4
Homework H20 Solution Turn in 1: The molecule H 2 - contains 3 electrons. The wave function can be written approximately as a product over individual electron wavefunctions, or Ξ¨(r 1 , r 2 , r 3 ) = Ξ¨ a (r 1 ) . Ξ¨ b (r 2 ) . Ξ¨ c (r 3 ). a. Show that this function does not satisfy !" Ξ¨ = βˆ’Ξ¨. b. Convince yourself of (a) with a numerical example. The table below shows some values of the one-electron wavefunctions along the x axis (y=z=0 for simplicity) x=0.7 Γ… x=1.1 Γ… x=1.7 Γ… Ξ¨ a (x) 0.02 -0.14 0.04 Ξ¨ b (x) 1.3 0.8 0.23 Ξ¨ c (x) -0.3 0 0.1 What is the value of Ξ¨ when electron #1 is in state β€œa” at x 1 =1.1 Γ…, electron #2 in state β€œb” at x 2 =0.7 Γ…, and electron 3 in state β€œc” at x 3 =1.7 Γ…? Now apply !" switching electrons 2 and 3 (i.e. x 2 and x 3 ). What is the value of Ξ¨ now? Is it –Ψ? c. Write down the correct determinant form of the wavefunction Ξ¨ a (r 1 ) . Ξ¨ b (r 2 ) . Ξ¨ c (r 3 ). d. Evaluate this 3x3 determinant. How many terms do you get? How many are positive? How many are negative? e. Show that this function does satisfy !" Ξ¨ = βˆ’Ξ¨. Basically, the idea of the determinant is to produce all possible permutations of the electrons among states β€œa”, β€œb” and β€œc”, with a minus sign whenever a pair of electrons is switched (two switches gives (-)*(-)=(+)). This automatically makes sure that the wavefunction is antisymmetric under exchange of identical fermions. Solution: a. = ! ( ! ) ! ( ! ) ! ( ! ) !" = ! ! ! ! ! ! β‰  βˆ’ b. = βˆ’0.14 βˆ— 1.3 βˆ— 0.1 = βˆ’0.0182 Now, !" = ! ! ! ! ! ! = βˆ’0.14 βˆ— 0.23 βˆ— βˆ’0.3 = 0.00966 β‰  βˆ’ c. The correct determinant form of the wavefunction is the one that ensures all possible combinations of the electrons in the available states. = 1 3! ! ( ! ) ! ! ! ! ! ( ! ) ! ! ! ! ! ( ! ) ! ! ! !

Homework H20 Solution

  • Upload
    others

  • View
    16

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Homework H20 Solution

Homework H20 Solution Turn in 1: The molecule H2

- contains 3 electrons. The wave function can be written approximately as a product over individual electron wavefunctions, or Ξ¨(r1, r2, r3) = Ξ¨a(r1). Ξ¨b(r2). Ξ¨c(r3). a. Show that this function does not satisfy 𝑃!"Ξ¨ = βˆ’Ξ¨. b. Convince yourself of (a) with a numerical example. The table below shows some values of the one-electron wavefunctions along the x axis (y=z=0 for simplicity) x=0.7 Γ… x=1.1 Γ… x=1.7 Γ… Ξ¨a(x) 0.02 -0.14 0.04 Ξ¨b(x) 1.3 0.8 0.23 Ξ¨c(x) -0.3 0 0.1 What is the value of Ξ¨ when electron #1 is in state β€œa” at x1=1.1 Γ…, electron #2 in state β€œb” at x2=0.7 Γ…, and electron 3 in state β€œc” at x3=1.7 Γ…? Now apply 𝑃!" switching electrons 2 and 3 (i.e. x2 and x3). What is the value of Ξ¨ now? Is it –Ψ? c. Write down the correct determinant form of the wavefunction Ξ¨a(r1). Ξ¨b(r2). Ξ¨c(r3). d. Evaluate this 3x3 determinant. How many terms do you get? How many are positive? How many are negative? e. Show that this function does satisfy 𝑃!"Ξ¨ = βˆ’Ξ¨. Basically, the idea of the determinant is to produce all possible permutations of the electrons among states β€œa”, β€œb” and β€œc”, with a minus sign whenever a pair of electrons is switched (two switches gives (-)*(-)=(+)). This automatically makes sure that the wavefunction is antisymmetric under exchange of identical fermions. Solution: a. 𝛹 = 𝛹!(π‘Ÿ!)𝛹!(π‘Ÿ!)𝛹!(π‘Ÿ!)  

