n t t a n k s approximately 13cm i n b o t h l e n g t h and d iameter .

The p r e s s u r i z a t i o n sphere must a l s o be en larged by 8 c m i n d iameter .

The t o t a l i n j e c t e d weight of t h e b a s e l i n e s p a c e c r a f t i s approximate ly

3600 Kg (7900 l b s ) which i s c l o s e t o t h e i n j e c t e d weight of t h e

Viking '75 s p a c e c r a f t .

I n t h i s b a s e l i n e , t h e l a n d e d s c i e n c e payload i s d e l i v e r e d t o

t h e s a t e l l i t e s u r f a c e w i t h a s e p a r a b l e lander v e h i c l e shown above

the Orbiter.

from t h e Viking '75 Lander a l though s i g n i f i c a n t changes have been

made t o accommodate t h e landing technique and t h e g r a v i t y f i e l d

a s s o c i a t e d w i t h t h e s a t e l l i t e s . The l a n d e r shown weighs 482 Q

(1063 l b s ) i n c l u d i n g a n 82 Kg a l l o c a t i o n f o r s c i e n c e payload.

The lander shown i n F i g u r e V-3 derives Its d e s i g n

Page 28: I Contract - NASA

V -6

.C

Page 29: I Contract - NASA

.

v-7

.I-

LL

Page 30: I Contract - NASA

V -8

The recommended l and ing sequence beginning w i t h t h e o r b i t e r

and l ande r i n a s t a t i o n keeping c o - o r b i t w i t h t h e s a t e l l i t e i s

dep ic t ed i n F i g u r e V - 4 .

modified Viking ' 75 Lander r a d a r a l t i m e t e r and hav ing a r ange of

100 km, i s mounted on t h e l ande r and, a f t e r l ock ing on t h e

s a t e l l i t e , p rov ides l i q e of s i g h t (LOS), r ange , and r ange r a t e

i n fo rma t ion f o r t h e rendezvous maneuvers. The rendezvous c o n t r o l

scheme i s t h e same a s used i n t h e Apol lo and Gemini programs and

by t h e Russ ians i n t h e i r au tomat i c rendezvous of space s t a t i o n

elements . P r o p u l s i v e t h r u s t c o n t r o l f o r t h e l a n d e r a f t e r

s e p a r a t i o n f o r t h e O r b i t e r i s provided by Viking ' 7 5 Lander

a t t i t u d e c o n t r o l t h r u s t e r s . The same t h r u s t e r s provide p r o p u l s i v e

"hopping" s u r f a c e m o b i l i t y t o t h e l a n d e r c o n f i g u r a t i o n a f t e r l a n d i n g .

A rendezvous r a d a r , d e r i v e d from a

An a l t e r n a t e landed m o b i l i t y technique was ana lyzed i n Phase I1

of t h i s s t u d y t h a t employed wheels i n s t e a d of p r o p u l s i v e hopping.

Because of t h e low g r a v i t y on Phobos ( t h e b a s e l i n e l a n d e r would

weigh an e q u i v a l e n t t o 1 E a r t h pound o n t h e s u r f a c e ) v e r y l i g h t

wheel c o n s t r u c t i o n c a n be used a s shown i n F i g u r e V-5. A t o t a l

of 1 2 Kg i s added t o t h e l ande r t o provide wheels and d r i v e

assembl ies . I n t r a d e s t u d i e s , t h e wheeled v e r s i o n tu rned o u t t o

be l i g h t e r and more mobile t h a n t h e f l y i n g l a n d e r .

A s a n a l t e r n a t i v e t o t h e b a s i c idea of an o r b i t e r s p a c e c r a f t

and a s e p a r a b l e s a t e l l i t e l a n d e r , a landed o r b i t e r c o n f i g u r a t i o n

was d e f i n e d as shown i n F i g u r e V-6. g r e a t e r landed payloads and more e f f i c i e n t use o f s u p p o r t i n g sub-

systems c a n be achieved . I n t h i s c a s e , t h e landed weight a l l o c a t i o n

t o s c i e n c e o r o t h e r payload can be inc reased from 82Kg t o about

500Kg. Adapt ing an i n t e r p l a n e t a r y c r u i s e v e h i c l e l i k e t h e Vik ing

O r b i t e r t o a l ande r r o l e does invo lve more e x t e n s i v e m o d i f i c a t i o n s

however.

