24
History of printing Part of the series on the History of printing Woodblock printing 200 Movable type 1040 Printing press 1454 Lithography 1796 Laser printing 1969 The history of printing started around 3.000 BC in Mesopotamia with the duplication of images. Block printing Main article: Woodblock printing Yuan Dynasty woodblock edition of a Chinese play Block printing is a technique for printing text, images or patterns used widely throughout East Asia and originating in China in antiquity as a method of printing on textiles and later, under the influence of Buddhism, on paper . As a method of printing on cloth, the earliest surviving examples from China date to about 220, and from Egypt to the 4th century. [1] Ukiyo-e is the best known type of Japanese woodblock art print. Most European uses of the technique on paper are covered by the art term woodcut , except for the block- books produced mainly in the fifteenth century.

History of Printing

Embed Size (px)

DESCRIPTION

About printing

Citation preview

Page 1: History of Printing

History of printing

Part of the series on theHistory of printing

Woodblock printing 200Movable type 1040Printing press 1454Lithography 1796Laser printing 1969

The history of printing started around 3.000 BC in Mesopotamia with the duplication of images.

Block printing

Main article: Woodblock printingYuan Dynasty woodblock edition of a Chinese play

Block printing is a technique for printing text, images or patterns used widely throughout East Asia and originating in China in antiquity as a method of printing on textiles and later, under the influence of Buddhism, on paper. As a method of printing on cloth, the earliest surviving examples from China date to about 220, and from Egypt to the 4th century.[1] Ukiyo-e is the best known type of Japanese woodblock art print. Most European uses of the technique on paper are covered by the art term woodcut, except for the block-books produced mainly in the fifteenth century.

The use of round "cylinder seals" for rolling an impress onto clay tablets goes back to early Mesopotamian civilization before 3,000 BCE, where they are the most common works of art to survive, and feature complex and beautiful images. In both China and Egypt, the use of small stamps for seals preceded the use of larger blocks. In Egypt, Europe and India, the printing of cloth certainly preceded the printing of paper or papyrus; this was probably also the case in China. The process is essentially the same - in Europe special presentation impressions of prints were often printed on silk until at least the seventeenth century.

Page 2: History of Printing

In India

In Buddhism, great merit is thought to accrue from copying and preserving texts with Asanga, the fourth-century master, listing the copying of scripture as the first of ten essential religious practices. The importance of perpetuating texts is set out with special force in the larger Sukhāvatīvyūha Sūtra which not only urges the devout to hear, learn, remember and study the text but to obtain a good copy and to preserve it. This ‘cult of the book’ led to techniques for reproducing texts in great numbers, especially the short prayers or charms known as dhāraṇī-s. Stamps were carved for printing these prayers on clay tablets from at least the seventh century, the date of the oldest surviving examples.[2] Especially popular was the Pratītyasamutpāda Gāthā, a short verse text summing up Nāgārjuna's philosophy of causal genesis or dependent origination. Nagarjuna lived in the early centuries of the current era and the Buddhist Creed, as the Gāthā is frequently called, was printed on clay tablets in huge numbers from the sixth century. This tradition was transmitted to China and Tibet with Buddhism. Printing text from woodblocks does not, however, seem to have been developed in India.

In China

The earliest woodblock printed fragments are from China. They consist of printed flowers in three colours on silk. They are generally assigned to the Han dynasty so date before 220 CE.[3] The earliest Egyptian printed cloth, in contrast, dates from a slightly later time, about the fourth century.[1] The technology of printing on cloth in China was adapted to paper under the influence of Buddhism which mandated the circulation of standard translations over a wide area, as well as the production of multiple copies of key texts for religious reasons. The oldest wood-block printed book is the famous Diamond Sutra, translated into Chinese by Kumarajiva in the fifth century. It carries a date on 'the 13th day of the fourth moon of the ninth year of the Xiantong era' (i.e. 11 May 868).[4] A number printed dhāraṇī-s, however, predate the Diamond Sūtra by about two hundred years (see Tang Dynasty).

