24
Hypothesis‐based testing for developmental toxicity George Daston

Hypothesis‐based testing for developmental toxicity

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Hypothesis‐based testing for developmental toxicity

Hypothesis‐based testing for developmental toxicity

George Daston

Page 2: Hypothesis‐based testing for developmental toxicity
Page 3: Hypothesis‐based testing for developmental toxicity
Page 4: Hypothesis‐based testing for developmental toxicity

Overview

• What is hypothesis‐based testing?• Selecting the best models and approaches based on what is known about mode of action

• Predictive toxicity workflow based on computational and biotechnology tools

Page 5: Hypothesis‐based testing for developmental toxicity

Hypothesis‐driven testing

• Generate hypotheses about how an agent will affect development– Chemical similarities to chemicals already tested

• 2D structure, phys chem properties, reactivity, interaction with specific proteins

– Functional similarities to chemicals already tested• Same target, similar results in gene expression, HTS

• Select models and protocols based on hypothesis to be tested

Page 6: Hypothesis‐based testing for developmental toxicity

Predicting Toxicity

From AOP‐KB

•Adverse responses at the organismal level must be underpinnedby responses at the molecular and cellular level•It is becoming increasingly possible to measure potentialmolecular and cellular effects globally

Page 7: Hypothesis‐based testing for developmental toxicity

Areas of certainty and uncertainty

Many available methods‐QSAR‐HTS (ToxCast)‐toxicogenomics

Lots of historical dataHigh uncertainty about‐Which key events‐Non‐linear relationships

‐Quantitative thresholds‐Interacting pathways 

Page 8: Hypothesis‐based testing for developmental toxicity

Risk Assessment by Analogy

Animal Toxicity Data

BMD

Acceptable Level

Dose‐response

UFs(Confidence adjust)

TKTD

variabilityAnalog

Chemical similarityCommon metabolismCommon MOA PK adjust

Page 9: Hypothesis‐based testing for developmental toxicity

Predictive Toxicology workflow

Cheminformatics PK Models decision

Mechanistic models Systems biology models

High quality analogs

More dataneeded

exposure

Page 10: Hypothesis‐based testing for developmental toxicity

Sixty Years of Toxicology Data

• Databases that have toxicology (or at least relevant) data on 800,000+ chemicals

• DART data: 23,000+ chemicals• Database searchable by chemical structure• Analysis of the toxicology data is still expert‐driven

Page 11: Hypothesis‐based testing for developmental toxicity

Output – Substructure Searching

Page 12: Hypothesis‐based testing for developmental toxicity

Analogs as hypothesis generation

• Analogs have similar toxicity because one of the following is true:– They share a common metabolite, or one is metabolized to the other (e.g., the acetate ester of EGME has the same toxicity as EGME because it is hydrolyzed to EGME)

– They have the same biological activity• Can be tested if MOA is known• Can be tested in a more global system if MOA is not known

Page 13: Hypothesis‐based testing for developmental toxicity

Predictive Toxicology workflow

Cheminformatics PK Models decision

Mechanistic models Systems biology models

exposure

Page 14: Hypothesis‐based testing for developmental toxicity

How many MOAs?

• Unknown, but finite• An expansion of the druggable genome

– Macromolecular targets for small molecules that change the function of the macromolecule or cause its normal function to be excessive or inadequate• Less than 10% of genome

– Add chemical reactivity, non‐protein targets

• Can be estimated by retrospective literature analysis

Page 15: Hypothesis‐based testing for developmental toxicity

Expert system decision tree for repro/dev toxicity

Organiccompds

Contains a cyclicring

Yes

Yes

ER& ARbinders:1) E2, gluco-, mineral-coticoid,

progestrone & androgen receptorbinders; 2) flavones & myco

estrogen; 3) DES-,BPA-,tamoxifen-,DDT-like, alkylphenols, salicylates,

parabens, phthalates, alkoxyphenols; 4) N-aryl amides, ureas &

carbamides etc.