By l a n d i n g t h e e n t i r e o r b i t e r ,

Page 31: I Contract - NASA

v-9

P > al

Page 32: I Contract - NASA

v-10

Page 33: I Contract - NASA

v-11

Page 34: I Contract - NASA

v-12

C. RENDEZVOUS AND LANDING MISSION COST ESTIMATE

Program c o s t estimates f o r t h e s e p a r a b l e l a n d e r and t h e landed

o r b i t e r v e r s i o n s of t h e b a s e l i n e rendezvous and l a n d i n g m i s s i o n

were developed. Because l a t e r m i s s i o n b a s e l i n e s , i . e . , sample

r e t u r n and combinat ion Mars and s a t e l l i t e m i s s i o n s , would r e q u i r e

l a r g e payload c a p a b i l i t i e s , t h e landed o r b i t e r concept w a s used

€ o r c o s t b a s e l i n i n g . The summary i n Table V-2 i n d i c a t e s t h e

e s t i m a t e d c o s t o f a two-launch m i s s i o n i n t h e 1 9 7 9 o p p o r t u n i t y ,

using T i t a n I I I E I C e n t a u r l a u n c h v e h i c l e s . The c o s t s a r e ex-

pressed i n e q u i v a l e n t FY ‘ 7 2 d o l l a r s .

Page 35: I Contract - NASA

V-13

n v) c 0 .- - - .- E

e r= .-

0 M M II 00

2

c.4

L 0 n

Q! 00 si 2 r CCI A Y

2 u .- a cn c a s c

r 75

Page 36: I Contract - NASA

Phase II - Satellite Sample Return Mission

Page 37: I Contract - NASA

V I - 1

VI. PHASE I 1 - SATELLITE SAMPLE RETURN MISSION

I n Phase I an understanding of t h e s a t e l l i t e rendezvous and

l a n d i n g m i s s i o n w a s developed and a measure of t h e f e a s i b i l i t y of

performing i t was determined. Our i n s t r u c t i o n s from the Technical

r e p r e s e n t a t i v e of t h e Cont rac t ing O f f i c e r f o r Phase I1 w e r e t o d e f i n e

a m i s s i o n p r o f i l e and a s p e c e c r a f t c o n f i g u r a t i o n f o r r e t u r n i n g a s u r -

face sample of Phobos o r Deimos back t o E a r t h f o r d e t a i l e d a n a l y s i s .

To accomplish t h i s o b j e c t i v e i t w a s n e c e s s a r y f i r s t of a l l , t o

compile and e v a l u a t e t h e s c i e n t i f i c r a t i o n a l e f o r s u c h a miss ion .

The answer t o t h e q u e s t i o n , "Why a Phobos/Deimos sample

r e t u r n miss ion?" i s , "Because w e can l e a r n more from E a r t h l a b o r -

a t o r y work." The exper imenta l t e c h n i q u e s r e q u i r e d f o r a c c u r a t e

age d a t i n g , e x a c t e l e m e n t a l and m i n e r a l o g i c a l a n a l y s i s , d e t a i l e d

s t u d i e s of p h y s i c a l and chemical p r o p e r t i e s , and r e a d i n g t h e

h i s t o r y o f bombardment, impact and exposure, cannot be performed

remote ly . The k inds of i n s t r u m e n t a l t echniques needed f o r t h i s

work i n c l u d e :

S o l i d source mass spec t romet ry ;

Neutron a c t iva t i o n ana l y s i s ;

E l e c t r o n microprobe ;

E l e c t r o n microscope;

Pe t r o g r a phic s t u d i e s ;

N a t u r a l r a d i o a c t i v i t y ;

Magnetic and e l e c t r i c a l p r o p e r t i e s ;

P a r t i c l e t r a c k s ;

Mb'ssbauer spec t roscopy;

Thermal p r o p e r t i e s ;

Evolved gas a n a l y s i s .

Page 38: I Contract - NASA

VI-2

A. SAMPLE RETURN MISSION PROFILE

For the b a s e l i n e sample r e t u r n m i s s i o n , the launch o p p o r t u n i t y

was changed from 1979 t o 1981 t o a l low more t i m e f o r t h e addi -

t i o n a l mi s s ion d e s i g n 2nd hardware development t h a t would be

r e q u i r e d . T h i s change i n launch y e a r n e c e s s i t a t e d r e r u n n i n g t h e

Phase I performance c a l c u l a t i o n s , b u t t h e b a s i c p r o f i l e from

Ear th launch t o s a t e l l i t e l and ing remained t h e same. The m i s s i o n

p r o f i l e from t h e s u r f a c e of Phobos back t o E a r t h i s shown i n F i g u r e

V I - 1 , A sma l l v e l o c i t y i s r e q u i r e d t o e scape t h e s a t e l l i t e . There-

a f t e r , t h e r e t u r n s p a c e c r a f t o r b i t a b o u t Mars i s changed t o a

1500 Km by 95000 Km a l t i t u d e e l l i p s e and a plane-change maneuver

i s performed t o l i n e up w i t h t h e r e q u i r e d t r a n s - E a r t h t r a j e c t o r y .

