72
FINAL REPORT HYDROCARBON CHARACTERIZATION OF FACE AROMATIC STREAMS R. Gieleciak, D. Hager, C. Lay, and C. Fairbridge. CanmetENERGY–DEVON Work performed for: CanmetENERGY, Natural Resources Canada; Fuels for Advanced Combustion Engines Working Group AUGUST 2010 DIVISION REPORT 2010-082 (INT)

Hydrocarbon Characterization of FACE Aromatic Streams

Embed Size (px)

Citation preview

 

 

FINAL REPORT    HYDROCARBON CHARACTERIZATION OF FACE AROMATIC STREAMS    R. Gieleciak, D. Hager, C. Lay, and C. Fairbridge. CanmetENERGY–DEVON   Work performed for: CanmetENERGY, Natural Resources Canada; Fuels for Advanced Combustion Engines Working Group     AUGUST 2010     DIVISION REPORT 2010-082 (INT)

  i  PROTECTED BUSINESS INFORMATION

CanmetENERGY–Devon

DISCLAIMER

This report and its contents, the project in respect of which it is submitted, and

the conclusions and recommendations arising from it do not necessarily reflect the

views of the Government of Canada, its officers, employees, or agents.

  ii  PROTECTED BUSINESS INFORMATION

CanmetENERGY–Devon

EXECUTIVE SUMMARY

CanmetENERGY was asked by the Coordinating Research Council Fuels for

Advanced Combustion Engines (FACE) Working Group to provide standard and

advanced analytical characterization analyses of four samples used for FACE

research diesel fuel testing.

This report provides standard as well as detailed chemical and structural

hydrocarbon type information for the aromatic hydrocarbon streams. The results

presented in this report consist of data obtained using the following analytical

techniques: PIONA (n-paraffin, iso-paraffin, olefin, naphthene and aromatic, ASTM

D5443M), DHA (detailed hydrocarbon analysis, ASTM D6730), GC-FIMS (gas

chromatography-field ionization mass spectrometry), GC-MS (gas chromatography-

mass spectrometry, ASTM D2786 and D3239), and GCxGC (comprehensive two-

dimensional gas chromatography). The following table presents a summary of the

analyses.

  iii  PROTECTED BUSINESS INFORMATION

CanmetENERGY–Devon

  iv  PROTECTED BUSINESS INFORMATION

CanmetENERGY–Devon

CONTENTS  

DISCLAIMER ..................................................................................................................... i

EXECUTIVE SUMMARY ................................................................................................ ii

1.0 INTRODUCTION .................................................................................................. 1

2.0 EXPERIMENTAL.................................................................................................. 1

2.1 HYDROCARBON TYPE COMPOSITION OF PETROLEUM

DISTILLATES BY ASTM D2786/D3239............................................................. 1

2.2 GAS CHROMATOGRAPHY – FIELD IONIZATION MASS

SPECTROMETRY (GC-FIMS) ............................................................................. 2

2.3 COMPREHENSIVE TWO-DIMENSIONAL GAS

CHROMATOGRAPHY (GCXGC)........................................................................ 3

3.0 RESULTS AND DISCUSSION............................................................................. 6

3.1 HYDROCARBON TYPE COMPOSITION OF PETROLEUM

DISTILLATES BY ASTM D2786/D3239............................................................. 6

3.2 GC-FIMS ................................................................................................................ 9

3.3 COMPREHENSIVE TWO-DIMENSIONAL GAS

CHROMATOGRAPHY ....................................................................................... 13

3.3.1 GCXGC-FID......................................................................................................... 13

3.4 GCXGC-TOFMS/FID .......................................................................................... 22

4.0 ACKNOWLEDGEMENTS.................................................................................. 31

APPENDIX A: SIMDIS ASTM D2887 .......................................................................... 32

APPENDIX B: PIONA DATA........................................................................................ 36

APPENDIX C: DHA DATA ........................................................................................... 39

APPENDIX D: SPE-GC-MS AND PIONA DATA........................................................ 43

APPENDIX E: GC-FIMS................................................................................................ 46

APPENDIX F: GCxGC – FID......................................................................................... 54

APPENDIX G: GCxGC – TOFMS/FID........................................................................... 59

TABLES  

Table 1 – Sample names, sample tags, and some known properties a) ............................... 1

  v  PROTECTED BUSINESS INFORMATION

CanmetENERGY–Devon

Table 2 – Operating conditions for GCxGC-FID analysis ................................................. 5

Table 3 – Operating conditions for GCxGC-TOFMS/FID analysis................................... 5

Table 4 – Quantitative group type results of GCxGC-FID separation ............................. 16

Table 5 – Results of GCxGC-TOFMS/FID speciation..................................................... 23

Table A1 – SimDis table................................................................................................... 33

Table B1 – PIONA data for COSDENOL 104................................................................. 37

Table B2 – PIONA data for ATOSOL 115 ...................................................................... 38

Table C1 – DHA analysis by boiling point and by carbon number for

COSDENOL 104 .................................................................................................. 40

Table C2 – DHA analysis by boiling point and by carbon number for

ATOSOL 115........................................................................................................ 41

Table D1 – SPE-GC-MS + PIONA analysis for COSDENOL 104 and

ATOSOL 115 (no SPE-GC-MS data for ATOSOL 115 because its

initial boiling point is < 200°C) ............................................................................ 44

Table D2 – SPE-GC-MS +analysis for COSDENOL 180 and RB SOLV

200B (no PIONA data for this samples because their initial boiling

point is > 200°C)................................................................................................... 45

Table E1 – GC-FIMS + PIONA data for COSDENOL 104............................................. 47

Table E2 – GC-FIMS data for COSDENOL 180 ............................................................. 48

Table E3 – GC-FIMS data for RB SOLVENT 200B ....................................................... 49

FIGURES  

Figure 1 – Chromatogram showing alignment of subsequent simultaneous

response of dual detectors TIC (orange) and FID (green) ...................................... 4

Figure 2 – SimDis curves for four aromatic streams (based on ASTM

D2887) .................................................................................................................... 6

Figure 3 – PIONA results for Cosdenol 104: S - saturates; U - unsaturates.

Recovery of < 200ºC fraction from SimDis (ASTM 2887): 76.50% ..................... 7

Figure 4 – PIONA results for Atosol 115. S - saturates; U - unsaturates.

Recovery of < 200ºC fraction from SimDis (ASTM 2887): 96.30% ..................... 7

  vi  PROTECTED BUSINESS INFORMATION

CanmetENERGY–Devon

Figure 5 – SPE-GC-MS data for Cosdenol 104.................................................................. 8

Figure 6 – SPE-GC-MS data comparison for Cosdenol 180 and RB solv

200B........................................................................................................................ 9

Figure 7 – GC-FIMS and PIONA data comparison for (a) Cosdenol 104

and (b) Atosol 115 ................................................................................................ 10

Figure 8 – GC-FIMS and PIONA data comparison for (a) Cosdenol 180

and (b) RB Solvent 200B...................................................................................... 11

Figure 9 – Differentiation plots for (a) Cosdenol 104 & Atosol 115 and (b)

Cosdenol 180 & RB Solvent 200B ....................................................................... 12

Figure 10 – Schematic example of compound class distribution using

traditional column set combination. Meaning of symbols: a6 – 6

carbon aromatics, c5 – 5 carbon ring aliphatic, c6 – 6 carbon ring

aliphatic................................................................................................................. 14

Figure 11 – Examples of compounds assigned to groups used in GCxGC-

FID typing............................................................................................................. 15

Figure 12 – Graphic results of GCxGC-FID speciation ................................................... 17

Figure 13 – GCxGC-FID bubble plot chromatograms of (a) Cosdenol 104

and (b) Atosol 115 with selected groups............................................................... 18

Figure 14 – GCxGC-FID bubble plot chromatograms of (a) Cosdenol 180

and (b) RB Solvent 200B with selected groups ................................................... 19

Figure 15 – Differentiation plots for (a) Cosdenol 104 & Atosol 115 and

(b) Atosol 115 & Cosdenol 104............................................................................ 20

Figure 16 – Differentiation plots for (a) Cosdenol 180 & RB Solvent 200B

and (b) RB Solvent 200B & Cosdenol 180........................................................... 20

Figure 17 – (a) ‘global’ SimDis based on GCxGC for Cosdenol 104 (blue)

and Atosol 115 (red) (b) ‘group type’ SimDis based on selected

classification regions............................................................................................. 21

Figure 18 – (a) ‘global’ SimDis based on GCxGC for Cosdenol 180 (blue)

and RB Solvent 200B (red) (b) ‘group type’ SimDis based on

selected classification regions............................................................................... 21

  vii  PROTECTED BUSINESS INFORMATION

CanmetENERGY–Devon

Figure 19 – GCxGC-TOFMS/FID chromatograms of example sample: (a)

‘normal’ column combination (b) ‘reversed’ column combination...................... 22

Figure 20 – Example of identification of compounds in selected region for

RB Solvent 200B .................................................................................................. 24

Figure 21 – GCxGC-TOFMS/FID chromatograms of (a) Cosdenol 104

and (b) Atosol 115 with selected groups. Compound classes are

marked with different colors (e.g., C2-benzene <green>, C3-

benzene <red>, C4-benzene <yellow>) ................................................................ 25