In the Islamic world

Block printing, called tarsh in Arabic was developed in Arabic Egypt during the 9th-10th centuries, mostly for prayers and amulets. There is some evidence to suggest that the print blocks were made from a variety of different materials besides wood, including metals such as tin, lead and cast iron, as

Page 3: History of Printing

well as stone, glass and clay. However, the techniques employed are uncertain and they appear to have had very little influence outside of the Muslim world. Though Europe adopted woodblock printing from the Muslim world, initially for fabric, the technique of metal block printing remained unknown in Europe. Block printing later went out of use in Islamic Central Asia after movable type printing was introduced from China.[5]

In Europe

Block printing first came to Christian Europe as a method for printing on cloth, where it was common by 1300. Images printed on cloth for religious purposes could be quite large and elaborate, and when paper became relatively easily available, around 1400, the medium transferred very quickly to small woodcut religious images and playing cards printed on paper. These prints were produced in very large numbers from about 1425 onwards.

Around the mid-century, block-books, woodcut books with both text and images, usually carved in the same block, emerged as a cheaper alternative to manuscripts and books printed with movable type. These were all short heavily illustrated works, the bestsellers of the day, repeated in many different block-book versions: the Ars moriendi and the Biblia pauperum were the most common. There is still some controversy among scholars as to whether their introduction preceded or, the majority view, followed the introduction of movable type, with the range of estimated dates being between about 1440–1460.[6]

The volume of Joseph Needham's Science and Civilization in China dealing with Paper and printing has a chapter that suggests that "European block printers must not only have seen Chinese samples, but perhaps had been taught by missionaries or others who had learned these un-European methods from Chinese printers during their residence in China.", but he also admitted that the "only evidence of European printing transmitted from China is a lack of counterevidence".[7] However, paper itself was needed for the printing process and this came to Europe via trade with the Arabs from China. Historians acknowledge that paper indeed came from China without which printing would have been impossible, however, there is less direct evidence of the influence of printing technology from Asia and its influence on European printing technology.[citation needed]

Stencil

Page 4: History of Printing

Main article: Stencil

Stencils may have been used to color cloth for a very long time; the technique probably reached its peak of sophistication in Katazome and other techniques used on silks for clothes during the Edo period in Japan. In Europe, from about 1450 they were very commonly used to colour old master prints printed in black and white, usually woodcuts. This was especially the case with playing-cards, which continued to be coloured by stencil long after most other subjects for prints were left in black and white. Stenciling back in the 2600 BC's was different. They used color from plants and flowers such as indigo (which extracts blue). Stencils were used for mass publications, as the type didn't have to be hand-written.

Movable type

Main article: Movable typeSee also: History of typography in East Asia and History of Western typographyA case of cast metal type pieces and typeset matter in a composing stick

Movable type is the system of printing and typography using movable pieces of metal type, made by casting from matrices struck by letterpunches.

Around 1040, the first known movable type system was created in China by Bi Sheng out of porcelain. Metal movable type was first invented in Korea during the Goryeo Dynasty (around 1230). Neither movable type system was widely used, one reason being the enormous Chinese character set.

It is traditionally summarized that Johannes Gutenberg, of the German city of Mainz, developed European movable type printing technology around 1439[8] and in just over a decade, the European age of printing began. However, the details show a more complex evolutionary process spread over multiple locations.[9] Also, Johann Fust and Peter Schöffer experimented with Gutenberg in Mainz.

Compared to woodblock printing, movable type page-setting was quicker and more durable. The metal type pieces were more durable and the lettering was more uniform, leading to typography and fonts. The high quality and relatively low price of the Gutenberg Bible (1455) established the superiority of movable type, and printing presses rapidly spread across Europe, leading up

Page 5: History of Printing

to the Renaissance, and later all around the world. Today, practically all movable type printing ultimately derives from Gutenberg's movable type printing, which is often regarded as the most important invention of the second millennium.[10]

Gutenberg is also credited with the introduction of an oil-based ink which was more durable than previously used water-based inks. Having worked as a professional goldsmith, Gutenberg made skillful use of the knowledge of metals he had learned as a craftsman. Gutenberg was also the first to make his type from an alloy of lead, tin, and antimony, known as type metal, printer's lead, or printer's metal, which was critical for producing durable type that produced high-quality printed books, and proved to be more suitable for printing than the clay, wooden or bronze types used in East Asia. To create these lead types, Gutenberg used what some considered his most ingenious invention, a special matrix wherewith the moulding of new movable types with an unprecedented precision at short notice became feasible. Within a year of printing the Gutenberg Bible, Gutenberg also published the first coloured prints.