The p r i n c i p a l d e l t a v e l o c i t y r equ i r emen t s f o r t h i s sequence a r e :

Ra i se a p o a p s i s t o 95,000 Km - 746 m p s

Lower p e r i a p s i s and p l ane change - 110 m p s

T rans -Ear th i n j e c t i o n - 712 m p s (1983 /84 Mars launch)

The t o t a l v e l o c i t y budget i n c l u d i n g misce l l aneous c o r r e c t i o n s and

a l lowances i s 1786 m p s .

I t might be a p p r o p r i a t e a t t h i s p o i n t t o i n s e r t t h e r e s u l t s

of some i n t e r e s t i n g work done by our c o n t r a c t t e c h n i c a l mon i to r ,

M r . Ha r r i son , on the comparison U T etiergy r equ i r emen t s f e r a

number of sample r e t u r n m i s s i o n s i n t h e s o l a r system. F i g u r e

VI-2 compares t o t a l A V r equ i r emen t s f o r sample r e t u r n m i s s i o n s

to Phobos (more d i f f i c u l t t han Deimos), o u r Moon, Eros (one of

the easiest a s t e r o i d mis s ions ) and Mars. It i s r a t h e r s u r p r i s i n g

to see t h a t t he Mars s a t e l l i t e m i s s i o n s a r e l ess demanding

than even our own Moon. T h i s i s due t o t h e d i f f e r e n c e i n t h e

r equ i r ed a s c e n t v e l o c i t y from t h e s u r f a c e , t h e Moon's l a r g e r g r a -

v i t y n e c e s s i t a t i n g a much h i g h e r A V f o r t h i s maneuver.

Page 39: I Contract - NASA

VI-3

I

c 0

r *- g 83 E

aJ c

1

aJ

ce 0 L

w -r-

n c 0

d I

Page 40: I Contract - NASA

t a c3 m I- z 0 c3 z z - n

4 0

v, 0 m 0 I II

T \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ L

VI -4

r ___

z v, 0 0 8 5

Page 41: I Contract - NASA

VI-5

B. SAMPLE RETURN MISSION BASELINE SPACECRAFT

A r a t h e r e x t e n s i v e systems t r a d e s t u d y was conducted i n Phase

I1 t o se lec t a recommended space v e h i c l e system concept f o r a

M a r t i a n sa te l l i t e sample r e t u r n miss ion .

a t i o n e lements shown i n Table VI-1 were assembled i n v a r i o u s

combinations and comparat ively ana lyzed t o e s t a b l i s h the b a s e l i n e .

The b a s e l i n e s e l e c t e d i s shown i n F i g u r e V I - 3 . It c o n s i s t s

of a modi f ied Viking O r b i t e r adapted t o t h e landed O r b i t e r con-

f i g u r a t i o n . The O r b i t e r d e l i v e r s a modi f ied Venus P ioneer

( P l a n e t a r y Explorer ) E a r t h r e t u r n v e h i c l e t o t h e s a t e l l i t e s u r -

f a c e .

The m i s s i o n conf igur -

M o d i f i c a t i o n s t o the P l a n e t a r y E x p l o r e r a r e n e c e s s a r y t o

a c h i e v e p r o p e r dynamic ba lance when,fih; i i q u i d p r o p u l s i o n system

and E a r t h E n t r y Module a r e i n c o r p o r a t e d f o r sample r e t u r n . The

same communications and guidance subsystems a r e employed. The

power subsystem does n o t r e q u i r e a b a t t e r y ; s e r i e s - p a r a l l e l c e l l

s w i t c h i n g i s employed t o m a i n t a i n a d e s i r e d v o l t a g e o u t p u t . The

thermal c o n t r o l system is m o j i f i e d f o r h e a t r e t e n t i o n i n s t e a d of

h e a t r e j e c t i o n .

The Vik ing o r b i t e r i s modif ied t o i n c o r p o r a t e l a n d i n g l e g s ,

l a n d i n g r a d a r , sampling subsystem, t h e e a r t h r e t u r n v e h i c l e , and

a 38% s t r e t c h e d p r o p u l s i o n system. Thermal c o n t r o l systems a r e

modi f ied f o r the landed miss ion . S o l a r p a n e l s a r e i n t e g r a t e d

w i t h t h e l a n d i n g l e g s .

