Hybrid Multicasting Using Automatic Multicast Tunnels (AMT) MULTICASTING USING AUTOMATIC MULTICAST TUNNELS (AMT) dhaifallah alwadani Doctor of Philosophy Institute of Computing Science and Mathematics

  • View
    214

  • Download
    2

Embed Size (px)

Transcript

  • H Y B R I D M U LT I C A S T I N G U S I N G A U T O M AT I C

    M U LT I C A S T T U N N E L S ( A M T )

    dhaifallah alwadani

    Doctor of Philosophy

    Institute of Computing Science and Mathematics

    University of Stirling

    March 2017

  • D E C L A R AT I O N

    I, Dhaifallah Alwadani, hereby declare that the work in this thesis is original

    and has been composed by myself, except where reference is made to other

    works, and has not been submitted for examination for any other degree at this

    university or any other learning institutions.

    Stirling, March 2017

    Dhaifallah Alwadani

    iii

  • A B S T R A C T

    Native Multicast plays an important role in distributing and managing delivery of

    some of the most popular Internet applications, such as IPTV and media delivery.

    However, due to patchy support and the existence of multiple approaches for

    Native Multicast, the support for Native Multicast is fragmented into isolated

    areas termed Multicast Islands. This renders Native Multicast unfit to be used as

    an Internet wide application. Instead, Application Layer Multicast, which does

    not have such network requirements but is more expensive in terms of bandwidth

    and overhead, can be used to connect the native multicast islands. This thesis

    proposes Opportunistic Native Multicast (ONM) which employs Application Layer

    Multicast (ALM), on top of a DHT-based P2P overlay network, and Automatic

    Multicast Tunnelling (AMT) to connect these islands. ALM will be used for

    discovery and initiating the AMT tunnels. The tunnels will encapsulate the traffic

    going between islands Primary Nodes (PNs). AMT was used for its added benefits

    such as security and being better at traffic shaping and Quality Of Service (QoS).

    While different approaches for connecting multicast islands exists, the system

    proposed in the thesis was designed with the following characteristics in mind:

    scalability, availability, interoperability, self-adaptation and efficiency. Importantly,

    by utilising AMT tunnels, this approach has unique properties that improve

    network security and management.

    v

  • A C K N O W L E D G M E N T S

    For me, undertaking this PhD has been a truly life-changing experience and it

    would not have been possible to do without the help and support that I received.

    First of all, I am extremely thankful to Almighty Allah for his blessings and

    providing me with the ability to carry out this research, without which none of

    my work would have been possible.

    My sincerest gratitude and deepest appreciation goes to my supervisor Dr.

    Mario Kolberg for his guidance throughout my PhD study. Without his guidance

    and constant feedback this PhD would not have been achievable.

    I would also like to express my thanks to my parents, Bakhit and Haya, for

    their support, prayers, advice and encouragement throughout my research and

    without which, I would not have had the courage to embark on this journey in

    the first place. Their prayers and belief have been an amazing source of comfort.

    Also, many thanks to my brothers and sisters: Norah, Layla, Eman, Sarah,

    Mubarak, Amer, Abdulrahamn and my little sister Lamia.

    I would also like to thank my beloved wife, Hajar, for her endless patience,

    continuous encouragement, and support and for being by my side throughout

    this PhD, living every single minute of it.

    Finally, my love to my daughter, Haya, who was a constant source of joy

    pushing me forward.

    vii

  • L I S T O F P U B L I C AT I O N S

    During the period of this research, the following papers have been published:

    D. Alwadani, M. Kolberg, and J. Buford, "A Simulation Model for Hybrid

    Multicast," 2014 Eighth International Conference on Next Generation Mo-

    bile Apps, Services and Technologies, pp. 112-116, 2014. [Online]. Available:

    http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6982901

    D. Alwadani, M. Kolberg, and J. Buford, "An evaluation of opportunistic

    native multicast," Computer Aided Modelling and Design of Communica-

    tion Links and Networks (CAMAD), 2015 IEEE 20th International Workshop

    on, pp. 170-174, 2015.