Figure 22 – GCxGC-TOFMS/FID chromatograms of (a) Cosdenol 180

and (b) RB Solvent 200B with selected groups. Compound classes

are marked with different colors (e.g., naphthalenes <red>, C11-

benzene <brown>,cyclohexylbenzenes <pink., C1-C4-

dphenyethanes <dark blue>)................................................................................. 26

Figure 23 – Comparison of detailed GCxGC-TOFMS hydrocarbon type

analyses for Cosdenol 104 and Atosol 115........................................................... 27

Figure 24 – Comparison of detailed GCxGC-TOFMS hydrocarbon type

analyses for Cosdenol 180 and RB Solvent 200B ................................................ 28

Figure 25 – Examples of compounds used in GCxGC-TOFMS/FID

comparative analysis............................................................................................. 29

Figure 26 – Differentiation plots for (a) Cosdenol 104 & Atosol 115 and

(b) Atosol 115 & Cosdenol 104............................................................................ 30

Figure 27 – Differentiation plots for (a) Cosdenol 180 & RB Solvent 200B

and (b) RB Solvent 200B & Cosdenol 180........................................................... 30

Figure E1 – GC-FIMS and PIONA for COSDENOL 104 ............................................... 50

Figure E2 – GC-FIM and PIONA for ATOSOL 115 ....................................................... 51

Figure E3 – GC-FIMS and PIONA for COSDENOL 180 ............................................... 52

Figure E4 – GC-FIMS and PIONA for RB SOLV 200B ................................................. 53

Figure F1 – GCxGC-FID chromatograms of Cosdenol 104: (a) 2D view,

(b) 3D view, (c) 2D view together with classification regions ............................. 55

Figure F2 – GCxGC-FID chromatograms of Atosol 115: (a) 2D view, (b)

3D view, (c) 2D view together with classification regions................................... 56

  viii  PROTECTED BUSINESS INFORMATION

CanmetENERGY–Devon

Figure F3 – GCxGC-FID chromatograms of Cosdenol 180: (a) 2D view,

(b) 3D view, (c) 2D view together with classification regions ............................. 57

Figure F4 – GCxGC-FID chromatograms of RB Solvent 200B: (a) 2D

view, (b) 3D view, (c) 2D view together with classification regions ................... 58

Figure G1 – GCxGC-TOFMS/FID chromatograms of Cosdenol 104: (a)

2D view together with classification regions (b) 3 D view .................................. 60

Figure G 2 – GCxGC-TOFMS/FID chromatograms of Atosol 115: (a) 2D

view together with classification regions (b) 3 D view ........................................ 61

Figure G3 – GCxGC-TOFMS/FID chromatograms of Cosdenol 180: (a)

2D view together with classification regions (b) 3 D view .................................. 62

Figure G4 – GCxGC-TOFMS/FID chromatograms of RB Solvent 200B:

(a) 2D view together with classification regions (b) 3D view.............................. 63

PROTECTED BUSINESS INFORMATION 1

1.0 INTRODUCTION

A description of the samples provided for analysis is presented in Table 1.

Table 1 – Sample names, sample tags, and some known properties a)

Cosdenol 104 Cosdenol 180 RB Solvent 200B Atosol 115

CanmetENERGY ID 10-1041 10-1042 10-1043 10-1044

CAS# 64741-68-0 64742-94-5 147952-37-2 70693-06-0

Physical state liquid liquid liquid liquid

Flash points >37.8ºC 82.2ºC 136.1ºC 46.1ºC

Specific gravity (Water = 1.00) 0.88 0.98 0.978 0.86-0.88

Boiling/Condensation Point 160–246ºC 236–318ºC 232ºC 145–185ºC a) Taken from Material Safety Data Sheet.

2.0 EXPERIMENTAL

2.1 HYDROCARBON TYPE COMPOSITION OF PETROLEUM

DISTILLATES BY ASTM D2786/D3239

First, simulated distillation (SimDis) analysis (ASTM D2887), which provides

the boiling point distribution of petroleum products for the boiling range between C5

(35ºC) and C44 (538ºC), is performed on each sample. The distillation method is

simulated by the use of gas chromatography (in this case, an Analytical Control

Systems, Inc. SimDis custom analyzer based on the HP-6890 series gas

chromatograph), where a nonpolar capillary column is used to elute the hydrocarbon

components of the sample in order of increasing boiling point.

Secondly, the samples are pre-separated by solid-phase extraction (SPE)

analysis, which is an in-house method developed to separate hydrocarbon samples

containing little or no polar species into saturate, olefin, and aromatic fractions. This

is accomplished by eluting the sample through SPE cartridges containing different

stationary phases using different solvents (mobile phases). The eluted fractions are

concentrated to a known volume before being quantified using GC-FID.

Thirdly, saturate and aromatic fractions are characterized using GC-MS to

identify and quantify their individual component types. A sample’s components that

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 2

boil above 200°C (392°F) are quantified and identified in terms of saturate and

aromatic percentages using GC-MS D2786 for the saturate fraction and ASTM

D3239 for the aromatic fraction. Those components boiling below 200ºC are

determined by PIONA to provide hydrocarbon types by carbon number.

2.2 GAS CHROMATOGRAPHY – FIELD IONIZATION MASS

SPECTROMETRY (GC-FIMS)

Samples are characterized by GC-FIMS, which characterizes hydrocarbon

types in the boiling range of 200 to 343°C (392 to 649°F). This method provides

detailed characterization of saturates (including iso-paraffins, n-paraffins, and

cylcoparaffins), aromatics (mono, di, and polyaromatics), and two aromatic

thiophenotypes. It does not require pre-separation of the sample. The results are

reported for the total product and by carbon number (up to C21 for the diesel range)

and/or by boiling point distribution. A full GC-FIMS report also consists of a series

of reports by carbon number in selected temperature intervals (usually 10°C

intervals). The analysis is performed using an Agilent 6890 gas chromatograph

configured with a GCT Micromass multi-channel plate detector. A semi-polar DB-

5HT capillary column (30 m long × 0.25 mm internal diameter × 0.10 μm film

thickness) is used for separation of the peaks, and identification of the components is

based on the accurately determined masses.

For the diesel components boiling below 200°C (392°F), the sample is

injected into a PIONA analyzer (Analytical Control PIONA analyzer-reformulizer)

and run according to ASTM D5443 and ASTM D6839 so that the data can be

presented by carbon number. The instrument has been equipped with a prefractionator

to vent off any material that boils above 200°C (392°F). The PIONA data reported for

the fraction that boils below 200°C are then combined with the GC-FIMS data for the

fraction that boils above 200°C to produce reports that capture the full boiling range

of the diesel fuel. Two assumptions were made in presenting the PIONA data:

cycloparaffins were all monocycloparaffins, and aromatics were all alkylbenzenes.

Similarly, diesel components boiling below 200°C (392°F) were also analyzed by

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 3

detailed hydrocarbon analysis (DHA, ASTM D6730) operated with a prefractionator

to eliminate hydrocarbons that boil above 200°C (392°F).

2.3 COMPREHENSIVE TWO-DIMENSIONAL GAS

CHROMATOGRAPHY (GCXGC)

Comprehensive two-dimensional gas chromatography (GCxGC) is a

hyphenated technique in which two different chromatographic separation mechanisms

act in series to greatly improve component separation and identification. The system

contains a jet-cool modulator between two chromatographic columns having different

selectivities. The modulator repeatedly focuses a small portion of the first column

eluate and injects it into the second column. All of the effluents from the second

column enter the detector. The main factors influencing usefulness of this method are:

high chromatographic resolution, high peak capacity, analyte detectability, and

chemical compound class ordering on the chromatogram.

The second dimension separation is very fast (usually 2 to 6 s), peaks are

narrow, typically, 0.1 to 0.5 s. Detectors used in this system must be characterized by

small internal volumes, short rise times, and high data acquisition rates. One of the

detectors meeting these demands, and used in CanmetENERGY GCxGC instruments,

is the flame ionization detector (FID). The FID response is linear over a very wide

range of concentrations and proportional to the mass flow rate of carbon. It therefore

may be considered as a general hydrocarbon detector. All quantitative analyses

provided in this report were based on the FID detector.

When structural information has to be provided to enable compound

identification, a mass spectrometer can be used as a detector. The TOFMS (time-of-

flight mass spectrometer) instrument can acquire up to 500 spectra per second, which

is more than enough for the accurate reconstruction of second-dimension peaks and

the deconvolution of overlapping peaks. The LECO ChromaTOF software allows

direct presentation of total ion current (TIC) and analytical ion current, and extracted-

ion two-dimensional chromatograms, which assists the interpretation process. In

addition to the mass spectrometer detector, the CanmetENERGY GCxGC-TOFMS is

equipped with a flame ionization detector. After matching both TOFMS and FID

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 4

signals, both qualitative and quantitative results can be obtained simultaneously. An

example of such a chromatogram is shown in Figure 1 –.