The t o t a l weight of t h i s s p a c e c r a f t i s 3 3 7 4 Kg ( 7 4 3 9 l b s )

which i n c l u d e s a n a l l o c a t i o n of 260 Kg (570 l b s ) f o r t h e E a r t h

r e t u r n v e h i c l e and i t s a s s o c i a t e d equipment.

The o p e r a t i o n a l sequence of t h e sample r e t u r n i s shown i n

s i m p l i f i e d form i n F i g u r e VI-4.

Page 42: I Contract - NASA

VI -6

v) c, c aJ E aJ

- z Y

L

c, Q)

i= 0 0 .-

fl 0

a L .- 7 U c

FT S z > .- .- 3

0 ar L Q) Y

L Q) U

CI S m - c CI .-

3

.- -E 0

.- e > L 3 m c a +

L

* Q) .L e 0

Q) s L

Q) > L FT S .-

. _ .- m L .- P m 5

.- + m > L .-

a. Q)

m L 0

- n 5; Q)

L 3 CTJ U

Q) U a,

c, rc( U

z .- > L 0 -

A

L FT c Q) c.

L fu d i=

a 0 4

.- Q, n L Q) S L .-

c m .- 2 I

M

S 0 m .- -

e 0

.- z .- >

Y

CZI Q,

P CTJ

- 0 - - c m I- c, .-

- Q) L

iz - c m I- c, .- $ L

L CTJ P a v,

S m c, .-

u m v, n

3 7 a E6

M e I-

c ti, Q) .- S > u S S L

S m 2 Y

Page 43: I Contract - NASA

V I - 7

LbNDING LEG/ SOLAR PANEL (4)

38. STRETCUED ORBITER

F i gure VI -3 Basel i ne Sample Return Conf i gurati on

Page 44: I Contract - NASA

VI-8

\ 5

5 \\ w

\

.

Page 45: I Contract - NASA

VI-9

Following touch-down, Ear th communications a r e e s t a b l i s h e d .

Sampling i s accomplished under c o n t r o l of t h e o r b i t e r CC&S w i t h

Ear th-based s u p e r v i s i o n . The e a r t h r e t u r n v e h i c l e and o r b i t e r

remain on t h e s u r f a c e and Ear th r e t u r n a l ignment d a t a i s deduced.

E a r t h r e t u r n v e h i c l e l i f t o f f i s programmed t o provide t h e b e s t

a l ignment f o r i n i t i a l E a r t h communications t o t h e r e t u r n v e h i c l e .

The modi f ied Venus P ioneer v e h i c l e u s e s t h e s p i n n i n g c e l e s t i a l

a t t i t u d e d e t e r m i n a t i o n system (SCADS) guidance scheme f o r t h e

Mars o r b i t a l and i n t e r p l a n e t a r y c r u i s e phases .

An a l t e r n a t e s p a c e c r a f t c o n f i g u r a t i o n t h a t was s t u d i e d i n

some d e t a i l i n Phase I1 i s shown i n F i g u r e VI-5. It c o n s i s t s

of a n i n t e g r a t e d t h r e e - a x i s s t a b i l i z e d c o n t r o l module/ lander

w i t h a p r o p u l s i o n module which i s j e t t i s o n e d p r i o r t o f i n a l

c l o s u r e and touch-down. The subsystems conta ined i n t h e e a r t h

r e t u r n v e h i c l e f u n c t i o n throughout t h e m i s s i o n so t h a t t h e r e i s

no d u p l i c a t i o n of hardware. The i n j e c t e d weight of t h e c o n f i g -

u r a t i o n i s 2500 kg compared w i t h 3375 kg f o r t h e b a s e l i n e concept.

The e a r t h r e t u r n v e h i c l e ( c o n t r o l module) i s a new l i g h t - w e i g h t

t h r e e - a x i s s t a b i l i z e d v e h i c l e composed of proven o r c u r r e n t l y

i d e n t i f i e d i n t e r p l a n e t a r y s p a c e c r a f t subsystems. The i n t e g r a t e d

l a n d e r module evolved from the Phase I l a n d e r / r o v e r , houses t h e

communications (20 w a t t TWTA's), primary power system (RTG and

b a t t e r i e s ) , sampling subsystem, l a n d i n g r a d a r , t ape r e c o r d e r s ,

and approach n a v i g a t i o n TV cameras. The a r t i c u l a t e d 30" para-

b o l i c h i g h g a i n antenna i s l o c a t e d on t h e e a r t h r e t u r n v e h i c l e .

The p r o p u l s i o n module which i s j e t t i s o n e d p r i o r t o f i n a l c l o s u r e

and touch-down i s t h e b a s i c Viking '75 p r o p u l s i o n system (no

s t r e t c h r e q u i r e d ) .

system.