𝑃!"𝛹 =  π›Ή! π‘Ÿ! 𝛹! π‘Ÿ! 𝛹! π‘Ÿ! β‰   βˆ’𝛹   b.                                                                        π›Ή = βˆ’0.14 βˆ— 1.3 βˆ— 0.1 =  βˆ’0.0182 Now, 𝑃!"𝛹 =  π›Ή! π‘Ÿ! 𝛹! π‘Ÿ! 𝛹! π‘Ÿ!

                                             = βˆ’0.14 βˆ— 0.23 βˆ— βˆ’0.3 =  0.00966   β‰   βˆ’𝛹 c. The correct determinant form of the wavefunction is the one that ensures all possible

combinations of the electrons in the available states.

𝛹 =  13!

𝛹!(π‘Ÿ!) 𝛹! π‘Ÿ! 𝛹! π‘Ÿ!𝛹!(π‘Ÿ!) 𝛹! π‘Ÿ! 𝛹! π‘Ÿ!𝛹!(π‘Ÿ!) 𝛹! π‘Ÿ! 𝛹! π‘Ÿ!

Page 2: Homework H20 Solution

d. Evaluating the determinant gives you, 𝛹 =  π›Ή! π‘Ÿ! 𝛹! π‘Ÿ! 𝛹! π‘Ÿ! βˆ’π›Ή! π‘Ÿ! 𝛹! π‘Ÿ! βˆ’  π›Ή! π‘Ÿ! 𝛹! π‘Ÿ! 𝛹! π‘Ÿ! βˆ’π›Ή! π‘Ÿ! 𝛹! π‘Ÿ! +

 π›Ή! π‘Ÿ! 𝛹! π‘Ÿ! 𝛹! π‘Ÿ! βˆ’π›Ή! π‘Ÿ! 𝛹! π‘Ÿ! = 𝛹! π‘Ÿ! 𝛹! π‘Ÿ! 𝛹! π‘Ÿ! βˆ’π›Ή! π‘Ÿ! 𝛹! π‘Ÿ! 𝛹! π‘Ÿ! βˆ’π›Ή! π‘Ÿ! 𝛹! π‘Ÿ! 𝛹! π‘Ÿ!

+𝛹! π‘Ÿ! 𝛹! π‘Ÿ! 𝛹! π‘Ÿ! +  π›Ή! π‘Ÿ! 𝛹! π‘Ÿ! 𝛹! π‘Ÿ! βˆ’π›Ή! π‘Ÿ! 𝛹! π‘Ÿ! 𝛹! π‘Ÿ! Thus we get 6 terms, of which 3 are positive and 3 are negative. e.  π‘ƒ!"𝛹 =  π›Ή! π‘Ÿ! 𝛹! π‘Ÿ! 𝛹! π‘Ÿ! βˆ’π›Ή! π‘Ÿ! 𝛹! π‘Ÿ! 𝛹! π‘Ÿ! βˆ’π›Ή! π‘Ÿ! 𝛹! π‘Ÿ! 𝛹! π‘Ÿ! +                                            π›Ή! π‘Ÿ! 𝛹! π‘Ÿ! 𝛹! π‘Ÿ! +  π›Ή! π‘Ÿ! 𝛹! π‘Ÿ! 𝛹! π‘Ÿ! βˆ’π›Ή! π‘Ÿ! 𝛹! π‘Ÿ! 𝛹! π‘Ÿ! = βˆ’π›Ή     2. It was shown a long time back that any wavefunction can be written as a linear combination of basis functions, πœ“ π‘₯ = 𝑐!πœ‘!(π‘₯)! . In β€œbra-ket” notation, this is expressed as |πœ“ = 𝑐!|𝑛! . a. Prove explicitly the analogy of functions to vectors stated in class by Gruebele, namely that 𝑐! = 𝑑π‘₯πœ‘!βˆ—(π‘₯)πœ“ π‘₯ . b. Now do the same in bracket notation, and prove explicitly the analogy of kets to vectors stated in class by Gruebele, namely that 𝑐! = 𝑛 πœ“ . Solution: a. Expanding the summation, we get

πœ“ π‘₯ = 𝑐!πœ‘! π‘₯ + 𝑐!πœ‘! π‘₯ +β‹―+ 𝑐!πœ‘! π‘₯ + 𝑐!!!πœ‘!!! π‘₯ +β‹― Now multiply both sides by πœ‘!βˆ—(π‘₯) and integrate over space,