 

Figure 1 – Chromatogram showing alignment of subsequent simultaneous response of

dual detectors TIC (orange) and FID (green)

One of the main benefits of orthogonal GCxGC separation is that the

chromatogram obtained is structurally ordered (i.e., on the GC map, continuous

clusters for related homologues, congeners, and isomers are easily visible). Examples

of such structured chromatograms are presented in the figures in Appendix E).

The GCxGC instruments were provided by Leco Instruments and used a

cryogenically cooled modulator. The column features and the operating conditions for

both GCxGC-FID/SCD and GCxGC-TOFMS/FID experiments are listed in Table 2

and Table 3, respectively. Detectors used in the analysis are as follows: FID (flame

ionization detector), SCD (sulfur chemiluminescence detector), and TOFMS (time-of-

flight mass spectrometer).

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 5

Table 2 – Operating conditions for GCxGC-FID analysis

1st column Varian Factor 4 VF5-HT, 30 m x 0.32 mm DF:0.1 Main oven program 50–340C; 5C/min 2nd column Varian Factor 4 VF17-MS, 1.5 m x 0.1 DF:0.2 Secondary oven program 40C offset from main oven Inlet temperature 350C Injection size 0.2 L Split ratio 40:1 Carrier gas He, constant flow, 1.5 mL/min Modulator temperature 55C offset from main oven Detector FID, 350°C Acquisition rate 100 Hz Modulation period 8 s

Table 3 – Operating conditions for GCxGC-TOFMS/FID analysis

1st column Varian Factor 4 VF17-MS, 30 m x 0.32 mm DF:0.1 Main oven program 50–340C; 5C/min 2nd column Varian Factor 4 VF5-HT,1.5 m x 0.1 DF:0.2 Secondary oven program 40C offset from main oven Inlet temperature 350C Injection size 0.2 L Split ratio 40:1 Carrier gas He, constant flow, 1.5 mL/min Modulator temperature 55C offset from main oven Detector TOFMS and FID Acquisition rate 200 Hz Modulation period 6 s

Data handling procedures, such as contour plotting, GCxGC peak collection,

retention time measurements, and peak volume calculation were performed using

ChromaTOF software provided by LECO Instruments. Chemical compounds in the

samples were identified by searching for matching spectra in NIST mass spectral

information. Results for each compound quantities were shown as a percentage of the

total area of the quantified peaks. All quantitative analysis was based on FID output.

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 6

3.0 RESULTS AND DISCUSSION

3.1 HYDROCARBON TYPE COMPOSITION OF PETROLEUM

DISTILLATES BY ASTM D2786/D3239

The SimDis analysis for the four aromatic streams is presented in Figure 2 and

a tabulated version is provided in Appendix A. Such data generally show the same

trends as the distillation curves obtained from ASTM D86 analysis. Trends presented

during SimDis revealed similarities among analyzed samples. Clearly, Cosdenol 180

and RB Solvent 200B exhibit distillation curves that are higher than the other ones

(Cosdenol 104 and Atosol 115). However, it was observed that Atosol 115 and RB

Solvent 200B contain more low-boiling-point compounds than their group

equivalents.

 

Figure 2 – SimDis curves for four aromatic streams (based on ASTM D2887)

PIONA (paraffins, isoparaffins, olefins, naphthenes, aromatics) analysis was

used to obtain a composite hydrocarbon-type analysis for samples that boil below

200C. Data processing applied after separation allows for full hydrocarbon analysis

that presents the PIONA data by carbon number (C3 to C11) for selected hydrocarbon

types. The PIONA data for selected samples (Cosdenol 104 and Atosol 115) are

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 7

presented in Appendix B. Colored contour plots of the PIONA results are shown in

Figure 3 and Figure 4 for the lighter streams (Cosdenol 104 and Atosol 115).

 

Figure 3 – PIONA results for Cosdenol 104: S - saturates; U - unsaturates. Recovery

of < 200ºC fraction from SimDis (ASTM 2887): 76.50%

 

Figure 4 – PIONA results for Atosol 115. S - saturates; U - unsaturates. Recovery of

< 200ºC fraction from SimDis (ASTM 2887): 96.30%

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 8

Based on the SimDis plot (see Figure 2), the weight fractions that boiled

below 200ºC were 96.3% and 76.5% for Atosol 115 and Cosdenol 104, respectively.

Therefore, for Atosol 115, the hydrocarbon content is completely described by

PIONA alone.

In addition to PIONA analysis, DHA (detailed hydrocarbon analysis) was also

performed on the two light streams (Cosdenol 104 and Atosol 115). DHA results are

presented in Appendix C by both carbon number and boiling point distribution.

Fractions after SPE (solid phase extraction) were analyzed by GC-MS using

ASTM D2786 for the saturates and ASTM D3239 for the aromatics boiling above

200ºC. The separate GC-MS results were combined to derive total hydrocarbon

contents for the diesel fuels. These data are presented in Figure 5 –and Figure 6 –for

Cosdenol 104 and Cosdenol 180/RB Solv 200B, respectively. Analytical data from

SPE-GC-MS and PIONA analyses are provided in tabular form in Appendix D.

 

Figure 5 – SPE-GC-MS data for Cosdenol 104

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 9

 

Figure 6 – SPE-GC-MS data comparison for Cosdenol 180 and RB solv 200B

3.2 GC-FIMS

Due to detector overloading phenomena, samples were diluted prior to the

GC-FIMS experiments. However, for comparative purposes GC-FIMS analyses were

performed both for neat and diluted samples. The GC-FIMS data together with the

PIONA data for all four aromatic streams are presented in tabulated form in

Appendix E. Because the upper boiling point range for Atosol 115 is below 200ºC,

GC-FIMS was not performed on this sample. Figure 7 and Figure 8 –shows the

distribution of hydrocarbon types by carbon number for analyzed samples using

combined data from GC-FIMS and PIONA. Differentiation plots shown on Figure 9 –

help distinguish similarities between proper light and heavier pairs of aromatic

compounds.

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 10

a)

b)

Figure 7 – GC-FIMS and PIONA data comparison for (a) Cosdenol 104 and (b)

Atosol 115

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 11

a)

b)

Figure 8 – GC-FIMS and PIONA data comparison for (a) Cosdenol 180 and (b) RB

Solvent 200B

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 12

a)

b)

Figure 9 – Differentiation plots for (a) Cosdenol 104 & Atosol 115 and (b) Cosdenol

180 & RB Solvent 200B

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 13

3.3 COMPREHENSIVE TWO-DIMENSIONAL GAS

CHROMATOGRAPHY

Two-dimensional gas chromatography was used for both quantitative and

qualitative analysis. The following pages present the advanced characterization of

aromatic samples in more detail and include two-dimensional chromatograms from

both the GCxGC-FID and GCxGC-TOFMS/FID instruments.

3.3.1 GCXGC-FID

The CanmetENERGY GCxGC-FID instrument is equipped with a

‘traditional’ column set combination (see Table 2). The first column is nonpolar and

the second column is polar. Using this column combination, the first-dimension

separation is governed by volatility and, consequently, a boiling point separation is

obtained. The separation on the second column is dependent on specific relationships

between the stationary phase and analytes. This setup provides a structured group

separation as shown schematically in Figure 10. The ordered structures enable rapid

profiling and quantification. Selected representatives from compound classes are

shown in Figure 11.

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 14

 

Figure 10 – Schematic example of compound class distribution using traditional

column set combination. Meaning of symbols: a6 – 6 carbon aromatics, c5 – 5

carbon ring aliphatic, c6 – 6 carbon ring aliphatic.

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 15

  

Figure 11 – Examples of compounds assigned to groups used in GCxGC-FID typing

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 16

All GCxGC-FID results presented in this report were based on neat (not

diluted) samples. The compound classes presented in Figure 10 and Figure 11 were

used for reporting the results of group type separations for all analyzed samples.

GCxGC-FID chromatograms obtained from the analysis of all four aromatic

samples are shown in Appendix F (Figures F1–F4). Retention time in the first

dimension is shown on the x-axis, and retention time in the second dimension is

shown on the y-axis. Signal intensity is illustrated on a color scale. For the first series

(Figures F1a–F4a), blue represents the baseline and red represents the most intense

peaks in the chromatogram. The second series (Figures F1b–F4b) shows two-

dimensional chromatograms together with classification regions. The third series of

pictures (Figures F1c–F4c) shows three-dimensional views of GCxGC separation.

Table 3 gives detailed quantitative and structural information of group type

GCxGC-FID analysis. Figure 12 – presents the results from Table 4 in visual form.

Table 4 – Quantitative group type results of GCxGC-FID separation

Cosdenol 104 Atosol 115 Cosdenol 180 RB Solvent 200B

N-paraffins 0.622 0.534 0.082 0.023

Isoparaffins 1.711 1.512 0.003 0.057

olefins/cycloparaf 0.003 0.021 0.000 0.014

a6 a) 90.493 97.131 20.824 40.695

a6a6 6.654 0.725 70.495 56.785

a6a6a6 0.164 0.004 2.001 0.943

a6a6a6c5 0.027 0.000 0.334 0.100

a6c5/a6c6/a6c6 0.139 0.052 4.289 0.862

a6c5a6 0.186 0.020 1.972 0.522

a) Explanation of symbolic tags oin Figure 11.

