33
ME 383S Bryant February 15, 2005 1 Hydrodynamic Lubrication Fluid Lubricant: liquid or gas (gas bearing) Mechanism: Pressures separate surfaces o Normal loads on bodies o Convergent profile between surfaces o Tangential motion between surfaces o Viscous effects generate shear stresses o Pressures equilibrate shear stresses o Surfaces “lift” apart

Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Embed Size (px)

Citation preview

Page 1: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

ME 383S Bryant February 15, 20051

Hydrodynamic Lubrication

• Fluid Lubricant: liquid or gas (gas bearing)• Mechanism: Pressures separate surfaces

o Normal loads on bodieso Convergent profile between surfaceso Tangential motion between surfaceso Viscous effects generate shear stresseso Pressures equilibrate shear stresseso Surfaces “lift” apart

Page 2: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

ME 383S Bryant February 15, 20052

Stribeck Curve Hydrodynamic lubrication: full film formed,

surfaces do not contact

Friction vs stribeck number ηN/P

η: dynamic viscosity, N: speed, P: pressure

Page 3: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Hydrodyamic Lubrication

• Review Navier Stokes Equations

• Derive Reynold s Equation

• Apply Reynolds equation to bearing

1

Page 4: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Navier Stokes Equations

Indicial notation: x1 = x, x2 = y, x3 = z

• Continuity Equation

∂ρ

∂t+

3∑k=1

∂(ρuk)

∂xk= 0 (1)

• Momentum Equations

ρ∂uj

∂t+

3∑k=1

ρuk∂uj

∂xk= −∂P

∂xj+ λ

∂xj

3∑k=1

∂uk

∂xk

+3∑

k=1

∂xk

(∂uk

∂xj+

∂uj

∂xk

)]+ ρfj(2)

• Density ρ, Viscosity η, Bulk viscosity λ

• Unknowns: Flow velocities uj, Pressure p

2

Page 5: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Assumptions: NormalLubrication

• Newtonian fluid (constitutive law)

σij = −pδij + λ∂uk∂xk

δij + η

(∂ui∂xj

+∂uj∂xi

)fluid stresses σij, velocities ui,

Kroenecker delta δij =

1 if i = j0 otherwise

• quasi-steady flow: ∂/∂t = 0

• no slip between fluid particles & surfaces

• negligible fluid inertia (small Reynold s num-ber)

• very thin film

3

Page 6: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

• Consequences:

negligible variations in pressure p, tem-

perature T , & fluid properties (density

ρ, dynamic viscosity η) across film thick-

ness 0 ≤ y ≤ h(x)

effects of curvatures of bearing surfaces

on flows negligible

laminar flows

• Additional Assumption: Incompressible flow

4

Page 7: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Simplified Equations

• Continuity Equation

∂(ρux)

∂x+

∂(ρuy)

∂y+

∂(ρuz)

∂z= 0 (3)

• Momentum Equations

η∂2ux

∂y2=

∂p

∂x, (4)

∂2uy

∂y2≈ 0, (5)

η∂2uz

∂y2=

∂p

∂z(6)

5

Page 8: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

y

x

B

U1 hoh1

inclinedpad

Fx

V1

Fy

V2

U2

Integrate MomentumEquations

• Integrate with respect to y

• Determine constants of integration from

boundary velocities (U1, V1, W1) and (U2, V2, W2)

6

Page 9: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Flow Velocities & ContinuityEquation

• Flow velocities

ux =1

∂p

∂xy(y − h) + U1 +

y

h(U2 − U1)

uy = (V2 − V1)y

h+ V1

uz =1

∂p

∂zy(y − h) + W1 +

y

h(W2 − W1)

• Steady State Continuity Equation

∂(ρux)

∂x+

∂(ρuy)

∂y+

∂(ρuz)

∂z= 0

7

Page 10: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Reynold s Equation Derivation

• Substitute velocities into continuity equa-tion, then integrate across film thickness0 ≤ y ≤ h(x, z):

∫ h(x,z)

y=0

∂x

ρ

[1

∂p

∂xy(y − h)+U1+

y

h(U2 − U1)

]dy

+∫ h(x,z)

y=0

∂y

ρ

[(V2 − V1)

y

h+ V1

]dy+∫ h(x,z)

y=0

∂z

ρ

[1

∂p

∂zy(y − h)+W1+

y

h(W2 − W1)

]dy

= 0

• First and third terms require Leibnitz s rule:

d

dx

∫ b(x)

a(x)f(y, x)dy =

∫ b(x)

a(x)

∂f(y, x)

∂xdy

+f [b(x), x] dbdx − f [a(x), x] da

dx

8

Page 11: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Reynold s Equation

∂x

ρh3

η

∂p

∂x

+∂

∂z

ρh3

η

∂p

∂z

= 12ρ(V2 − V1)

+6(U1 − U2)∂(ρh)

∂x+ 6ρh

∂(U1 + U2)

∂x

+6(W1 − W2)∂(ρh)