The sample r e t u r n e a r t h e n t r y module shown i n F i g u r e VI-6,

Terminal d e s c e n t p r o p u l s i o n i s a hydraz ine

i s des igned t o s u r v i v e t h e l o a d s imposed d u r i n g E a r t h e n t r y

Page 46: I Contract - NASA

W VI-10

\ \

\ \

\, \

\

> v

Page 47: I Contract - NASA

VI-11

I M O U N T I N G INTERFACE

14.96 I(al EARTH ENTRY MODULE

I I

Figure VI-6 Earth Entry Module

Page 48: I Contract - NASA

VI-12

and impact. The c a p s u l e d e s i g n i s based on Apo l lo technology

and c a n accommodate e n t r y v e l o c i t i e s up t o 12 .8 km/sec.

c h u t e i s deployed a s soon a s t h e v e l o c i t y i s subson ic . E l e c -

t r o n i c t r a c k i n g a i d s a r e provided t o accompl ish r e c o v e r y of t h e

capsule . Th i s c o n f i g u r a t i o n p rov ides f o r t h e stowage, s e a l i n g

and envi ronmenta l p r o t e c t i o n o f a 2 kg Phobos s u r f a c e sample.

A para-

C. SAMPLE RETURN MISSION COST ESTIMATE

The c o s t summary f o r t h e b a s e l i n e sample r e t u r n m i s s i o n i n

FYI72 d o l l a r s (no e s c a l a t i o n f a c t o r s added) i s shown i n Table

VI-2.

down s t r u c t u r e p a t t e r n e d a f te r t h e Viking ‘75 Lander sys tem. Th i s WBS c o n t a i n s ove r 80 e lements of c o s t . Labor and m a t e r i a l

e s t i m a t e s were made f o r each of t he WBS e l emen t s . Two p r e v i o u s l y

developed program e s t i m a t e s were used a s r e f e r e n c e s and c a l i b r a -

t i o n s f o r t h i s e s t i m a t e : 1) t h e Viking ‘75 program (which should

have h i g h e r c o s t s f o r e q u i v a l e n t e lements because of t h e comp-

l e t e l y new developmenta l n a t u r e of t h e work); and 2 ) t h e Vik ing

‘77’ program (which should be lower f o r e q u i v a l e n t e lements

because i t i n v o l v e s minimum m o d i f i c a t i o n t o e x i s t i n g d e s i g n s ) .

Th i s e s t i m a t e i s based on two launches i n 1981 u s i n g T i t a n

I I IE /Cen tau r l aunch v e h i c l e s .

The c o s t e s t i m a t e h a s been b u i l t up us ing a work break-

Page 49: I Contract - NASA

VI-13

v)

43 in 0 u S L 3 c, aJ e aJ P

v) 5 (\1 I

> aJ

I 8 I-

W

F n

n v) c 0

c .- Et

n n

n L aa * a .- 6

L. V

; n v)

0 .I

aa - n E w v)

V S - Y

a a v)

7 L aa r i5

.- LLI

Page 50: I Contract - NASA

Phase 1 1 1 - Combined Mars and PhoboslDei mos Missions

Page 51: I Contract - NASA

VII-1

VII. PHASE I 1 1 - COMBINED MARS AND PHOBOS/DEIMOS MISSIONS

The f i n a l t h r e e months of t h e s t u d y w a s d i r e c t e d a t d e f i n i n g

m i s s i o n s t h a t combine l a n d i n g s on Mars and Phobos/Deimos e x p l o r -

a t i o n w i t h i n one m i s s i o n p r o f i l e . The o b j e c t i v e w a s t o de te rmine

whether o r n o t 3 p r o p e r l y designed combined m i s s i o n can m e e t b o t h

Mars and s a t e l l i t e s c i e n c e o b j e c t i v e s a t a program c o s t s u b s t a n -

t i a l l y less than doing t h e two m i s s i o n s s e p a r a t e l y .

The major c h a l l e n g e i n Phase I11 was t o d e f i n e and compare t h e

l a c g e number of p o s s i b l e com5ined m i s s i o n c o n f i g u r a t i o n s t o

a r r i v e a t a recommended b a s e l i n e .

The s c i e n c e o b j e c t i v e s assumed f o r t h e Mars m i s s i o n were f o c -

used on t h e geosc iences : geology, geophysics and geochemistry.