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 17

Figure 12 – Graphic results of GCxGC-FID speciation

Peak areas obtained after preprocessing with ChromaTOF software were

transferred into MATLAB® and subjected to further processing. The first-dimension

retention time was converted into a boiling point using a correlation established

between the boiling point of n-paraffins and their retention time. This exercise

allowed for presentation of GCxGC-FID maps in the boiling point domain.

Additionally, component peaks found in the chromatograms were presented in bubble

plot form where the size of the bubble is related to the component concentration. This

type of visualization is presented in Figure 13 –and Figure 14. The Cosdenol 104 and

Atosol 115 bubble plots were deliberately placed together in Figure 3.12 to facilitate

quick comparison). The same arrangement was applied to the other pair of samples,

namely Cosdenol 180 and RB Solvent 200B in Figure 3.13.

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 18

a)

b)

Figure 13 – GCxGC-FID bubble plot chromatograms of (a) Cosdenol 104 and (b)

Atosol 115 with selected groups.

The lighter streams (Cosdenol 104 and Atosol 115) are mostly composed of

substituted benzene ring compounds. The “old source” Cosdenol contains more

diaromatic compounds (a6a6) than the proposed source Atosol 115. A close look at

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 19

Figure F1 and Figure F2 (in Appendix F) and the bubble plot (Figure 13 –) reveals

that the a6a6 group compounds are naphthalene and 1- and 2-methylnaphthalene.

a)

b)

Figure 14 – GCxGC-FID bubble plot chromatograms of (a) Cosdenol 180 and (b) RB

Solvent 200B with selected groups

The heavier streams (Cosdenol 180 and RB Solvent 200B) are mostly

composed of substituted monoaromatic compounds and a6a6 compounds. As shown

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 20

in Figure 11, the a6a6 group could be biphenyl, naphthalene, or 1,1’-diphenylethane

derivatives. However, further GCxGC-TOFMS analysis showed that this group of

compounds is mostly composed of diphenyl alkanes.

Additionally, maps showing differences between GCxGC-FID

chromatograms were prepared (see Figure 15 –and Figure 16). Such representation

allows for fast recognition of regions of deviation between samples.

Cosdenol 114 – Atosol 115 Atosol 115 - Cosdenol 114

a) b)

Cosdenol 114 – Atosol 115 Atosol 115 - Cosdenol 114

a) b)

Figure 15 – Differentiation plots for (a) Cosdenol 104 & Atosol 115 and (b) Atosol

115 & Cosdenol 104

Cosdenol 180 – RB Solvent 200B

a)

RB Solvent 200B - Cosdenol 180

b)

Cosdenol 180 – RB Solvent 200B

a)

RB Solvent 200B - Cosdenol 180

b)

RB Solvent 200B - Cosdenol 180

b)

 

Figure 16 – Differentiation plots for (a) Cosdenol 180 & RB Solvent 200B and (b)

RB Solvent 200B & Cosdenol 180

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 21

In addition to the discrete characterization described above, GCxGC-FID has

also the capability to provide continuous information in the form of SimDis curves.

To achieve this, the first-dimension retention time has to be converted to a boiling

point using a relationship established with n-paraffins. Figure 17a and Figure 18a

show the SimDis curves obtained for both the lighter and heavier samples. These

derived SimDis curves are very similar to ASTM D2887 SimDis curves (see Figure

2). In addition to SimDis characterization of total liquid product, it is possible to draw

SimDis curves specific to each chemical group found during the classification process

(see Figure 17b and Figure 18b).

a) b)a) b)

Figure 17 – (a) ‘global’ SimDis based on GCxGC for Cosdenol 104 (blue) and Atosol

115 (red) (b) ‘group type’ SimDis based on selected classification regions

a) b)a) b)

Figure 18 – (a) ‘global’ SimDis based on GCxGC for Cosdenol 180 (blue) and RB

Solvent 200B (red) (b) ‘group type’ SimDis based on selected classification regions

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 22

CanmetENERGY–Devon

3.4 GCXGC-TOFMS/FID

The CanmetENERGY GCxGC-TOFMS/FID instrument is equipped with a

‘reversed’ column set combination (see Table 2), where the first column is a long

polar column and the second one is a short nonpolar column. In this case, separation

is primarily governed by the specific interactions between the analytes and the

column’s polar stationary phase. The reversed-polarity column setup is being

investigated by CanmetENERGY to improve the separation between saturates,

olefins, cycloparaffins, and aromatics, and potentially to increase utilization of

capacity. However, during our experiments with the reversed-polarity column set we

noticed certain disadvantages, including loss of correlation between retention time

and boiling point, and poorer separation of aromatic hydrocarbons compared to a

‘normal’ column setup. The discussed separation conditions reported earlier in Table

2 are presented in Figure 19b together with the class boundary between aromatics and

saturates on the chromatogram.

Saturates

Aromatics

a) b)

Saturates

Aromatics

a) b)

Figure 19 – GCxGC-TOFMS/FID chromatograms of example sample: (a) ‘normal’

column combination (b) ‘reversed’ column combination

With the installation of a purged two-way splitter, it was possible to precisely

synchronize the CanmetENERGY GCxGC-TOFMS with the flame ionization

PROTECTED BUSINESS INFORMATION 23

detector to greatly enhance the reliability of both the quantitative and qualitative

results.

Table 5 presents crude results of GCxGC-TOFMS/FID analysis. Unlike the

earlier GCxGC-FID results, GCxGC-TOFMS analysis is restricted to a smaller

number of compound group types. In the near future we are planning to extend the

reported results by splitting the aromatic group into a few subgroups (di-, tri-

aromatics).

Table 5 – Results of GCxGC-TOFMS/FID speciation

Cosdenol 104 Atosol 115 Cosdenol 180 RB Solvent 200B

aromatics 96.696 96.523 100.000 100.000

cyclo-paraffins 0.151 1.037 0.000 0.000

iso-paraffins 0.610 2.061 0.000 0.000

n-paraffins 2.544 0.379 0.000 0.000

For GCxGC-TOFMS/FID chromatograms, both 2D and 3D views obtained

from the analysis of all four aromatic samples are shown in Appendix G (Figures G1–

G4). Retention time in the first dimension is shown on the x-axis, and retention time

in the second dimension is shown on the y-axis. Signal intensity (FID signal) is

illustrated on a color scale where blue represents the baseline and red represents the

most intense peaks in the chromatogram. Each two-dimensional chromatogram

includes the classification regions used in quantitative analysis.

The GCxGC-TOFMS provides a huge amount of structural information on

compounds present in the sample. Usually, species are identified by searching for

matching spectra in the U.S. National Institute of Standards and Technology (NIST)

mass spectral libraries. The main difficulty following a library search is associated

with authentication of the results obtained. In many cases, accurate name attribution

for a detected peak was impossible because of the low concentration of the analyte,

the lack of an appropriate mass spectrum in the spectrometry library, or mass

spectrum similarities between isomers. For example, Figure 20 presents the

chromatogram of RB Solvent 200B. The red circle on the GCxGC map shows the

aromatic region with a representative mass spectrum from this region. Information

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 24

included in the mass spectrum i.e., molecular ion M+ and a few peaks associated with

the spectrum suggested that the group of peaks in the red oval belong to C11 benzene

derivatives.

50 100 150 200 250 300

200

400

600

800

1000 119

91 147 55

77 232 189 161

Peak True - sample "10-1043_40resamplex2", peak 278, at 1290 , 4.180 sec , sec

M+ equal 232 means that it is benzene ring

substituted with eleven carbones

Characteristic ion for 4 substituted benzene

rings

50 100 150 200 250 300

200

400

600

800

1000 119

91 147 55

77 232 189 161

Peak True - sample "10-1043_40resamplex2", peak 278, at 1290 , 4.180 sec , sec

M+ equal 232 means that it is benzene ring

substituted with eleven carbones

Characteristic ion for 4 substituted benzene

rings

Figure 20 – Example of identification of compounds in selected region for RB

Solvent 200B

During retrospective analysis, the authors of this report noticed that the total

ion current chromatograms had a very characteristic, flat peak shape, which could

point to a detector overloading phenomenon. This could have affected the process of

identifying the proper specific compound; however, it had no effect on quantitative

results received from the FID detector. Therefore, all the samples were diluted (1/50

in dichloromethane and GCxGC-TOFMS analysis was repeated.

Figure 21 and Figure 22 illustrate the results of hydrocarbon speciation for

aromatic streams. Each chromatogram presented here contains either the compound

name or the compound class name. All the compounds or class regions were based on

individual mass spectra analysis. Figure 25 shows the structures of compounds used

in the comparative analysis prepared for aromatic streams. The bar plots in Figure 23

and Figure 24 illustrate the concentrations of individual compounds/groups of

compounds for the samples.

