59
HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Embed Size (px)

Citation preview

Page 1: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

HWK Nature, 329, 529 (1987)

Polaroid image of the first molecular model of C28

C28

Page 2: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Mass Spectrum of Carbon Clusters

Heath, Liu, O’Brien, Curl, Kroto and Smalley unpublished data

C28

Page 3: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Prediction C28 tetravalent and should be stabilised by addition of four H atoms

HK Nature 1987

Page 4: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Prediction: because strain released and four C6 aromatic rings remain

HK Nature 1987

Page 5: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

C28 should be a giant tetravalent “Superatom”

H W K Nature, 329, 529 (1987)

Page 6: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Ti

Properties of C28 in detail starting with Ti@C28

with Paul Dunk and Alan Marshall

Page 7: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

U@C28 1993

U

Page 8: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

800750700650600550500450400350300250

800750700650600550500450400350300250

m/z800750700650600550500450400350300250

U@C44

U@C36

800750700650600550500450400350300250

U@C36

800750700650600550500450400350300250

UO2

U@C28

C27

A

B

C

D

E

NHMFL FSU

Laser vaporization of a UO2-graphite target

laser fired at different points in time along the pulse pressure profile

U@C28 is clearly seen to form before larger U@Cn

species

U@C28

Page 9: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Exxon Data

Cox et al

JACS 110

1588 (1988)

Page 10: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28
Page 11: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

C32

Page 12: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Endohedral Fullerene Comparison Spectra

Page 13: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28
Page 14: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Delft Buckyball Wkshp Dynamic Z

Page 15: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

WOW

Moment

Page 16: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Nori Shinohara - Nagoya

Alan Marshall Dr. FT-ICR-MS

Chris Hendrickson

Nathan Kaiser

Paul Dunk

Page 17: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Rice Group showed that under intense laser irradiation C60 lost C2 fragments sequentially and at C32 blew up completely into small carbon species and atoms

C60 → C58 → C56 → → → → C32 → C2 C2 C2 Cn

(n small)

Page 18: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28
Page 19: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

C28 should be special - a tetravalent “Superatom” atom

H W Kroto, Nature, 329, 529 (1987)

Polaroid image of the first molecular model of C28

Page 20: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Mass spectrum of laser vapourised graphite (Rice 1985)

C28

Page 21: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Sussex NNC

Page 22: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Sussex NNC

~sp3

Page 23: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Four Benzenoid aromatic rings remain

Page 24: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Exxon Data

Cox et al

JACS 110

1588 (1988)

NB

No C22 possible!

Page 25: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

http://www.orchidpalms.com/polyhedra/acrohedra/nearmiss/jsmn.htm

Page 26: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Sussex NNC

Page 27: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

 The structure proposed for C28 contains four triple fused pentagons units arranged in tetrahedral symmetry.

Page 28: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Predicted stable and semi-stable Fullerenes

image at: www.answers.com/topic/fullerene

C28 C32 C50 C60 C70

Page 29: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28
Page 30: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Predicted stable and semi-stable Fullerenes

image at: www.answers.com/topic/fullerene

C28 C32 C50 C60 C70

Page 31: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

C28 should be tetravalent

Page 32: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

C28 should be tetravalent

Page 33: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28
Page 34: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

U@C28

U

Page 35: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Ti@C28

Ti

Page 36: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Ti@Cn distribution (RED) vs. empty cage distribution (BLUE) for FIG (2). Clearly shows titanium has stabilized C28, and other small fullerenes.

Page 37: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

C28 Sussex NNC

Page 38: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

C28 ”superatom” analogue of sp3 carbon atom Suggests Td C28H4 Nature 329 529 (1987)

C28H4

Page 39: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

at: commons.wikimedia.org/wiki/File:Endohedral_fu...

Endohedral Fullerenes can satisfy “valencies” internally

Page 40: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

m/z388387386385384383382

387386385384383382381

100

90

80

70

60

50

40

30

20

10

0

Titanium Rod – Positive ions

M(C28) + M(Ti) = 336 + 48

= 384

C28TiPredicted

Page 41: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

m/z388387386385384383382

387386385384383382381

100

90

80

70

60

50

40

30

20

10

0

C28TiPredicted

C32

C32C32 C32

ca 50 milliDaltons separation

Titanium Rod – Positive ions

M(C28) + M(Ti) = 336 + 48

= 384

M(C32) = 384

Page 42: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

m/z388387386385384383382

387386385384383382381

100

90

80

70

60

50

40

30

20

10

0

Titanium Rod – Positive ions C28TiPredicted

Minus C32 mass peaks

Page 43: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

FT-ICR-MS relative intensities of Ti@Cn vs n

24 28 32 36 40 44 48 n

100

80

60

40

20

0

Abundance rel units

Ti@C28 Ti@C38

Paul Dunk with Harry Kroto and Alan Marshall

Ti@Cn vs n

Page 44: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

(Td) C28 more stable by 717 kJmol-1 than D2

(Td) Ti@C28 more stable by 270 kJmol-1 than D2

David E. Bean, Patrick W. Fowler, University of Sheffield

C28 (D2) C28 (Td)

Page 45: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

image at: www.answers.com/topic/fullerene

Page 46: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

C28 ”superatom” analogue of sp3 carbon atom Suggests Td C28H4 Nature 329 529 (1987)

C28H4

Page 47: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

at: commons.wikimedia.org/wiki/File:Endohedral_fu...

Endohedral Fullerenes can satisfy “valencies” internally

Page 48: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

FT-ICR-MS relative intensities of Ti@Cn vs n

24 28 32 36 40 44 48 n

100

80

60

40

20

0

Abundance rel units

Ti@C28 Ti@C38

Paul Dunk with Harry Kroto and Alan Marshall

Ti@Cn vs n

Page 49: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

(Td) C28 more stable by 717 kJmol-1 than D2

(Td) Ti@C28 more stable by 270 kJmol-1 than D2

David E. Bean, Patrick W. Fowler, University of Sheffield

C28 (D2) C28 (Td)

Page 50: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

For the bare cages, the tetrahedral isomer is more stable by 0.273 a.u. (717 kJmol-1). When a titanium atom is encapsulated, this gap decreases to 0.103 a.u. (270 kJmol-1), but the tetrahedral isomer remains the more stable.

David E. Bean, Patrick W. Fowler, University of Sheffield

C28 (D2) C28 (Td)

Page 51: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

at: commons.wikimedia.org/wiki/File:Endohedral_fu...

Page 52: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

image at: people.whitman.edu/~hoffman/

Page 53: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28
Page 54: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Abundance of Endohedral Fullerenes Ti@Cn vs n

Page 55: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

24 28 32 36 40 44 48 n

100

80

60

40

20

0

Abundance rel units

Ti@C28 Ti@C38

Page 56: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Some of the more stable members of the fullerene family. (a) C28. (b) C32. (c) C50. (d) C60. (e) C70.

image at: www.answers.com/topic/fullerene

Page 57: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

Abundance of Endohedral Fullerenes Ti@Cn vs n

24 28 32 36 40 44 48 n

100

80

60

40

20

0

Abundance rel units

Ti@C28 Ti@C38

Page 58: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28
Page 59: HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

For the bare cages, the tetrahedral isomer is more stable by 0.273 a.u. (717 kJmol-1). When a titanium atom is encapsulated, this gap decreases to 0.103 a.u. (270 kJmol-1), but the tetrahedral isomer remains the more stable.

David E. Bean, Patrick W. Fowler, University of Sheffield

C28 (D2) C28 (Td)