T h i s i s c o n s i s t e n t w i t h t h e genera l recommendations t h a t a r e b e i n g

made by t h e s c i e n c e community f o r p o s t Viking ' 75 M a r s e x p l o r a -

t i o n . Sc ience requi rements f o r Phobos/Deimos e x p l o r a t i o n v a r i e d

a c c o r d i n g t o t h e m i s s i o n modes t h a t could be performed i n d i f f e -

ren t combination e v e n t p r o f i l e s . Sa t e l l i t e m i s s i o n modes con-

s i d e r e d were o b s e r v a t i o n o r b i t , s t a t i o n - k e e p i n g and l a n d i n g .

F i g u r e V U - 1 shows the b a s e l i n e science payloads that were used

with the c a n d i d a t e combfned miss ions .

A . COMBINED MISSION PROFILE

The b a s i c e lements of t h e recommended b a s e l i n e combined mis-

The major d e c i s i o n s and s i o n p r o f i l e are shown i n F igure VII-2. t r a d e s t h a t had t o b e a n a l y z e d t o a r r ive a t t h i s b a s e l i n e were:

Page 52: I Contract - NASA

VII-2

3 5 6

IJJ

3 s

z w a 0

d

4 E E 4 c9

Page 53: I Contract - NASA

cn

V I 1-3

Page 54: I Contract - NASA

VII-4

1) S e l e c t i o n of c a p t u r e o r b i t p e r i o d ;

2 ) Mars l a n d i n g mode ( d i r e c t e n t r y o r o u t - o f - o r b i t )

3) Mars l a n d i n g l a t i t u d e a c c e s s i b i l i t y ;

4 ) S e l e c t i o n of o b s e r v a t i o n o r b i t (15 o r 30 hour

p e r i o d ; synchchronized w i t h Phobos o r Deimos);

5) S p a c e c r a f t ( s t r e t c h e d , s t a g e d o r h i g h energy

p r o p u l s i o n sys tems) .

The 97-hour c a p t u r e o r b i t was s e l e c t e d because i t minimizes

the Mars o r b i t i n s e r t i o n p r o p e l l a n t r equ i r emen t s w h i l e s t i l l

keeping o u t - o f - o r b i t e n t r y v e l o c i t i e s r easonab ly l o w . Mars

l and ing o u t - o f - o r b i t was s e l e c t e d t o a l low m i s s i o n f l e x i b i l i t y a n d t o minimize t h e m o d i f i c a t i o n s r e q u i r e d t o t h e Vik ing '75

Lander des ign .

The e a s i e s t combined m i s s i o n t o perform a r e those i n which

Mars l a n d i n g occur s nea r t h e e q u a t o r . I n c r e a s e d Mars l and ing

l a t i t u d e a c c e s s i b i l i t y can be ach ieved only by i n c r e a s i n g t h e

s p a c e c r a f t p ropu l s ion c a p a b i l i t y o r by r e d u c i n g t h e payload

d e l i v e r e d t o t h e s a t e l l i t e . O u r b a s e l i n e m i s s i o n a l l o w s f o r Mars

l and ings g e n e r a l l y i n the r ange o f -I- 12' i n l a t i t u d e abou t t h e

equa to r . -

The 15-hour o b s e r v a t i o n o r b i t , synchronized such t h a t i t meets

Deimos on eve ry o t h e r r e v o l u t i o n , t u rned o u t t o b e t h e most d e s i r -

a b l e c h o i c e , I t p rov ides f o r more and c l o s e r o b s e r v a t i o n s of t h e

second s a t e l l i t e than o t h e r o b s e r v a t i o n o r b i t s .

The s t r e t c h e d Viking ' 7 5 O r b i t e r s p a c e c r a f t was t h e c h o i c e

f o r t h e b a s e l i n e because i t s performance c a p a b i l i t i e s m e t t h e

1979 b a s e l i n e l aunch y e a r r equ i r emen t s and i t n e c e s s i t a t e s l ess

o r b i t e r modif i c a t i o n than o t h e r c a n d i d a t e s .

Page 55: I Contract - NASA

VII-5

B. COMBINED MISSION BASELINE SPACECRAFT

I n s e l e c t i n g t h e b a s e l i n e s p a c e c r a f t c o n f i g u r a t i o n f o r t h e

recommended combined miss ion , we examined t h r e e b a s i c concepts :

t h e s t r e t c h e d Viking O r b i t e r two tank and f o u r tank v e r s i o n s ) ;

t h e s t a g e d o r b i t e r ; and t h e high energy space s t o r a b l e p r o p e l l a n t

o r b i t e r . These c o n f i g u r a t i o n s a r e shown i n F i g u r e VII-3. The

h i g h energy p r o p e l l a n t o r b i t e r would be a d e r i v a t i o n of t h e stret-

ched o r b i t e r .