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 25

a)

b)

a)

b)

Figure 21 – GCxGC-TOFMS/FID chromatograms of (a) Cosdenol 104 and (b) Atosol

115 with selected groups. Compound classes are marked with different colors

(e.g., C2-benzene < green >, C3-benzene < red>, C4-benzene < yellow >)

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 26

a)

b)

a)

b)

 

Figure 22 – GCxGC-TOFMS/FID chromatograms of (a) Cosdenol 180 and (b) RB

Solvent 200B with selected groups. Compound classes are marked with

different colors (e.g., naphthalenes < red >, C11-benzene <

brown>,cyclohexylbenzenes <pink., C1-C4-dphenyethanes < dark blue >)

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 27

CanmetENERGY–Devon

 

Figure 23 – Comparison of detailed GCxGC-TOFMS hydrocarbon type analyses for

Cosdenol 104 and Atosol 115

0 5

10

15

20

25

30

35

40

C2 1,1'-DIPHENYLETHANE (36)

C4 -NAPHTHALENE (33)

1,2-DIMETHYLINDANE (26)

DIMETHYLNAPHTHALENE (32)

1,2-DIMETHYLBENZENE (2)

2-METHYLNAPHTHALENE (31)

(1-METHYLBUTYL)BENZENE (17)

1-METHYLINDAN (25)

1-METHYL-2-ISOPROPYLBENZENE (14)

ISOPROPYLBENZENE (7)

1,3-DIMETHYL-5-ISOPROPYLBENZENE (18)

1-METHYLNAPHTHALENE (30)

NAPHTHALENE (29)

1-METHYL-4-(1-METHYLETHYL)BENZENE (12)

1,3-DIMETHYLBENZENE (3)

TERT-PENTYLBENZENE (19)

2,3-DIHYDRO-INDENE (24)

1-ETHYL-3,4-DIM

ETHYLBENZENE (11)

PROPYLBENZENE (8)

TERT-BUTYLBENZENE (16)

1-ETHYL-2,6-DIMETHYLBENZENE (10)

1-ETHYL-2,3-DIM

ETHYLBENZENE (9)

1-ETHYL-4-METHYLBENZENE (5)

M-M

ETHYLPROPYLBENZENE (15)

1-ETHYL-2-METHYLBENZENE (4)

1,2,3-TRIM

ETHYLBENZENE (6)

FID Peak Area (%)C

os

de

no

l 10

4A

tos

ol 1

15

PROTECTED BUSINESS INFORMATION 28

CanmetENERGY–Devon

 

Figure 24 – Comparison of detailed GCxGC-TOFMS hydrocarbon type analyses for

Cosdenol 180 and RB Solvent 200B

0 5 10 15 20 25 30 35

2-METHYLNAPHTHALEN

E (31)

1-ETHYL-2,6-DIMETHYLBENZENE (10)

1-METHYLNAPHTHALENE (30)

1,2-DIMETHYLINDANE (26)

(1-METHYLBUTYL)BENZENE (17)

DIMETHYLNAPHTHALENE (32)

1,3-DIMETHYL-5-ISOPRO

PYLBENZENE (18)

1,3,5-TRIETHYLBENZENE (21)

DIPHENYLMETHA

N (34)

2-METHYLCYCLOHEXYLBENZENE (28)

TERT-PENTYLBENZENE (19)

1,2,4-TRIETHYLBENZENE (20)

CYCLOHEXYLBENZENE (27)

1,2-DIMETHYLBENZENE (2)

C2 1,1'-DIPHENYLETHANE (36)

C4 -NAPHTHALENE (33)

1,2,4,5-TETRAETHYLBENZENE (22)

C11 BENZENE (23)

1,1'-DIPHENYLETHANE (35)

C3 1,1'-DIPHENYLETHANE (37)

C4 1,1'-DIPHENYLETHANE (38)

FID Peak Area (%)C

osd

eno

l 180R

B S

olven

t 200B

PROTECTED BUSINESS INFORMATION 29

 

Figure 25 – Examples of compounds used in GCxGC-TOFMS/FID comparative

analysis

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 30

In addition to material presented thus far, maps were prepared showing

differences between GCxGC-TOFMS/FID chromatograms (see Figure 26 and Figure

27) similar to those reported earlier for GCxGC-FID (Figure 15 –and Figure 16).

Such representation allows for rapid recognition of regions of deviation between

samples.

Cosdenol 114 – Atosol 115 Atosol 115 - Cosdenol 114

a) b)

Cosdenol 114 – Atosol 115 Atosol 115 - Cosdenol 114

a) b)

Figure 26 – Differentiation plots for (a) Cosdenol 104 & Atosol 115 and (b) Atosol

115 & Cosdenol 104

Cosdenol 180 – RB Solvent 200B RB Solvent 200B - Cosdenol 180

a) b)

Cosdenol 180 – RB Solvent 200B RB Solvent 200B - Cosdenol 180

a) b) 

     

Figure 27 – Differentiation plots for (a) Cosdenol 180 & RB Solvent 200B and (b)

RB Solvent 200B & Cosdenol 180

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 31

4.0 ACKNOWLEDGEMENTS

The authors would like to acknowledge partial funding from the Government

of Canada’s Interdepartmental Program of Energy Research and Development, PERD

1.1.3. Petroleum Conversion for Cleaner Air.

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 32

APPENDIX A: SIMDIS ASTM D2887

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 33

Table A1 – SimDis table

Client ID COSDENOL

104 COSDENOL

180 RB SOLV

200B ATOSOL

115

ASTM D2887 Recovery Fraction

Temperature Temperature Temperature Temperature

(wt%) (°C) (°C) (°C) (°C)

0.5 162.4 219 142.4 86 1 163.2 222.4 142.4 115.4 2 164.6 230.8 143.2 115.4 3 164.6 239.6 172.2 116.4 4 165.2 240.4 205 144 5 165.2 241.8 210.4 148.4 6 165.8 245.2 213.6 149.2 7 166.6 249.2 219 155.4 8 166.6 252.6 223.8 157.6 9 167.2 254 228 163.2

10 168.6 254.8 231.4 163.8 11 169.4 254.8 234.2 163.8 12 171.4 255.4 237.6 164.6 13 172.2 255.4 242.4 164.6 14 172.2 256 249.2 165.2 15 172.8 256 256.8 165.2 16 172.8 256 258 165.8 17 172.8 257.4 262 165.8 18 172.8 258.8 268 165.8 19 173.6 263.4 272 165.8 20 173.6 266 274 165.8 21 173.6 268 275.4 166.6 22 173.6 268.8 276.8 166.6 23 173.6 268.8 278 166.6 24 173.6 269.4 279.4 166.6 25 173.6 269.4 280.8 166.6 26 174.2 270 281.4 166.6 27 174.2 270 282.8 166.6 28 174.2 270 284 167.2 29 174.2 270 284.8 167.2 30 174.2 270 286 167.2 31 174.2 270.8 286.8 167.2 32 174.8 270.8 287.4 167.2 33 175.6 270.8 288 168 34 176.2 270.8 288.8 168 35 178.4 270.8 289.4 168 36 179 271.4 289.4 168 37 179 271.4 290 168.6 38 179.8 271.4 290 168.6 39 179.8 271.4 290.6 168.6

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 34

CanmetENERGY–Devon

Client ID COSDENOL

104 COSDENOL

180 RB SOLV

200B ATOSOL

115

ASTM D2887 Recovery Fraction

Temperature Temperature Temperature Temperature

(wt%) (°C) (°C) (°C) (°C)

40 179.8 271.4 291.4 169.4 41 180.4 271.4 292 170 42 181.8 271.4 292.6 170 43 182.6 272 293.2 170 44 184 272 294 170.8 45 184.6 272 295.2 170.8 46 185.2 272 295.2 172.2 47 185.2 273.4 295.8 172.8 48 186 275.4 296.6 173.6 49 186 277.4 296.6 173.6 50 186 278 296.6 173.6 51 186.6 279.4 297.2 173.6 52 186.6 280 297.2 174.2 53 186.6 280.8 297.8 174.2 54 187.4 282 298.4 174.2 55 187.4 285.4 299.8 174.2 56 187.4 289.4 300.4 174.2 57 187.4 293.2 301.8 174.8 58 188 294.6 302.4 174.8 59 188 295.2 303 174.8 60 188.8 295.2 303 174.8 61 189.4 295.8 303.6 174.8 62 190.8 295.8 304.4 174.8 63 191.6 295.8 304.4 174.8 64 191.6 295.8 305 174.8 65 192.2 296.6 305.6 174.8 66 192.2 296.6 307.6 175.6 67 193 296.6 308.8 175.6 68 193 297.2 310 175.6 69 193.6 297.8 312 175.6 70 193.6 299.8 312.6 175.6 71 193.6 300.4 313.2 175.6 72 194.4 300.4 313.2 175.6 73 196.4 301 314 176.2 74 197.6 301 314 177 75 199 301.8 314.6 179 76 199.6 302.4 315.2 179.8 77 200.4 304.4 315.8 179.8 78 201 305.6 316.6 180.4 79 201 307.6 317.2 180.4 80 201.6 308.8 317.8 180.4 81 203.6 310.8 318.6 181.2

PROTECTED BUSINESS INFORMATION 35

CanmetENERGY–Devon

Client ID COSDENOL

104 COSDENOL

180 RB SOLV

200B ATOSOL

115

ASTM D2887 Recovery Fraction

Temperature Temperature Temperature Temperature

(wt%) (°C) (°C) (°C) (°C)