∂z+ 6ρh

∂(W1 + W2)

∂z(7)

• Describes flow through convergent channel

• Left side: tangential & out of plane flows

• Film thickness h = h(x, z)

• Pressure p = p(x, z)

• Boundary velocities on surfaces:(U1, V1, W1), (U2, V2, W2)

9

Page 12: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

y

x

B

U1 = U hoh1

inclinedpad

V1 = - V

FxW

Inclined Pad Bearing

• Normal load W , velocity V = −dhodt

• Tangential force Fx, velocity U

• Film thickness:

h(x, z) = h(x) = ho + (h1 − ho)(1 − x/B)

10

Page 13: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Particular (Long Bearing)Solution

• Assumptions

Long bearing (BL 1) =⇒ ∂/∂z = 0

No out of plane motions: W1 = W2 = 0

Relative velocity:

U = U1 − U2, V = V2 − V1

Rigid pad/Stiff bearing:∂(U1+U2)

∂x ≈ 0

incompressible & iso-viscous

• Apply to Reynold s Equation:

1

η

d

dx

(h3dp

dx

)= 12V + 6U

dh

dx(8)

11

Page 14: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Long Bearing Solution

• Integrate:

dp

dx= 12η

V x

h3+ 6η

U

h2+ C1

• Integrate:

p(x) = 12ηV∫

xdx

h3+ 6ηU

∫dx

h2+ C1x + C2

• Film thickness:

h(x) = ho + (h1 − ho)(1 − x/B)

• Pressure boundary conditions:

p(0) = p(B) = pa

12

Page 15: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Long Bearing Solution

pp =6 η n U x

(1 − x

B

)h2 (2ho + n)

−12B η V x

(1 − x

B

)h2 (2ho + n)

+ pa

• 1st term = load support

• 2nd term = ``squeezefilm effect

• pa: ambient pressure

• n = h1 − ho

• pp solution of Reynold s eqn (8)

• pp = pp(x) independent of z & satisfies (7)

with W1 = W2 =∂(U1+U2)

∂x = 0=⇒ particular solution of (7)

13

Page 16: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Homogeneous Solution

• Homogeneous Reynold s Equation

set all excitations to zero

U1 = V1 = W1 = U2 = V2 = W2 = 0

film thickness h = h(x)

∂x

(h3∂p

∂x

)+ h3 ∂

∂z

(∂p

∂z

)= 0

• Separable solution: let ph = X(x)Z(z)

14

Page 17: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Homogeneous & ParticularSolutions

Complete Solution

15

Page 18: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Complete Solution

• Sum homogeneous & particular solutions

• Apply boundary conditions: velocities &

pressures

• Special cases:

long bearing: Lz/B >> 1,

ph = ph(x) & p = pp(x)

short bearing: Lz/B << 1,

16

Page 19: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Bearing Forces

• Forces: integrate over areas

W = −∫Ab

− [p(x, z) − pa] + 2η

∂uy

∂y

y=0

dxdz

Fx = −∫Ab

η

∂ux

∂y+

∂uy

∂x

y=0

dxdz

Fz = −∫Ab

η

∂uz

∂y+

∂uy

∂z

y=0

dxdz

where

ux =1

∂p

∂xy(y − h) + U1 +

y

h(U2 − U1),

uy = (V2 − V1)y

h+ V1, uz =

1

∂p

∂zy(y − h)

17

Page 20: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Apply to Inclined Pad

• Normal force

W (ho, U, V ) = (LB)2[2BR1U −

(4B2R1 + R3

)V

]

• Tangential force

Fx(ho, U, V ) = (LB)2[(R1 + R2

)U − 2BR1V

]

• where B = B/n,

R1(ho) =3 η

n L B

[− 2n

2ho + n+ log(1 + n/ho)

]

R2(ho) =R3(ho)

2=

η

n L Blog(1 + n/ho)

18

Page 21: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

1Sf : U

R: ℜ2

UTF: LB 1 0

R: ℜ1

TF: n/2B

R: ℜ3

TF: 1/LBFx

VW

Sf : VP

τ σyy

tangential motions

Coquette Flow:power losses

Squeeze film:power losses

Wedge effect:lift + losses

normal motions

R2

U R1

R3

V

LB 1/LBn/2B

Fx

+

-

+

-

W

``BondGraph Equation

• Resistance field =⇒ W & Fx equations

• Bond graph & bearing equivalent circuit

19

Page 22: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Gear: Ig, mg

Load: Ws

Shaft: ksr, ksa

Tiltedpads

Bearingplate: Ip, mp

Te

Bearing: b1, b2

Thrust Bearing with M Pads

• In bearing bond graph, (Tb, ωb) replaces (Fx, U)