The invention of the printing press revolutionized communication and book production leading to the spread of knowledge. Rapidly, printing spread from Germany by emigrating German printers, but also by foreign apprentices returning home. A printing press was built in Venice in 1469, and by 1500 the city had 417 printers. In 1470 Johann Heynlin set up a printing press in Paris. In 1473 Kasper Straube published the Almanach cracoviense ad annum 1474 in Kraków. Dirk Martens set up a printing press in Aalst (Flanders) in 1473. He printed a book about the two lovers of Enea Piccolomini who became pope Pius II.In 1476 a printing press was set up in England by William Caxton. Belarusian Francysk Skaryna printed the first book in Slavic language on August 6, 1517. The Italian Juan Pablos set up an imported press in Mexico City in 1539. The first printing press in Southeast Asia was set up in the Philippines by the Spanish in 1593. The Rev. Jose Glover brought the first printing press to England's American colonies in 1638, but died on the voyage, so his widow, Elizabeth Harris Glover, established the printing house, which was run by Stephen Day and became The Cambridge Press.[11]

The Gutenberg press was much more efficient than manual copying and still was largely unchanged in the eras of John Baskerville and Giambattista Bodoni, over 300 years later.[12] By 1800, Lord Stanhope had constructed a

Page 6: History of Printing

press completely from cast iron, reducing the force required by 90% while doubling the size of the printed area.[12] While Stanhope's "mechanical theory" had improved the efficiency of the press, it still was only capable of 250 sheets per hour.[12] German printer Friedrich Koenig would be the first to design a non-manpowered machine—using steam.[12] Having moved to London in 1804, Koenig soon met Thomas Bensley and secured financial support for his project in 1807.[12] Patented in 1810, Koenig had designed a steam press "much like a hand press connected to a steam engine."[12] The first production trial of this model occurred in April 1811.

Flat-bed printing press

Main article: Printing pressPrinting press from 1811, photographed in Munich, Germany.

A printing press is a mechanical device for applying pressure to an inked surface resting upon a medium (such as paper or cloth), thereby transferring an image. The systems involved were first assembled in Germany by the goldsmith Johann Gutenberg in the mid-15th century.[8] Printing methods based on Gutenberg's printing press spread rapidly throughout first Europe and then the rest of the world, replacing most block printing and making it the sole progenitor of modern movable type printing. As a method of creating reproductions for mass consumption, The printing press has been superseded by the advent of offset printing.

Johannes Gutenberg's work in the printing press began in approximately 1436 when he partnered with Andreas Dritzehen—a man he had previously instructed in gem-cutting—and Andreas Heilmann, owner of a paper mill. It was not until a 1439 lawsuit against Gutenberg that official record exists; witnesses testimony discussed type, an inventory of metals (including lead) and his type mold.

Others in Europe were developing movable type at this time, including goldsmith Procopius Waldfoghel of France and Laurens Janszoon Coster of the Netherlands. They are not known to have contributed specific advances to the printing press. While the Encyclopædia Britannica Eleventh Edition had attributed the invention of the printing press to Coster, the company now states that is incorrect. In this woodblock from 1568, the printer at left is removing a page from the press while the one at right inks the text-blocks

Page 7: History of Printing

Having previously worked as a professional goldsmith, Gutenberg made skillful use of the knowledge of metals he had learned as a craftsman. He was the first to make type from an alloy of lead, tin, and antimony, which was critical for producing durable type that produced high-quality printed books and proved to be more suitable for printing than the clay, wooden or bronze types invented in East Asia. To create these lead types, Gutenberg used what some considered his most ingenious invention, a special matrix enabling the quick and precise moulding of new type blocks from a uniform template.

Printing houses

Early printing houses (near the time of Gutenberg) were run by "master printers." These printers owned shops, selected and edited manuscripts, determined the sizes of print runs, sold the works they produced, raised capital and organized distribution. Some master printing houses, like that of Aldus Manutius, became the cultural center for literati such as Erasmus.