82 204.4 312.6 320 182.6 83 205.6 315.2 320.6 184 84 206.4 316.6 321.4 185.2 85 207 317.2 321.4 186 86 207.6 320 322 186.6 87 209 321.4 322 186.6 88 211 322.6 322 187.4 89 212.4 325.4 322.6 187.4 90 213 327.6 322.6 189.4 91 213.6 330.2 324 190.8 92 215.6 333 324.8 191.6 93 221.2 335.8 325.4 193 94 231.4 339.8 326.8 193.6 95 234.2 346.6 328.2 197 96 235.6 351.8 328.8 199.6 97 239 360.4 333 201 98 260.8 376.2 346 206.4 99 294 397.8 369.6 214.4

99.5 322.6 412.2 389.4 234.8

Carbon (wt%) 89.52 90.55 90.24 89.49 Hydrogen (wt%) 10.39 9.55 10.00 10.54

PROTECTED BUSINESS INFORMATION 36

APPENDIX B: PIONA DATA

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 37

Table B1 – PIONA data for COSDENOL 104

REPORT IN WEIGHT % NORMALIZED

Saturated Unsaturated

C-num Napht Paraffins Napht Paraffins Arom Totals

Iso Norm Iso Norm

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03

7 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03

8 0.00 0.01 0.00 0.00 0.00 0.00 0.52 0.53

9 0.00 0.20 0.01 0.00 0.00 0.00 75.01 75.22

10 0.00 0.01 0.57 0.01 0.00 0.02 21.82 22.43

11 0.00 0.15 1.21 0.00 0.13 0.26 0.00 1.76

Totals 0.00 0.38 1.79 0.01 0.13 0.28 97.41 100.00

Recovery <200 C Fraction From SIMDIS (ASTM 2887): 76.50 %

REPORT IN WEIGHT %

Saturated Unsaturated

C-num Napht Paraffins Napht Paraffins Arom Totals

Iso Norm Iso Norm

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02

7 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02

8 0.00 0.01 0.00 0.00 0.00 0.00 0.40 0.40

9 0.00 0.16 0.01 0.00 0.00 0.00 57.38 57.54

10 0.00 0.01 0.44 0.01 0.00 0.02 16.69 17.16

11 0.00 0.12 0.93 0.00 0.10 0.20 0.00 1.35

Totals 0.00 0.29 1.37 0.01 0.10 0.22 74.52 76.50

 

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 38

Table B2 – PIONA data for ATOSOL 115

REPORT IN WEIGHT % NORMALIZED

Saturated Unsaturated

C-num Napht Paraffins Napht Paraffins Arom Totals

Iso Norm Iso Norm

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.01 0.01 0.01 0.00 0.00 0.00 0.72 0.75

7 0.01 0.00 0.01 0.03 0.01 0.00 2.50 2.56

8 0.04 0.02 0.02 0.00 0.00 0.01 4.97 5.06

9 0.22 0.88 0.03 0.00 0.00 0.00 84.70 85.83

10 0.00 0.02 0.67 0.03 0.00 0.02 4.58 5.32

11 0.00 0.05 0.16 0.00 0.17 0.10 0.00 0.48

Totals 0.28 0.98 0.90 0.06 0.18 0.13 97.47 100.00

Recovery <200 C Fraction From SIMDIS (ASTM 2887): 96.29 %

REPORT IN WEIGHT %

Saturated Unsaturated

C-num Napht Paraffins Napht Paraffins Arom Totals

Iso Norm Iso Norm

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.01 0.01 0.01 0.00 0.00 0.00 0.69 0.72

7 0.01 0.00 0.01 0.03 0.01 0.00 2.41 2.47

8 0.04 0.02 0.02 0.00 0.00 0.01 4.79 4.88

9 0.21 0.84 0.03 0.00 0.00 0.00 81.56 82.65

10 0.00 0.02 0.64 0.03 0.00 0.02 4.41 5.12

11 0.00 0.05 0.16 0.00 0.17 0.10 0.00 0.47

Totals 0.27 0.94 0.86 0.06 0.17 0.13 93.85 96.29

    No PIONA data for COSDENOL180 because its initial boiling point is > 200°C. No PIONA data for RB Solvent 200B because its initial boiling point is >200°C.

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 39

APPENDIX C: DHA DATA

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 40

Table C1 – DHA analysis by boiling point and by carbon number for COSDENOL 104

Recovery <200C Fraction From SIMDIS (ASTM 2887): 76.50 % DHA By BP °C

Start BP - (ibp)162.4 180.00 190.00 Sum of By

Bp Totals By

CNo End BP (ibp)162.4 180.00 190.00 200.00 Simdist %off 0.50 39.83 21.10 15.07 n-Paraffins 0.01 0.83 0.00 0.00 0.84 1.52 Isoparaffins 0.00 0.19 1.36 0.00 1.55 0.45 Olefins 0.00 0.00 0.00 0.00 0.00 0.00 Naphthenes 0.00 0.51 0.00 0.00 0.51 0.94 Aromatics 0.49 37.80 19.32 11.62 69.22 72.65 Unknown 0.00 0.51 0.42 3.45 4.38 0.95 Total 0.50 39.83 21.10 15.07 76.50 76.50 DHA by C-Num

C-num n-Paraffins Isoparaffins Olefins Naphthenes Aromatics Unknown Totals

3 0.00 0.00 0.00 0.00 0.00 0.00 4 0.00 0.00 0.00 0.00 0.00 0.00 5 0.00 0.00 0.00 0.00 0.00 0.00 6 0.00 0.00 0.00 0.00 0.00 0.00 7 0.00 0.00 0.00 0.00 0.04 0.04 8 0.00 0.00 0.00 0.00 0.34 0.34 9 0.04 0.00 0.00 0.04 70.70 70.77 10 1.47 0.34 0.00 0.90 1.57 4.29 11 0.00 0.11 0.00 0.00 0.00 0.11 12 0.00 0.00 0.00 0.00 0.00 0.00 Totals 1.52 0.45 0.00 0.94 72.65 0.95 76.50

 

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 41

Table C2 – DHA analysis by boiling point and by carbon number for ATOSOL 115

Recovery <200 C Fraction From SIMDIS (ASTM 2887): 96.29 % DHA By BP °C Start BP - (ibp)86 100.00 110.00 120.00 130.00 140.00 End BP (ibp)86 100.00 110.00 120.00 130.00 140.00 150.00 Simdist %off 0.50 0.24 0.17 2.22 0.36 0.36 2.27 n-Paraffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Isoparaffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Olefins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Naphthenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Aromatics 0.50 0.00 0.00 2.22 0.00 0.36 2.27 Unknown 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Total 0.50 0.00 0.00 2.22 0.00 0.36 2.27 DHA By BP °C

Start BP 150.00 160.00 170.00 180.00 190.00 Sum of Totals By

End BP 160.00 170.00 180.00 190.00 200.00 by Bp CNo Simdist %off 2.30 32.57 36.33 13.10 5.86 n-Paraffins 0.00 0.00 0.81 0.00 0.10 0.91 0.87 Isoparaffins 0.00 0.38 0.00 1.74 0.00 2.12 1.85 Olefins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Naphthenes 0.00 0.10 0.43 0.00 0.00 0.54 0.54 Aromatics 2.15 32.09 35.09 11.35 5.66 91.70 92.85 Unknown 0.15 0.00 0.00 0.00 0.10 0.25 0.17 Total 2.30 32.57 36.33 13.10 5.86 95.52 96.29 DHA by C-Num

C-num n-Paraffins Isoparaffins Olefins Naphthenes Aromatics Unknown Totals

3 0.00 0.00 0.00 0.00 0.00 0.00 4 0.00 0.00 0.00 0.00 0.00 0.00 5 0.00 0.00 0.00 0.00 0.00 0.00 6 0.00 0.00 0.00 0.00 0.62 0.62 7 0.00 0.00 0.00 0.00 2.61 2.61 8 0.00 0.00 0.00 0.00 3.57 3.57 9 0.00 0.00 0.00 0.12 73.93 74.05 10 0.79 0.43 0.00 0.42 11.67 13.31 11 0.08 1.42 0.00 0.00 0.46 1.96 12 0.00 0.00 0.00 0.00 0.00 0.00 Totals 0.87 1.85 0.00 0.54 92.85 0.17 96.29

 

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 42

   No DHA data for COSDENOL180 because its initial boiling point is > 200°C. No DHA data for RB Solvent 200B because its initial boiling point is > 200°C.

