40
Hybrid modeling of plasmas Mats Holmström Swedish Institute of Space Physics Kiruna, Sweden ENUMATH 2009 Uppsala, June 30 [email protected] www.irf.se/~matsh/

Hybrid modeling of plasmas - IRF

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Hybrid modeling of plasmas - IRF

Hybrid modeling of plasmas

Mats Holmström

Swedish Institute of Space PhysicsKiruna, Sweden 

ENUMATH 2009Uppsala, June 30

[email protected]/~matsh/

Page 2: Hybrid modeling of plasmas - IRF

Outline● Background and motivation

● Space plasma modeling

– Fluid

– Particle

– Hybrid● Hybrid model

– Algorithm

– Results● Energy conservation● Temporal and spatial scales● Moon, Mars

Page 3: Hybrid modeling of plasmas - IRF

[Kivelson and Russel]

Interactions between the solar wind and solar system objects

Page 4: Hybrid modeling of plasmas - IRF
Page 5: Hybrid modeling of plasmas - IRF
Page 6: Hybrid modeling of plasmas - IRF
Page 7: Hybrid modeling of plasmas - IRF

...several of the basic concepts on which the theories are founded, are not applicable to the condition prevailing in cosmos. They are «generally accepted» by most theoreticians, they are developed with the most sophisticated mathematical methods and it is only the plasma itself which does not «understand», how beautiful the theories are and absolutely refuses to obey them. ...

Hannes Alfven, Plasma physics, space research and the origin of the solar system, Nobel Lecture, December 11, 1970

Page 8: Hybrid modeling of plasmas - IRF

Ion motion

Page 9: Hybrid modeling of plasmas - IRF
Page 10: Hybrid modeling of plasmas - IRF
Page 11: Hybrid modeling of plasmas - IRF
Page 12: Hybrid modeling of plasmas - IRF

Hybrid model for Mars

Page 13: Hybrid modeling of plasmas - IRF
Page 14: Hybrid modeling of plasmas - IRF
Page 15: Hybrid modeling of plasmas - IRF

Equations

● Full particle model.  Electrons and ions as particles

– Need to resolve the electron time and spatial scales● Hybrid model.  Particle ions, fluid electrons

– Resolve ion time and spatial scale● Magnetohydrodynamics (MHD).

– Temporal and spatial scales larger than ion scales

Page 16: Hybrid modeling of plasmas - IRF

The Hybrid Model

● Particle ions, massless e­ fluid

● B­field on a grid

Page 17: Hybrid modeling of plasmas - IRF

Ampere's law

e- momentum eq:n

Ohm's law

Faraday's law

Page 18: Hybrid modeling of plasmas - IRF

Electron Pressure

Page 19: Hybrid modeling of plasmas - IRF

Algorith

m

Page 20: Hybrid modeling of plasmas - IRF

Redistribute ParticlesUpdate Grid

ComputeAccelerations

SortParticles

Deposit charges/currentsCollideParticles

MoveParticles

Add/DeleteParticles

Particle Simulation Cycle

FLASH

Lorentz, Gravity, Radiation pressure, ...

Leap Frog(High order symplectictime integrator)

Sources/Sinks

Each Particle to the correct Block/ProcessorsRefine or Coarsen Blocks.  Redistribute Blocks

Particle – Cell map

DSMC

5)

6)4)

1)

2)

3)

Page 21: Hybrid modeling of plasmas - IRF

Spatial discretization

● Standard 2nd order FD

● Non­staggered grid.  Div(B) = 0 still conserved (Toth 2000)

Page 22: Hybrid modeling of plasmas - IRF

Cyclic Leapfrog B­field Update

Page 23: Hybrid modeling of plasmas - IRF

Energy conservation1D two stream instability

Page 24: Hybrid modeling of plasmas - IRF

Energy conservation

Page 25: Hybrid modeling of plasmas - IRF

Spatial and Temporal Scales

Page 26: Hybrid modeling of plasmas - IRF

Work Estimate for Different Solar System Objects

Solarwind

density Solarwind

magneticfield

Ioninertiallength

Protongyro-period

Objectsize

~Numbergrid cells

~Arithmeticoperations

Solar windtraversal

time

Page 27: Hybrid modeling of plasmas - IRF

Outstanding questions regarding hybrid models

● How does the accuracy depend on the spatial resolution, in relation to the ion inertial length, δ

i?

● How does the accuracy depend on the number of particles per cell?

● How does the accuracy depend on spatial smoothing of charge density, currents, and fields?

Page 28: Hybrid modeling of plasmas - IRF

The FLASH Code● Magnetohydrodynamic (MHD) solver that can include particles

● From University of Chicago

● General compressible flow solver

● Adaptive (Paramesh) and parallel (MPI)

● Open source, Fortran 90

● Add boundary conditions and sources for solar system objects - solar wind simulations(Mercury, Venus, earth, moon, Mars, ...)

● Investigations:

– A comet (MHD with a photoion source)

– Mars' exosphere (particles)

– Exoplanet exosphere

– Moon, Phobos, Mars hybrid models

Page 29: Hybrid modeling of plasmas - IRF

Processor 1

12

Particles

3

12

Blocks

3

Processor 2

12

Particles

3

12

Blocks

3

Processor 3

12

Particles

3

12

Blocks

3

Processor 4

12

Particles

3

12

Blocks

3

Data Distribution

Block

cells

Page 30: Hybrid modeling of plasmas - IRF

Timings: Constant size problem

A simulation box with typical Mars solar wind conditions containing 8.6 M particles

Page 31: Hybrid modeling of plasmas - IRF

Timings: Increasing problem size

8.6 Mparticles

4 proc

69 Mparticles32 proc

All runs were done at LUNARC, Lund University, Sweden, on a 1008 core cluster of Intel Xeon 5160 (3.0 GHz) with four cores and 4 GB memory per node, connected by GigaBit Ethernet.

x8

549 Mparticles256 proc

x8

Going toEthernet

Page 32: Hybrid modeling of plasmas - IRF

collisionless shock

Page 33: Hybrid modeling of plasmas - IRF

The Moon

Different scale for |B|5.4-8.8, not 6.8-7.2(3.4, not 0.4 range)

Page 34: Hybrid modeling of plasmas - IRF

WIND

Page 35: Hybrid modeling of plasmas - IRF

Depletion of ions

Two stream instability in tail.Good example of when Hybrid is needed

Page 36: Hybrid modeling of plasmas - IRF

Current work: Resolving Mars' Ionosphere

140000 cells with size δ

i= 131 km

=> 9M cells with size 33 km ~ 900 M particlesIf we assume 100 particles/cell

Illustration of Chapman ionosphere

Page 37: Hybrid modeling of plasmas - IRF

Numerical instability example

Page 38: Hybrid modeling of plasmas - IRF
Page 39: Hybrid modeling of plasmas - IRF

Mars Model IntercomparisonDensities

(Brain et al. Submitted to Icarus)

H+ O+

Two-dimensional cuts of H+ (left) and O+ (right) number densities in the noon-midnight (y = 0) plane. The nominal locations of the bow shock and MPB from (Trotignon et al., 2006) are indicated in black in each panel.

Page 40: Hybrid modeling of plasmas - IRF

Summary

● Hybrid method.  Much can be done regarding numerical analysis and algorithmic development.