    D. Alwadani, M. Kolberg, and J. Buford, "Opportunistic native multicast

    under churn," in SAI Computing Conference (SAI), 2016. IEEE, 2016, pp.

    644-648.

    D. Alwadani and M. Kolberg. (2017). Opportunistic Native Multicast. Sub-

    mitted to International Journal of Parallel, Emergent and Distributed Sys-

    tems

    ix

  • C O N T E N T S

    1 introduction 1

    1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.2 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    1.3 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    1.4 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.6 Thesis Scope and Structure . . . . . . . . . . . . . . . . . . . . . . . . 7

    2 background and related work 9

    2.1 Multicast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    2.1.1 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    2.1.2 Native Multicast . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    2.1.2.1 Host Group Multicast . . . . . . . . . . . . . . . . . . 15

    2.1.2.2 Multi-Destination Routing . . . . . . . . . . . . . . . 17

    2.1.3 Application Layer Multicast . . . . . . . . . . . . . . . . . . . 18

    2.1.3.1 CAN-Multicast . . . . . . . . . . . . . . . . . . . . . . 19

    2.1.3.2 SCRIBE . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    2.1.4 Hybrid Multicast . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    2.1.4.1 Automatic Multicast Tunnelling AMT . . . . . . . . . 22

    2.1.4.2 Island Multicast . . . . . . . . . . . . . . . . . . . . . 23

    2.1.4.3 Universal Multicast . . . . . . . . . . . . . . . . . . . 23

    2.1.4.4 Multicast Delivery Based on Unicast and Subnet

    Multicast . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    2.1.4.5 Hybrid Multicast Issues . . . . . . . . . . . . . . . . . 24

    2.2 Peer To Peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    2.2.1 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    2.2.2 Structured Peer-to-Peer Overlay . . . . . . . . . . . . . . . . . 28

    2.2.3 Types of Structured Overlays . . . . . . . . . . . . . . . . . . . 29

    xi

  • 2.2.3.1 Multi-Hop . . . . . . . . . . . . . . . . . . . . . . . . . 29

    2.2.3.2 One Hop . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    2.2.3.3 Variable Hop . . . . . . . . . . . . . . . . . . . . . . . 37

    2.2.4 Unstructured . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    2.2.5 Differences between Structured and Unstructured Overlays . 39

    2.3 Automatic Multicast tunnelling (AMT) . . . . . . . . . . . . . . . . . 40

    2.3.1 AMT Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    2.3.2 Advantages of AMT . . . . . . . . . . . . . . . . . . . . . . . . 42

    2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    3 opportunistic native multicast 45

    3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    3.1.1 Joining ONM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    3.1.2 ONM Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . 48

    3.1.3 ONM Advantages . . . . . . . . . . . . . . . . . . . . . . . . . 49

    3.2 ONM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    3.3 Primary Election . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    3.4 Secondary Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    3.5 Failure Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    4 performance evaluation of onm 63

    4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    4.2 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 63

    4.2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 63

    4.2.2 Benchmark Selection . . . . . . . . . . . . . . . . . . . . . . . . 64

    4.2.3 OMNet++ and INET Framework . . . . . . . . . . . . . . . . . 65

    4.2.4 OverSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    4.2.5 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    4.2.6 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . 68

    4.3 AMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    4.3.1 Changes to The Simulation Environment . . . . . . . . . . . . 70

    4.3.1.1 AMT Gateway . . . . . . . . . . . . . . . . . . . . . . 70

    xii

  • 4.3.1.2 AMT Relay . . . . . . . . . . . . . . . . . . . . . . . . 71

    4.3.1.3 Changes in OverSim . . . . . . . . . . . . . . . . . . . 73

    4.3.1.4 Network Messages . . . . . . . . . . . . . . . . . . . . 74

    4.3.2 The Network Model . . . . . . . . . . . . . . . . . . . . . . . . 75

    4.4 Basic Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    4.4.2 Simulation Scenarios . . . . . . . . . . . . . . . . . .