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 43

APPENDIX D: SPE-GC-MS AND PIONA DATA

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 44

Table D1 – SPE-GC-MS + PIONA analysis for COSDENOL 104 and ATOSOL 115 (no

SPE-GC-MS data for ATOSOL 115 because its initial boiling point is < 200°C)

COSDENOL 105 ATOSOL 115 Method PIONA SPE/GC-MS Total PIONA SPE/GC-MS Total

Boiling range IBP-200oC 200oC-FBP IBP-FBP IBP-200oC 200oC-FBP

IBP-FBP

SATURATES 1.6 0.9 2.6 2.08

Total paraffins 1.6 0.8 2.4 1.8

Isoparaffins 0.2 0.94

n-Paraffins 1.4 0.86

Cycloparaffins 0.0 0.1 0.2 0.27

Monocycloparaffins 0.0 0.1 0.1 0.27

Dicycloparaffins 0.0 0.0

Tricycloparaffins 0.0 0.0

4-Rings cycloparaffins 0.0 0.0

5-Rings cycloparaffins 0.0 0.0

6-Rings cycloparaffins 0.0 0.0

AROMATICS 74.6 22.4 97.0 93.85

Monoaromatics 74.6 15.0 89.6 93.85

Alkylbenzenes 74.6 12.5 87.1 93.85

Benzocycloalkanes 2.4 2.4

Benzodicycloalkanes 0.0 0.0

Diaromatics 7.5 7.5

Naphthalenes 7.5 7.5

Naphthocycloalkanes 0.0 0.0

Fluorenes 0.0 0.0

Triaromatics 0.0 0.0

Phenanthrenes 0.0 0.0

Phenanthrocycloalkanes 0.0 0.0

Tetraaromatics 0.0 0.0

Pyrenes/Benzofluorenes 0.0 0.0

Chrysenes 0.0 0.0

Pentaaromatics 0.0 0.0

Benzpyrenes/Perylenes 0.0 0.0

Dibenzanthracenes 0.0 0.0

Unidentified 0.0 0.0

CnH2n-32/CnH2n-46 0.0 0.0

CnH2n-36/CnH2n-26S 0.0 0.0

CnH2n-38/CnH2n-28S 0.0 0.0

CnH2n-40/CnH2n-30S 0.0 0.0

CnH2n-42/CnH2n-32S 0.0 0.0

CnH2n-44/CnH2n-34S 0.0 0.0

Aromatic Sulfur 0.0 0.0

Benzothiophenes 0.0 0.0

Dibenzothiophenes 0.0 0.0

Benzonaphthothiophenes 0.0 0.0

OLEFINS 0.3 0.1 0.4 0.36

TOTAL 76.5 23.5 100.0 96.29

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 45

Table D2 – SPE-GC-MS +analysis for COSDENOL 180 and RB SOLV 200B (no

PIONA data for this samples because their initial boiling point is > 200°C)

COSDENOL

180 RB SOLV

200B Method SPE/GC-MS SPE/GC-MS Boiling range IBP-FBP IBP-FBP

SATURATES 0.4 0.1

Total paraffins 0.0 0.0

Isoparaffins

n-Paraffins

Cycloparaffins 0.4 0.1

Monocycloparaffins 0.0 0.0

Dicycloparaffins 0.0 0.1

Tricycloparaffins 0.4 0.0

4-Rings cycloparaffins 0.0 0.0

5-Rings cycloparaffins 0.0 0.0

6-Rings cycloparaffins 0.0 0.0

AROMATICS 99.4 99.8

Monoaromatics 41.5 51.6

Alkylbenzenes 16.4 34.7

Benzocycloalkanes 14.0 15.0

Benzodicycloalkanes 11.0 1.9

Diaromatics 51.1 42.7

Naphthalenes 13.5 5.2

Naphthocycloalkanes 34.3 29.3

Fluorenes 3.2 8.2

Triaromatics 1.0 2.2

Phenanthrenes 1.0 2.2

Phenanthrocycloalkanes 0.0 0.0

Tetraaromatics 0.0 0.0

Pyrenes/Benzofluorenes 0.0 0.0

Chrysenes 0.0 0.0

Pentaaromatics 0.0 0.0

Benzpyrenes/Perylenes 0.0 0.0

Dibenzanthracenes 0.0 0.0

Unidentified 0.0 0.0

CnH2n-32/CnH2n-46 0.0 0.0

CnH2n-36/CnH2n-26S 0.0 0.0

CnH2n-38/CnH2n-28S 0.0 0.0

CnH2n-40/CnH2n-30S 0.0 0.0

CnH2n-42/CnH2n-32S 0.0 0.0

CnH2n-44/CnH2n-34S 0.0 0.0

Aromatic Sulfur 5.9 3.3

Benzothiophenes 5.4 3.3

Dibenzothiophenes 0.5 0.0

Benzonaphthothiophenes 0.0 0.0

OLEFINS 0.1 0.2

TOTAL 100.0 100.0

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION

CanmetENERGY–Devon

46

APPENDIX E: GC-FIMS

 

Can

metE

NE

RG

Y –

Devo

n

Table E1 – GC-FIMS + PIONA data for COSDENOL 104

DILUTED TOTAL NEAT TOTAL

HC Type / #C C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 Sum IBP-FBP Sum IBP-FBP

Saturates 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00 1.38 0.00 0.00 0.00 0.00 0.00 0.00 1.63 2.0 0.0 1.7

Paraffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.7 0.0 1.7

Isoparaffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.2 0.0 1.2

N-paraffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.4 0.0 0.4

Cycloparaffins 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00 1.38 0.00 0.00 0.00 0.00 0.00 0.00 1.63 0.4 0.0 0.0

Monocycloparaffins 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.1 0.0 0.0

Dicycloparaffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.38 0.00 0.00 0.00 0.00 0.00 0.00 1.38 0.3 0.0 0.0

Polycycloparaffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0

Aromatics 0.00 0.00 0.00 0.00 9.33 52.38 12.04 6.58 9.49 3.79 4.12 0.59 0.00 0.00 0.01 0.02 98.37 97.6 100.0 98.0

Monoaromatics 0.00 0.00 0.00 0.00 9.31 38.57 5.03 1.15 0.31 1.63 0.18 0.17 0.00 0.00 0.00 0.00 56.35 87.7 59.6 88.5

Benzenes 0.00 0.00 0.00 0.00 0.00 31.20 3.10 0.66 0.10 0.55 0.15 0.00 0.00 0.00 0.00 0.00 35.75 8.4 55.0 12.9

Indanes/tetralins 0.00 0.00 0.00 0.00 9.31 7.02 1.81 0.14 0.08 0.93 0.03 0.17 0.00 0.00 0.00 0.00 19.49 4.6 3.1 0.7

Indenes/benzocycloalkane 0.00 0.00 0.00 0.00 0.00 0.35 0.12 0.35 0.14 0.15 0.00 0.00 0.00 0.00 0.00 0.00 1.10 0.3 1.5 0.3

Diaromatics 0.00 0.00 0.00 0.00 0.00 13.80 6.98 5.38 8.98 2.11 1.34 0.41 0.00 0.00 0.00 0.00 38.99 9.2 28.7 6.7

Naphthalenes 0.00 0.00 0.00 0.00 0.00 13.80 6.70 3.74 6.89 0.44 0.00 0.00 0.00 0.00 0.00 0.00 31.58 7.4 28.7 6.7

Acenaphthenes/biphenyls 0.00 0.00 0.00 0.00 0.00 0.00 0.28 1.64 1.88 1.02 0.70 0.41 0.00 0.00 0.00 0.00 5.92 1.4 0.0 0.0

Acenaphthalenes/fluorenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.64 0.64 0.00 0.00 0.00 0.00 0.00 1.48 0.3 0.0 0.0

Triaromatics 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 2.57 0.00 0.00 0.00 0.00 0.00 2.62 0.6 10.6 2.5

Phenanthrenes/anthracenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.0 0.0 0.0

Cyclopentanophenanthrenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.57 0.00 0.00 0.00 0.00 0.00 2.57 0.6 10.6 2.5

Tetraaromatics 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0

Pyrenes/fluoranthenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0

Chrysenes/benzoanthracenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0

Aromatic Sulfur 0.00 0.00 0.00 0.00 0.03 0.01 0.03 0.06 0.14 0.06 0.03 0.02 0.00 0.00 0.01 0.02 0.41 0.1 1.1 0.3

Benzothiophenes 0.00 0.00 0.00 0.00 0.03 0.01 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.12 0.0 1.1 0.3

Dibenzothiophenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.14 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.1 0.0 0.0

Naphthobenzothiophenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.00 0.00 0.00 0.02 0.07 0.0 0.0 0.0

0.3 0.3

Total 0.00 0.00 0.00 0.00 9.33 52.64 12.04 6.58 9.49 5.16 4.12 0.59 0.00 0.00 0.01 0.02 100.00 100.0 100.0 100.0

47 P

RO

TE

CT

ED

BU

SIN

ES

S IN

FO

RM

AT

ION

 

No GC-FIMS data for ATOSOL 115 because its initial boiling point is < 200°C.