No

53

Chemicals

Known precedentreproductive &developmentaltoxic potential

No

II

I1) As, B, Mn, Cr, Zn, Te acids, oxides; Al,Cd, Cu, Zn,Mn, Ni, Pb chlorides or Pb,

Hg Me deriv. Sn triphenyl deriv; 2) organophosphonates/phosphonamides

/phosphonic acids; 3) phenyl di-/tri-siloxanes, phenyl cyclo tri-/tetra-siloxanes

Miscellaneouscyclic chemicals:ascorbic acid;cycloheximide;

hinokitiol4

Metallicderivatives; org.phosphours;

organosiloxanes

16

Miscellaneous aromaticchemicals & antibiotics:

aminopyrridine,aminonicotinamide,emodin,

actinomycinD,phencyclidine, ketamine,mitomycin C, puromycin

Yes

< C9 carboxylic acids, theirderiv. (esters, amides,

ureas, thioureascarbamates); 2) vinylamides, <C4 vinylaldehydes & esters

Di-/multi-functionalgroups (amine, SH(=S), OH, OR, acetyl,CN) subst.(at each

terminal carbon) C1 toC5 hydrocarbon orrepeating C2 units

Yes

Known precedentreproductive &developmentaltoxic potentialNo known precedent

repro/dev toxicpotential

Saturated, < C9carboxylic acids/ estersYes

Yes

Yes

No

1) Helogenated/multi-halogenated (Cl, Br)

< C4 alkanes,alkenes, ethers andacetonitriles; 2) N, S

mustard-like

22

1923

24

1) -halogenated (Cl,Br) acetic acid; -

hydroxyl. -alkoxyl (-OR,R is < C5 alkyl chain); -

alkyl (C2 to C3)substituted carboxylicacids or their esters; 2)

adipate derivates1) Vinyl amides, aldehydes& esters; 2) C1-C4 amidesandN-alkyl amides, ureas,

thioureas, carbonate,carbamates, guanidine;

formamides

Mono-/multi-functional groups

subst. (at the terminalcarbon) < C9hydrocarbons

(substituents: amine,SH (=S), OH,OR,

acetyl, helogene, CN)Yes

Yes

Yes

21

VI

IV

V

No known precedentrepro/dev toxic

potential

No

No

NoNo

20

Miscellaneous non-cyclic chemicals:

Methylazoxy methylacetate; hexane; 2-hexanone;2,5-hexane

dione; multihalogenated acetones(HFA), (TCA);meprobamate

Yes

1) Alkylcarbamodi-thioic acids;2) alkyl

sulfonates

Yes

No

1) C1-C4 non-branched/<C9 -alkyl(<C5) subst. alcohols;2) <C4 alkyl-, vinyl

nitriles

Yes

No

No No

25

Ion channel/beta-adrenergic/ACE/ARA inhibitors; Shhsignaling interference/

cholesterol synthesis inhibition:1) HERG/sodiumchannel inhi-

bitors; 2) pindolol-like; 3)enalapril-,trandolapril-,quinapril-

,candesartan-like; 4)cyclopamine-like, triparanol,

AY9944, BM15766

Opioid/tubline binders:1) morphines, mepridine-like; 2) bezimidizole

carbamides, bezimidizolylthiazole, 3) podophyllo-toxins, 4) cochincine-like,noscapine, taxel-like,epothilone deriv.

No

Yes

15

1) Ary lethan amines, 2)cyclizine-like deriv

No

nAChRs binders:1) atropine-like,2) diphen hydr-amine, glyco-pyrrolate, pro-cyclidine-like; 3)piperidine, pyrro-lidine alkaloids

No

Yes

Corestructurecontainsaromatic

orheteroaromaticring

III

RAR/AhR binders& Prostaglandinreceptor agonists:1) retinoid deriv,acitretin-like; 2)TCDD-like, HAHs,PAHs, indigo,

indole-like, FICZ;3) prostaglandin

E1-like

6

Yes

YesYes

No

Yes

1) BMHCA-like; 2)

aryl/heteroaryl(C1-C3) acids;