Print shop apprentices: Apprentices, usually between the ages of 15 and 20, worked for master printers. Apprentices were not required to be literate, and literacy rates at the time were very low, in comparison to today. Apprentices prepared ink, dampened sheets of paper, and assisted at the press. An apprentice who wished to learn to become a compositor had to learn Latin and spend time under the supervision of a journeyman.

Journeyman printers: After completing their apprenticeships, journeyman printers were free to move employers. This facilitated the spread of printing to areas that were less print-centered.

Compositors: Those who set the type for printing. Pressmen: the person who worked the press. This was physically labour

intensive.

The earliest-known image of a European, Gutenberg-style print shop is the Dance of Death by Matthias Huss, at Lyon, 1499. This image depicts a compositor standing at a compositor's case being grabbed by a skeleton. The case is raised to facilitate his work. The image also shows a pressman being grabbed by a skeleton. At the right of the printing house a bookshop is shown.

Financial aspects

Page 8: History of Printing

Court records from the city of Mainz document that Johannes Fust was, for some time, Gutenberg's financial backer.

By the sixteenth century jobs associated with printing were becoming increasingly specialized. Structures supporting publishers were more and more complex, leading to this division of labour. In Europe between 1500 and 1700 the role of the Master Printer was dying out and giving way to the bookseller—publisher. Printing during this period had a stronger commercial imperative than previously. Risks associated with the industry however were substantial, although dependent on the nature of the publication.

Bookseller publishers negotiated at trade fairs and at print shops. Jobbing work appeared in which printers did, menial tasks in the beginning of their careers to support themselves did.

1500–1700: Publishers developed several new methods of funding projects.

1. Cooperative associations/publication syndicates—a number of individuals shared the risks associated with printing and shared in the profit. This was pioneered by the French.[citation needed]

2. Subscription publishing—pioneered by the English in the early 17th century.[citation needed] A prospectus for a publication was drawn up by a publisher to raise funding. The prospectus was given to potential buyers who signed up for a copy. If there were not enough subscriptions the publication did not go ahead. Lists of subscribers were included in the books as endorsements. If enough people subscribed a reprint might occur. Some authors used subscription publication to bypass the publisher entirely.

3. Installment publishing—books were issued in parts until a complete book had been issued. This was not necessarily done with a fixed time period. It was an effective method of spreading cost over a period of time. It also allowed earlier returns on investment to help cover production costs of subsequent installments.

The Mechanick Exercises, by Joseph Moxon, in London, 1683, was said to be the first publication done in installments.[citation needed]

Publishing trade organizations allowed publishers to organize business concerns collectively. Systems of self-regulation occurred in these arrangements. For example, if one publisher did something to irritate other

Page 9: History of Printing

publishers he would be controlled by peer pressure. Such systems are known as cartels, and are in most countries now considered to be in restraint of trade. These arrangements helped deal with labour unrest among journeymen, who faced difficult working conditions. Brotherhoods predated unions, without the formal regulations now associated with unions.

In most cases, publishers bought the copyright in a work from the author, and made some arrangement about the possible profits. This required a substantial amount of capital in addition to the capital for the physical equipment and staff. Alternatively, an author who had sufficient money would sometimes keep the copyright himself, and simply pay the printer for the production of the book.

Rotary printing press

Main article: Rotary printing press

A rotary printing press is a printing press in which the impressions are curved around a cylinder so that the printing can be done on long continuous rolls of paper, cardboard, plastic, or a large number of other substrates. Rotary drum printing was invented by Richard March Hoe in 1847, and then significantly improved by William Bullock in 1863.

Intaglio

Intaglio printing. The top line is the paper, to which a slightly raised layer of ink adheres; the matrix is beneath

Main article: Intaglio (printmaking)

Intaglio (pronounced / ɪ n ̍ tæli.o ʊ / ) is a family of printmaking techniques in which the image is incised into a surface, known as the matrix or plate. Normally, copper or zinc plates are used as a surface, and the incisions are created by etching, engraving, dry point, aquatint or mezzotint. Collographs may also be printed as intaglio plates. To print an intaglio plate the surface is covered in thick ink and then rubbed with tarlatan cloth to remove most of the excess. The final smooth wipe is usually done by hand, sometimes with the aid of newspaper or old public phone book pages, leaving ink only in the incisions. A damp piece of paper is placed on top and the plate and paper are run

Page 10: History of Printing

through a printing press that, through pressure, transfers the ink from the recesses of the plate to the paper.