 

Can

metE

NE

RG

Y –

Devo

n

Table E2 – GC-FIMS data for COSDENOL 180

48 P

RO

TE

CT

ED

BU

SIN

ES

S IN

FO

RM

AT

ION

 

TOTAL TOTAL

HC Type / #C C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 IBP-FBP IBP-FBP

Saturates 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.17 0.37 0.0

Paraffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Isoparaffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

N-paraffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Cycloparaffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.17 0.37 0.0

Monocycloparaffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.17 0.37 0.0

Dicycloparaffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Polycycloparaffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Aromatics 0.00 0.00 0.00 0.00 0.01 0.24 3.82 2.87 43.58 2.27 21.92 2.33 17.49 0.62 4.21 0.28 99.63 100.0

Monoaromatics 0.00 0.00 0.00 0.00 0.01 0.05 3.04 1.86 21.33 1.11 3.12 0.45 1.24 0.01 0.52 0.00 32.73 39.8

Benzenes 0.00 0.00 0.00 0.00 0.00 0.04 1.78 0.64 17.09 0.42 0.51 0.07 0.02 0.00 0.00 0.00 20.57 35.7

Indanes/tetralins 0.00 0.00 0.00 0.00 0.01 0.01 0.99 0.77 1.96 0.47 0.34 0.08 0.18 0.01 0.00 0.00 4.81 1.8

Indenes/benzocycloalkane 0.00 0.00 0.00 0.00 0.00 0.01 0.27 0.45 2.27 0.22 2.28 0.30 1.04 0.00 0.52 0.00 7.35 2.3

Diaromatics 0.00 0.00 0.00 0.00 0.00 0.19 0.72 0.97 22.08 1.13 17.72 1.07 15.63 0.37 3.20 0.12 63.20 57.8

Naphthalenes 0.00 0.00 0.00 0.00 0.00 0.19 0.72 0.38 0.10 0.00 0.54 0.00 0.00 0.00 0.08 0.00 2.01 0.6

Acenaphthenes/biphenyls 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.59 21.94 1.09 16.34 0.83 14.44 0.03 0.82 0.03 56.10 55.2

Acenaphthalenes/fluorenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.85 0.23 1.19 0.34 2.30 0.10 5.09 2.0

Triaromatics 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.93 0.72 0.54 0.21 0.49 0.04 2.94 2.1

Phenanthrenes/anthracenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.03 0.05 0.09 0.49 0.04 0.78 2.1

Cyclopentanophenanthrenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.69 0.49 0.12 0.00 0.00 2.17 0.0

Tetraaromatics 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.05 0.00 0.00 0.10 0.24 0.0

Pyrenes/fluoranthenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.05 0.00 0.00 0.10 0.24 0.0

Chrysenes/benzoanthracenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Aromatic Sulfur 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.05 0.17 0.02 0.13 0.03 0.02 0.03 0.00 0.01 0.52 0.3

Benzothiophenes 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.01 0.01 0.01 0.01 0.02 0.00 0.02 0.00 0.01 0.16 0.2

Dibenzothiophenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.16 0.01 0.11 0.01 0.02 0.00 0.00 0.00 0.35 0.1

Naphthobenzothiophenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.02 0.0

Total 0.00 0.00 0.00 0.00 0.01 0.24 3.82 2.87 43.58 2.27 21.92 2.33 17.49 0.62 4.41 0.45 100.00 100.0

 

Can

metE

NE

RG

Y –

Devo

n

Table E3 – GC-FIMS data for RB SOLVENT 200B

49 P

RO

TE

CT

ED

BU

SIN

ES

S IN

FO

RM

AT

ION

 

TOTAL TOTAL

HC Type / #C C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 IBP-FBP IBP-FBP

Saturates 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Paraffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Isoparaffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

N-paraffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Cycloparaffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Monocycloparaffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Dicycloparaffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Polycycloparaffins 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Aromatics 0.00 0.00 0.00 0.00 0.00 2.76 2.51 4.20 1.31 6.32 9.60 71.62 1.68 0.02 0.00 0.00 100.00 100.0

Monoaromatics 0.00 0.00 0.00 0.00 0.00 2.25 1.42 1.30 0.07 0.00 1.64 29.30 0.00 0.00 0.00 0.00 35.98 32.8

Benzenes 0.00 0.00 0.00 0.00 0.00 2.06 1.36 1.08 0.04 0.00 1.41 29.13 0.00 0.00 0.00 0.00 35.08 29.2

Indanes/tetralins 0.00 0.00 0.00 0.00 0.00 0.19 0.05 0.22 0.02 0.00 0.08 0.18 0.00 0.00 0.00 0.00 0.74 2.5

Indenes/benzocycloalkane 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.15 1.1

Diaromatics 0.00 0.00 0.00 0.00 0.00 0.50 1.09 2.89 1.25 6.32 7.90 42.17 1.60 0.00 0.00 0.00 63.72 65.8

Naphthalenes 0.00 0.00 0.00 0.00 0.00 0.50 1.09 2.21 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.29 7.3

Acenaphthenes/biphenyls 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.68 0.77 6.32 7.90 42.17 1.60 0.00 0.00 0.00 59.43 57.9

Acenaphthalenes/fluorenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.6

Triaromatics 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.14 0.08 0.02 0.00 0.00 0.30 1.3

Phenanthrenes/anthracenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.14 0.08 0.02 0.00 0.00 0.30 1.3

Cyclopentanophenanthrenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Tetraaromatics 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Pyrenes/fluoranthenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Chrysenes/benzoanthracenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Aromatic Sulfur 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.2

Benzothiophenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Dibenzothiophenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.1

Naphthobenzothiophenes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Total 0.00 0.00 0.00 0.00 0.00 2.76 2.51 4.20 1.31 6.32 9.60 71.62 1.68 0.02 0.00 0.00 100.00 100.0

 

Can

metE

NE

RG

Y –

Devo

n

GC-FIMS and PIONA for COSDENOL 104

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21

Carbon Number

Hy

dro

ca

rbo

n C

on

ten

t (m

as

s%

)

Olefins

Acenaphthalenes/fluorenes

Acenaphthenes/biphenyls

Naphthalenes

Indenes (benzocycloalkane)

Indans/tetralins

Benzenes

Iso- + N-Paraffins

 

50 P

RO

TE

CT

ED

BU

SIN

ES

S IN

FO

RM

AT

ION

Figure E1 – GC-FIMS and PIONA for COSDENOL 104

 

 

Can

metE

NE

RG

Y –

Devo

n

GC-FIMS and PIONA for ATOSOL 115

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21

Carbon Number

Hy

dro

ca

rbo

n C

on

ten

t (m

as

s%

)

Olefins

Acenaphthalenes/fluorenes

Acenaphthenes/biphenyls

Naphthalenes

Indenes (benzocycloalkane)

Indans/tetralins

Benzenes

Iso- + N-Paraffins

 

51 P

RO

TE

CT

ED

BU

SIN

ES

S IN

FO

RM

AT

ION

Figure E2 – GC-FIM and PIONA for ATOSOL 115

 

 

Can

metE

NE

RG

Y –

Devo

n

GC-FIMS and PIONA for COSDENOL 180

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21

Carbon Number

Hy

dro

ca

rbo

n C

on

ten

t (m

as

%)

Olefins

Acenaphthalenes/fluorenes

Acenaphthenes/biphenyls

Naphthalenes

Indenes (benzocycloalkane)

Indans/tetralins

Benzenes

Iso- + N-Paraffins

 

52 P

RO

TE

CT

ED

BU

SIN

ES

S IN

FO

RM

AT

ION

Figure E3 – GC-FIMS and PIONA for COSDENOL 180

 

 

 

53 P

RO

TE

CT

ED

BU

SIN

ES

S IN

FO

RM

AT

ION

GC-FIMS and PIONA for RB SOLV 200B

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21

Carbon Number

Hy

dro

ca

rbo

n C

on

ten

t (m

as

%)

Olefins

Acenaphthalenes/fluorenes

Acenaphthenes/biphenyls

Naphthalenes

Indenes (benzocycloalkane)

Indans/tetralins

Benzenes

Iso- + N-Paraffins

Figure E4 – GC-FIMS and PIONA for RB SOLV 200B

Can

metE

NE

RG

Y –

Devo

n

PROTECTED BUSINESS INFORMATION 54

APPENDIX F: GCXGC – FID

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 55

c)

b)

a)

Figure F1 – GCxGC-FID chromatograms of Cosdenol 104: (a) 2D view, (b) 3D view, (c) 2D view

together with classification regions

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 56

 

c)

b)

a)

Figure F2 – GCxGC-FID chromatograms of Atosol 115: (a) 2D view, (b) 3D view, (c) 2D view

together with classification regions

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 57

c)

b)

a)

Figure F3 – GCxGC-FID chromatograms of Cosdenol 180: (a) 2D view, (b) 3D view, (c) 2D view

together with classification regions

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 58

c)

b)

a)

Figure F4 – GCxGC-FID chromatograms of RB Solvent 200B: (a) 2D view, (b) 3D view, (c) 2D

view together with classification regions

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 59

APPENDIX G: GCXGC – TOFMS/FID

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 60

b)

a)

Figure G1 – GCxGC-TOFMS/FID chromatograms of Cosdenol 104: (a) 2D view together with

classification regions, (b) 3D view

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 61

b)

a)

Figure G2 – GCxGC-TOFMS/FID chromatograms of Atosol 115: (a) 2D view together with

classification regions, (b) 3D view

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION 62

b)

a)

Figure G3 – GCxGC-TOFMS/FID chromatograms of Cosdenol 180: (a) 2D view together with

classification regions, (b) 3D view

CanmetENERGY–Devon

PROTECTED BUSINESS INFORMATION

CanmetENERGY–Devon

63

b)

a)

Figure G4 – GCxGC-TOFMS/FID chromatograms of RB Solvent 200B: (a) 2D view together

with classification regions, (b) 3D view