When t h e s e s p a c e c r a f t c o n f i g u r a t i o n s a r e combined w i t h t h e

a l t e r n a t i v e m i s s i o n modes s t u d i e d , a t o t a l o f 324 p o s s i b l e com-

b ined m i s s i o n s r e s u l t . Performance d a t a i s a v a i l a b l e from o u r

Phase I11 r e s u l t s f o r a l l o f them. F i g u r e V I I - 4 i s a t y p i c a l

performance c u r v e f o r a s t r e t c h e d o r b i t e r , 1979 launch, and Mars

l a n d i n g o u t of a 97-hour o r b i t . It shows t h a t our b a s e l i n e

m i s s i o n (Phobos landing w i t h a 67 Kg payload) can be performed

w i t h a T i t a n I I IE/Centaur launch v e h i c l e .

F i g u r e V I I - 5 o u t l i n e s t h e recommended b a s e l i n e s p a c e c r a f t

and i n d i c a t e s t h e changes r e q u i r e d from t h e Viking ' 7 5 Lander/

O r b i t e r . The t o t a l i n j e c t e d weight of t h i s v e h i c l e i s 4150 Kg

(9150 l b s ) compared w i t h t h e Viking ' 7 5 i n j e c t e d weight of approxi -

m a t e l y 3800 Kg. Both of t h e s e i n j e c t e d weight f i g u r e s i n c l u d e a

210 Kg al lowance f o r s p a c e c r a f t a d a p t e r , launch v e h i c l e p e c u l i a r

equipment, and p r o j e c t r e s e r v e .

a n e q u i v a l e n t 4157 Kg t o Mars over a 30-day launch p e r i o d i n t h e

1979 launch o p p o r t u n i t y .

The T i t a n I I IE/Centaur can i n j e c t

Page 56: I Contract - NASA

VII-6

/ /

Page 57: I Contract - NASA

VII-7

'T J- -

m t

.- w PI I I r

Page 58: I Contract - NASA

VII-8

t; d d J w c)

Lo d

0 t-

o 0 0 5

w 9 z

I- 6

0

W 0

s n

U c

i u) 5 r) 7

3 0, s a

n t 0

aJ VI 5 m

Page 59: I Contract - NASA

VII-9

C. COMBINED MISSION COST ESTIMATE

The e s t i m a t e d c o s t of t h e recommended b a s e l i n e combined

mis s ion is summarized i n Table V I I - 1 i n FY '72 d o l l a r s . Th i s

cove r s t h e Mars l a n d i n g o u t of a 97-hour o r b i t and a Phobos

rendezvous and l and ing u s i n g t h e landed o r b i t e r c o n f i g u r a t i o n .

This estimate assumes t h a t t h e t o t a l program would b e managed

by one c o n t r a c t o r which a l lows some s h a r i n g of f u n c t i o n s and

c o s t s between t h e Mars l a n d e r and t h e l anded o r b i t e r . The

estimate is f o r two launches us ing t h e T i t a n I I IE /Cen tau r .

Page 60: I Contract - NASA

VII-10

LI

v) t

c .- c, In 0 V e

4 I

U

A

L

c.

L

Q) .- n 0

c tu L u Q) u tu c1 v,

CI

a L

.- C

Q;, U

tu d

Q) u S Q)

u v)

.-

v)

v) c.

8 a a v)

7 L Q) c 5

LL 'I

Page 61: I Contract - NASA

.-

Conclusions

Page 62: I Contract - NASA

VIII-1

VI1 I. CONCLUSIONS

The r e s u l t s of t h i s s t u d y have s u b s t a n t i a t e d t h e o r i g i n a l

P r i t c h a r d and H a r r i s o n work i n demonst ra t ing t h a t a number o f

m i s s i o n concepts t o e x p l o r e Phobos and Deimos a r e f e a s i b l e and

p r a c t i c a b l e . The s t u d y demonstrated f u r t h e r t h a t systems, sub-

systems and o p e r a t i o n a l modes could be d e r i v e d d i r e c t l y from

Viking ' 7 5 and o t h e r c u r r e n t programs t o perform t h e Mars s a t e l -

l i t e m i s s i o n s , thereby minimizing c o s t s and maximizing m i s s i o n

s u c c e s s p o t e n t i a l .

