How Ct Works

Embed Size (px)

Citation preview

  • 7/30/2019 How Ct Works

    1/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    1

    Medical Imaging and Pattern

    Recognition

    Lecture 7

    Computed TomographyOleh Tretiak

  • 7/30/2019 How Ct Works

    2/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    2

    Computer Tomography:

    How It Works

    Only one plane is illuminated. Source-subject motion provides

    added information.

  • 7/30/2019 How Ct Works

    3/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    3

    How it Works

    Original CT Scanner

    Head only

    One minute scanning time

    Two sections

    Ten minutes to compute images

    Extremely successful!

  • 7/30/2019 How Ct Works

    4/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    4

    First CT Scanner

  • 7/30/2019 How Ct Works

    5/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    5

    Before and After CT

  • 7/30/2019 How Ct Works

    6/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    6

    Contemporary CT

  • 7/30/2019 How Ct Works

    7/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    7

    Fan-Beam Computer

    Tomography

  • 7/30/2019 How Ct Works

    8/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    8

    Contemporary Spiral Scanner

    Configuration:

    40 slices per rotation maximum

    Other options are 32 slices or 16 slices

    40 mm axial distance scanned in one

    rotation

    0.4 sec per rotation 60 kW generator

  • 7/30/2019 How Ct Works

    9/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    9

    Example: Head

    Bleeding due to injury

    Can cause brain injury

    if not treated

    Blood between brain

    and dura, easy to

    treat

  • 7/30/2019 How Ct Works

    10/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    10

    Example: Head

    FRONTAL CONTUSION

    WITH SUBARACHNOID

    HEMORRHAGE

  • 7/30/2019 How Ct Works

    11/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    11

    Chest Study

    Pneumothorax (airbetween lung and chest)

    Also note the bilateral

    lower lobe consolidationof lungs, right beinggreater than left. Thereis a chest tube within theright hemithorax.

  • 7/30/2019 How Ct Works

    12/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    12

    Abdomen

    Appendicitis

    (arrow)

    Contrast agents instomach and in

    blood

  • 7/30/2019 How Ct Works

    13/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    13

    Mathematics of Computed

    Tomography Model for measurements

    Direct problem

    Inverse problem

    Algorithm for computed tomography

  • 7/30/2019 How Ct Works

    14/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    14

    Direct Problem

    Beam with

    intensity I0 enters

    body with varyingattenuation

    Each layer has

    thickness t

    I I

    I II I I

    Ia e1tI0, Ib e

    2tIa,

    Ic e3tIb, I1 e

    4 tIc

    I1 e4 te

    3te2te

    1tI0 e(1 2 3 4 )tI0

    ln(I0 /I1) (1 2 3 4 )t

  • 7/30/2019 How Ct Works

    15/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    15

    Integral Equation

    x

    I (y)I

    I1(y) exp( (x,y)dx)I0

    ln(I0 /I1(y)) (x,y)dx

    x

    I (t, )

    I

    y

    q

    t

    ln(I0 /I1(t,)) (tcos lsin,tsin lcos)dl

  • 7/30/2019 How Ct Works

    16/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    16

    Radon Transform

    x

    I (t, )

    I

    y

    q

    t

    f(x,y)

    g(t, )

    g(t,) f(tcos lsin,tsin lcos)dl

  • 7/30/2019 How Ct Works

    17/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    17

    Inverse Radon Transform

    Given: X-ray transmission

    measurements I1(t, ). Find (x, y)

    Given: g(t, ). Find f(x, y)

    Method:

    (a) convolution

    (b) backprojection

    f(x,y) g1(x cos y sin,)d

    0

    g1(t,) h(t)g(,)d

  • 7/30/2019 How Ct Works

    18/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    18

    Example

    -1

    0

    1

    -1

    0

    1

    -0.5

    0

    0.5

    1

    -1 -0.5 0 0.5 1-0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    f(x, y)

    Lines: g(t, ), same for all

    Dots: g1(t, ), after convolution

  • 7/30/2019 How Ct Works

    19/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    19

    Backprojection

    -1

    0

    1

    -1

    0

    1

    -0.5

    0

    0.5

    1

    1.5

    One, two, and four angles of backprojection

    -1

    0

    1

    -1

    0

    1

    -0.5

    0

    0.5

    1

    1.5

    -10

    1

    -1

    0

    1

    -0.5

    0

    0.5

    1

  • 7/30/2019 How Ct Works

    20/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    20

    More Backprojection

    -1

    0

    1

    -1

    0

    1

    -0.5

    0

    0.5

    1

    -10

    1

    -1

    0

    1

    -0.5

    0

    0.5

    1

    -1

    0

    1

    -1

    0

    1

    -0.5

    0

    0.5

    1

    8, 15, and 30 angle backprojection

  • 7/30/2019 How Ct Works

    21/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    21

    Pictures

    f(x, y) g(t,

    Theta horizontal

  • 7/30/2019 How Ct Works

    22/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    22

    Backprojection at 4, 16, and

    100 angles

  • 7/30/2019 How Ct Works

    23/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    23

    History

    1917, Joachim Radon

    Solved formal inverse problem. Interest in

    theory of integration and geometry 1958, Simeon Tetelbaum of KPI

    publishes a paper about X-raytomography. Publishes valid inverse problem solution.

  • 7/30/2019 How Ct Works

    24/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004

    24

    More History

    1963 John Cormack publishestheoretical and experimental results.

    Experiment with cylindrical objects 1972 Godfrey Hounsfield develops CT

    scanner

    1979 Hounsfield and Cormack receiveNobel prize in Medicine

  • 7/30/2019 How Ct Works

    25/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004 25

    Example of Contrast

    QuickTime and aTIFF (Uncompressed) decompressor

    are needed to s ee this picture.

    12 bit image, full

    contrast range.

    Window for low

    densities

  • 7/30/2019 How Ct Works

    26/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004 26

    More Contrast Operations

    QuickTim e and a

    TIFF (Uncompressed) decom pressorare needed to see this picture.

    Window for highdensities

  • 7/30/2019 How Ct Works

    27/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004 27

    3-D Images

    Spiral scan procedures produce sets of

    sectional images suitable for 3-D imaging

    Resectioning: Compute new section plane

    Projection: Compute sums along rays

    Rendering: Segment image and show

    surface.

  • 7/30/2019 How Ct Works

    28/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004 28

    Bronchoscopy

    Path View

  • 7/30/2019 How Ct Works

    29/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004 29

    Colonoscopy

    Path View

  • 7/30/2019 How Ct Works

    30/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004 30

    Medical Practice

    In the fall of 2003 Siemens became the firstCT supplier ever to receive clearance fromthe FDA for a computer-aided technique of

    identifying nodules, that is, possible tumors,in the lung. CT is also used for the diagnosisof colon cancer: A virtual flight through thehuman colon can detect even the smallest

    polyps. If these are removed in time, anoutbreak of colon cancer can very probablybe prevented.

  • 7/30/2019 How Ct Works

    31/32

    MIPR Lecture 7Copyright Oleh Tretiak, 2004 31

    Comparison

    Left: A polyp seen with optical endoscopy. Right: View in virtual endoscopy.

  • 7/30/2019 How Ct Works

    32/32

    MIPR Lecture 7C i ht Ol h T ti k 2004 32

    Summary

    Computer tomography became successfulbecause it showed soft tissue differences thatcould not be seen on X-rays.

    Evolution of high-speed (spiral scan)machines came about through improvementsin X-ray detectors

    This has led to 3-D imaging methods Surgery planning

    Virtual endoscopy