3) alphaaryloxy (C1-C3) acids,esters

1) Toluene/smallalkyl (<C4) toluene; 2)alkyl/nitro benzenes;3) poly-Cl-benzene;4) poly/Cl/NO2

oxdibenzene; 5) di-Br,I, Cl, di-NO2 phenol &precursors (esters)

1) vitamin D3-like; 2)

tridemorph-like(alky C11-C14);3) OH, Cl methylor alkoxymethyl(R<C9) oxiranes;

4) aminoglycoside-,

streptomycine-like; 5) poly-Clmono/fused/bridged cyclic

compds

No

Yes

Yes1) barbital-,ETU, PLTU-

like; 2)allantoin-,

dimethadione-like

Yes

1) Aryl/heteroaryl sulfonamides, aryl sulfonureas, N-heteroaryl amino-benzene

sulfon-amides; 2) phenyltoins

No

1) 2,4-diamino pyrimidine-like; 2) benzidineazo &

methylaminoazo benzenes;triarylmethan dyes;

3) pyridyl or aryl triazenes

1) Imidazole deriv, 2) nitroimidazoles, nitro furanderiv; 3) triazole deriv

1) Cumarin-, thalidoamide-like;benzodiazepins;

2) pheniramine-, promazine-imipramine-, hexahydro dibenzo

pyrazinoazepine-like; 3)tetracyclines

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

No

1

2

17

No

8 9

10

11

1218

13

14

No

No

Nucleotide &nucleobasederiv.1) Uridine-,cytidine-, azacytidine-like; 2)pyrimidine-,purine-like No

NoYes

No

7

No

Yes

Page 16: Hypothesis‐based testing for developmental toxicity

Generic category

Main category Sub‐category 1 Sub‐category 2 Prototype chemical

Prototype structure

Receptor and enzyme‐mediated toxicity

Nuclear hormone receptor ligands

Estrogen receptor ligands

Estradiol‐like 17‐beta‐estradiol

Phytoestrogens and flavones

genistein

Sample page from MOA ontology

Page 17: Hypothesis‐based testing for developmental toxicity
Page 18: Hypothesis‐based testing for developmental toxicity

Testing at an MOA level

• Requirement is for broad coverage– HTS batteries with broad coverage– Global gene expression analysis

• Need to have an appropriate number of cell types for broad coverage

Page 19: Hypothesis‐based testing for developmental toxicity

Inferring common MOA from gene expression

DEHP DINP

Page 20: Hypothesis‐based testing for developmental toxicity
Page 21: Hypothesis‐based testing for developmental toxicity

daidzein estradiol

genistein epitiastonol tomatidine

Nordihydroguaiaretic acid

Daidzein : (MCF‐7)

Top 20:Steroidal estrogens: 9Androgen/progestagen: 4Phytoestrogen/ polyphenol: 5

Page 22: Hypothesis‐based testing for developmental toxicity

Reserpine (MCF‐7)

• Inhibits vesicular monoamine (dopamine, serotonin, norepinephrine) transporter

• 10 of top 20 have an effect on the transporter or inhibit monoamine receptors

• An additional two are monoamine reuptake inhibitors

Page 23: Hypothesis‐based testing for developmental toxicity

Conclusions

• Hypothesis‐driven toxicity testing requires a lot of data to ensure that the range of possible MOAshas been covered, but the data are increasingly available– 60 years of testing at the organismal level– Increasing understanding of the universe of possible modes of toxicity (the “intoxicable” genome)

– Techniques that provide global coverage– Computational power to find appropriate data (and to create and test systems‐level models)

Page 24: Hypothesis‐based testing for developmental toxicity

Acknowledgements• SAR

– Shengde Wu– Karen Blackburn– Joan Fisher– Cathy Lester

• Gene expression– Jorge Naciff– Nadira deAbrew– Yuching Shan– Xiaohong Wang– Raghu Kainkaryam– Justin Lamb

• MOA Ontology– Aldert Piersma– Yvonne Stahl– Tom Knudsen– Nancy Baker– Lyle Burgoon