𝑑π‘₯  πœ‘!βˆ— π‘₯  πœ“ π‘₯ = 𝑐! 𝑑π‘₯πœ‘!βˆ— π‘₯  πœ‘!(π‘₯)+ 𝑐! 𝑑π‘₯πœ‘!βˆ— π‘₯  πœ‘!(π‘₯)+β‹―

+ 𝑐! 𝑑π‘₯πœ‘!βˆ— π‘₯  πœ‘! π‘₯ +β‹― We know (or rather ensured ) that the basis functions are orthonormal, that is,

𝑑π‘₯πœ‘!βˆ— π‘₯  πœ‘! π‘₯ = 0 , 𝑖𝑓  π‘š β‰  𝑛

                                                                     = 1, 𝑖𝑓  π‘š = 𝑛

Page 3: Homework H20 Solution

Thus, in the above expansion, only the integral with 𝑐! survives, the rest are 0. Thus 𝑑π‘₯  πœ‘!βˆ— π‘₯  πœ“ π‘₯ = 𝑐! This is the standard technique employed to obtain the coefficient of a particular basis in a wavefunction, in other words, the projection of a wavefunction onto a basis function. b. Expanding the summation for the linear superposition of the wavefunction,

|πœ“ = 𝑐!|1 + 𝑐!|2 +β‹―+ 𝑐!|𝑛 + 𝑐!!!|𝑛 + 1 +β‹― Now multiply both sides by < 𝑛| to integrate,

𝑛 πœ“ = 𝑐! 𝑛 1 + 𝑐! 𝑛 2 +β‹―+ 𝑐! 𝑛 𝑛 + 𝑐!!! 𝑛 𝑛 + 1 +β‹― = 𝑐! [Since the basis states are orthonormal, i.e., π‘š 𝑛 = 0 if π‘š β‰  𝑛,                                                                                                                                                                                                                              = 1  π‘–𝑓  π‘š = 𝑛 3. Remember from basic matrix algebra that multiplying any vector by the identity matrix, leaves the vector unchanged. Show explicitly that the identity operator works in a similar fashion, that is 𝐼  πœ“ π‘₯ =  πœ“ π‘₯ for any wavefunction πœ“. a. You learned in lecture that the identity operator is given by 𝐼 = |𝑛 𝑛|! in Dirac notation; show by analogy that it can be written as πœ“! π‘₯ 𝑑π‘₯  πœ“!βˆ—(π‘₯)__! in ordinary function notation. b. Now apply it to πœ“ π‘₯ to show that you get the same function back. [Hint: the overlap integral 𝑑π‘₯  πœ“!βˆ—(π‘₯)πœ“(π‘₯) is just cn.] Solution: a. First we write the wavefunction as a linear superposition of basis states,                                                                  πœ“ = 𝑐!πœ“! + 𝑐!πœ“! +β‹―+ 𝑐!πœ“! = πœ“!𝑐! + πœ“!𝑐! +β‹―πœ“!𝑐! You proved in Problem 2 that 𝑐! = 𝑛 πœ“ =   𝑑π‘₯  πœ“!βˆ—(π‘₯)  πœ“(π‘₯) So, πœ“(π‘₯) = πœ“! 𝑑π‘₯  πœ“!βˆ— π‘₯  πœ“ π‘₯ + πœ“! 𝑑π‘₯  πœ“!βˆ— π‘₯  πœ“(π‘₯)+β‹―+ πœ“! 𝑑π‘₯  πœ“!βˆ— π‘₯  πœ“(π‘₯)

π‘œπ‘Ÿ,πœ“ π‘₯ =   πœ“! 𝑑π‘₯  πœ“!βˆ—(π‘₯)!

 πœ“(π‘₯)

Thus, πœ“! 𝑑π‘₯  πœ“!βˆ— π‘₯! __   is the identity operator for functions, since it leaves any function Ξ¨ unchanged.

Page 4: Homework H20 Solution

b.                                                        πΌπœ“ π‘₯ = πœ“! 𝑑π‘₯  πœ“!βˆ— π‘₯ __!  πœ“ π‘₯

= πœ“! 𝑑π‘₯  πœ“!βˆ— π‘₯ πœ“(π‘₯)!

= 𝑐!πœ“!(π‘₯)

!

       = πœ“(π‘₯)

Thus, the identity operator does indeed leave any function unchanged.