• ωb = MU/R Tb = RMFx

20

Page 23: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

1

R: Mℜ2

TF: LB 1 0

R: Mℜ1

TF: n/2B

R: Mℜ3

TF: 1/LB VW Sf : V

Pτ σyySf : ωb ωb

TF: RTb

1

R: ℜ2

TF: LB 1 0

R: ℜ1

TF: n/2B

R: ℜ3

TF: 1/LBSf : ωb ωbTF: R

TbVW Sf : V1 1

1

R: ℜ2

TF: LB 1 0

R: ℜ1

TF: n/2B

R: ℜ3

TF: 1/LB

Gear: Ig, mg

Load: Ws

Shaft: ksr, ksa

Tiltedpads

Bearingplate: Ip, mp

Te

Bearing: b1, b2

Thrust Bearing Bond Graphs

21

Page 24: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

B

y

x U1 = U ho

h1

steppad

V1 = -V

FxW

nsB

B

RoRi

α

Rayleigh Step Bearing

• Easier to manufacture step replaces incline

• Film thickness:

h(x) =

h1, 0 ≤ x < Bs

ho, Bs < x ≤ B

22

Page 25: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

B

steppad

Bs

p(x)

pa

Step Bearing PressuresTriangular

• Pressures

• Maximum pressure at step x = Bs:

pmax − pa = 6η(B − Bs) Bs (nU + B V )

(B − Bs) h31 + Bs h

3o

23

Page 26: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Shaft

yz

W2R

2Rb

Bearing

L

φ

ωb

θ

e ωx

y

Eccentric Journal Bearings

• Film thickness:

h = h(θ) = c + e cos θ = c(1 + n cos θ)

Eccentricity: e Attitude angle: φ

Polar coordinates (e, φ) locates shaft cen-

ter relative to bearing center

Clearance: c = Rb − R

n = e/c

24

Page 27: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

• Problem: shaft at (e, φ) orbits bearing

• Coordinate system attached to load W

• Journal rotates at relative ω − ωb

• Bearing rotates at relative ωb

• Could be piston rod-crankshaft bearing

25

Page 28: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

• Surface velocities:

U1 = Rω + dedt sin θ − edφ

dt cos θ − Rdφdt

V1 = −dedt cos θ − edφ

dt sin θ

U2 = Rbωb − Rdφdt

V2 = −eωb sin θ

• Reynold s equation, right side:

[−Rbωb − R (ω − ωb) + e

·φ cos θ− ·

e sin θ

]∂h∂x

+h∂

(−e

·φcos θ+

·esin θ

)∂x

+2R (ω − ωb)∂h∂x + 2e

·φ sin θ + 2

·e cos θ

26

Page 29: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Reynold s Equation

• Ω = ω + ωb − 2·φ

• Approximations: c/R 1, e/R 1

• Assumptions: L/2R is large (generally > 4)

• Similar procedure gives:

∂θ

ρh3

η

∂p

∂θ

+ R2 ∂

∂z

ρh3

η

∂p

∂z

= 6R2

[2

∂(ρh)

∂t+ Ω

∂(ρh)

∂θ

]

27

Page 30: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

θ

p - pa6ηΩR2/c2

n = 0.5n = 0.

Solve Pressures

p(θ) − pa = 6ηR2

c2

[n

2 + n2Ωsin θ− ·

n cos θ

× 1

(1 + n cos θ)2+

1

(1 + n cos θ)

• Suppose

·n= 0. For π ≤ θ < 2π, p − pa < 0

=⇒ subambient pressures & cavitation inliquids

28

Page 31: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

• Cavitation =⇒ lubricant vapors & air bub-bles

• Pressure solution invalid, options:

Solve with cavitation algorithm:

∗ Define: φ = ρρc

, p = pc + gβ lnφ

∗ ρc: vapor density, pc: vapor pressure

∗ dp = gβρdρ = gβ

φdφ

∗ Step function g = g(φ) =

0, φ < 11, φ ≥ 1

∗ ddx

(ρh3

12ηdpdx

)= d

dx

(ρcβh3

12ηgdφ

dx

)∗ Yields ``ModifiedReynold s Equation

in unknown φ

Approximation: when p < pa, set p = pa

in integrals for force & torque

29

Page 32: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

e φ.Wφ

circumferentialmotions

e. We

radialmotions

R

ωTf

shaftrotation

TF: φ

WZWY

Y.

Z.

Forces & Torque

• Pressure integrals =⇒ forces & torque:

We = −12πηLR3

c2

·n(

1 − n2)3/2

Wφ = 12LπηR3

c2nΩ(

2 + n2) √

1 − n2

Tf = 4πηLΩR3

c

1 + 2n2(2 + n2

) √1 − n2

• Yields 3-port resistive field:

• TF transforms (e, φ) to cartesian system

30

Page 33: Hydrodynamic Lubrication - Mechanical Engineering Lubrication • Fluid Lubricant: ... Friction vs stribeck number ηN/P η: ... • Derive Reynold s Equation

Rotor dynamics in bondgraph form

• Shaft bending & torsion via FEM in bond

graphs

• Rotating coordinate in bond graph form

[Hubbard, 1979]

• Connect to rest of system via bond graph

• Possible: shaft whirl, bending, etc. excited

directly by system

31