I n surveying t h e s c i e n t i f i c community t o measure i n t e r e s t i n

Phobos/Deimos e x p l o r a t i o n , w e encountered a n unusual m i x t u r e of

f e e l i n g s . While we found no a c t i v e and f o r c e f u l champions o f a Mars s a t e l l i t e miss ion , we r e p e a t e d l y found e a s i l y e x c i t e d

c u r i o s i t y and c o n j e c t u r i n g among space s c i e n t i s t s about t h e o r i -

g i n and n a t u r e o f t h e s e t i n y bodies . T h i s u n d e r c u r r e n t of s c i e n -

t i f i c i n t e r e s t , which h a s been given impetus by t h e r e c e n t

r e t u r n s of Mariner 9, may be the f o r e r u n n e r of w e l l d e f i n e d and

e n t h u s i a s t i c a l l y supported recommendations f o r e x p l o r i n g t h e moQns

of Mars. If t h i s i s t h e c a s e , NASA's d e c i s i o n t o conduct t h i s

s t u d y may prove t o be a v e r y t imely one.

Out of a l l t h e m i s s i o n p r o f i l e s s t u d i e d i n t h i s work, t h e typc

t h a t appeared t o be most a t t r a c t i v e were those t h a t combined Mars

and Phobos/Deimos e x p l o r a t i o n . A comparison o f e s t i m a t e d c o s t s

f o r a number o f Mars s a t e l l i t e miss ions , Mars l a n d i n g m i s s i o n s ,

and combinat ions of t h e two, provides a n i n t e r e s t i n g measure of

t h e c o s t e f f e c t i v e n e s s of t h e combined m i s s i o n approach. The

c o s t e s t i m a t e s shown below, a l l normalized t o a 1979 Mars l a n d e r /

o r b i t e r m i s s i o n designed and managed t o the same groundrules

used i n t h i s s tudy , i l l u s t r a t e the p o i n t :

Page 63: I Contract - NASA

VIII-2

Miss i o n Relative Program Cost

Mars Lander /Orbi te r 1 .o Phob os/Deimos Landing 0.8

Phobos/Deimos Sample Return 1.14

1.04 Mars + Phobos/Deimos Observa t ion O r b i t

Mars + Phobos/Deimos Rendezvous 1.07

Mars + Phobos/Deimos Landing 1.14 Mars + Phobos/Deimos

S a m p l e Return

As t h e s e r e l a t i o n s h i p s

added t o Mars mis s ion prof

1 .47

i n d i c a t e , s a t e l l i t e mis s ions

les a t ve ry l i t t l e i n c r e a s e

can b e

n t o t a l

program c o s t . When one c o n s i d e r s t h a t t h e wel l - recognized

s c i e n c e o b j e c t i v e s and requi rements f o r Mars e x p l o r a t i o n p l u s

t h e puzz l ing s c i e n t i f i c m y s t e r i e s of t h e satell i tes can a l l be

addressed through such combined miss ion p r o f i l e s , a ve ry at trac-

t i v e r e t u r n on inves tment beg ins t o emerge.

I n t h e c o u r s e of t h i s s tudy w e i d e n t i f i e d a number of t ech -

nology a r e a s where f u r t h e r s tudy and r e s e a r c h would c o n t r i b u t e

t o Phobos/Deimos mis s ion p l ann ing and development. They i n c l u d e

t h e fo l lowing :

1 ) For

a >

a l l s a t e l l i t e mis s ions :

n a v i g a t i o n a n a l y s e s f o r au tomat ic o r b i t a l

maneuvers and rendezvous ;

l i g h t w e i g h t , low-power rendezvous r a d a r s y s t e m s ;

s a t e l l i t e sampling and tie-down t echn iques ;

l anded o r b i t e r thermal c o n t r o l , power,

p r o p u l s i o n and s t r u c t u r a l a n a l y s e s ;

m o b i l i t y and n a v i g a t i o n mechaniza t ion f o r

s a t e l l i t e r o v e r s ;

Page 64: I Contract - NASA

VIII-3

f) a d a p t i v e science payloads for sa t e l l i t e

e x p l o r a t i o n ;

g) u n i v e r s a l space s t o r a b l e p r o p e l l a n t

p r o p u l s i o n module.

2) For sa te l l i te sample r e t u r n mis s ions :

a) l i g h t w e i g h t , low-power 3-axis and closed-loop

s p i n s t a b i l i z e d guidance and c o n t r o l subsystems;

au tomat i c s p a c e c r a f t a l ignment and ascent

guidance subsys terns ; b )

c) sample c o l l e c t i o n , s towing and p r o t e c t i o n

t echn iques .

3) For combined miss ions :

a) i n c r e a s e d Mars l a t i t u d e a c c e s s i b i l i t y ;

b ) improved Mars land ing accuracy

c) Mars e n t r y c o r r i d o r a n a l y s i s

d) mapping p r o f i l e s and s e n s o r s f o r combined

mis s ions ;

e) small instrumented probes f o r combined mis s ions .