Lithography (1796)

Lithography press for printing maps in Munich. Stone used for lithography print with a Princeton University motif (Collection: Princeton University Library, NJ)Main article: Lithography

Invented by Bavarian author Alloys Senefelder in 1796,[14] lithography is a method for printing on a smooth surface. Lithography is a printing process that uses chemical processes to create an image. For instance, the positive part of an image would be a hydrophobic chemical, while the negative image would be water. Thus, when the plate is introduced to a compatible ink and water mixture, the ink will adhere to the positive image and the water will clean the negative image. This allows for a relatively flat print plate which allows for much longer runs than the older physical methods of imaging (e.g., embossing or engraving). High-volume lithography is used today to produce posters, maps, books, newspapers, and packaging — just about any smooth, mass-produced item with print and graphics on it. Most books, indeed all types of high-volume text, are now printed using offset lithography.

In offset lithography, which depends on photographic processes, flexible aluminum, polyester, Mylar or paper printing plates are used in place of stone tablets. Modern printing plates have a brushed or roughened texture and are covered with a photosensitive emulsion. A photographic negative of the desired image is placed in contact with the emulsion and the plate is exposed to ultraviolet light. After development, the emulsion shows a reverse of the negative image, which is thus a duplicate of the original (positive) image. The image on the plate emulsion can also be created through direct laser imaging in a CTP (Computer-To-Plate) device called a plate setter. The positive image is the emulsion that remains after imaging. For many years, chemicals have been used to remove the non-image emulsion, but now plates are available that do not require chemical processing.

Chromolithography: Calvert Lithographic Company, Detroit, MI. Uncle Sam Supplying the World with Berry Brothers Hard Oil Finish, c. 1880. Noel Wisdom Chromolithograph Collection, Special Collections Department, the University of South Florida Tampa Library.

Page 11: History of Printing

Chromolithography was the first method for making true multi-color prints. Earlier attempts at polychrome printing relied on hand-coloring. The type of color printing stemmed from the process of lithography, and it includes all types of lithography that are printed in color.[15] It replaced coloring prints by hand, and eventually served as a replica of a real painting. Lithographers sought to find a way to print on flat surfaces with the use of chemicals instead of relief or intaglio printing.[16] Depending on the amount of colors present, a chromolithograph could take months to produce. To make what was once referred to as a “’chromo’”, a lithographer, with a finished painting in front of him, gradually built and corrected the print to look as much as possible like the painting in front of him, sometimes using dozens of layers.[17] The process can be very time consuming and cumbersome contingent upon the skill of the lithographer.

The technique for using color in printing was invented in 1796 in Germany. Considering the fact that it stemmed from lithography, there have been debates over whether chromolithography was created by Alois Senefelder, the same person who came up with printing by way of lithography.[18] Senefelder introduced colored lithography in his 1818 Vollstaendiges Lehrbuch der Steindruckerey (A Complete Course of Lithography), and in the work, Senefelder told of his plans to print using color and he also explained the colors he wished to be able to print someday. Although Senefelder recorded ideas on chromolithography, it turns out that other countries besides Germany, such as France and England, were also heavily involved in trying to find a new way to print in color. Godefroy Engelmann of Mulhouse proved to be one of the few searching for ways to produce colored printed images when he was awarded his patent on chromolithography in July 1837.[18] Even after Engelmann received his award, disputes over whether chromolithography was already being used continued to rise. Some sources point to the idea that chromolithography was already being used in areas of printing such as the production of playing cards.[18]

Offset press (1870s)

Main article: Offset press

Offset printing is a widely used printing technique where the inked image is transferred (or "offset") from a plate to a rubber blanket, then to the printing surface. When used in combination with the lithographic process, which is based on the repulsion of oil and water, the offset technique employs a flat

Page 12: History of Printing

(planographic) image carrier on which the image to be printed obtains ink from ink rollers, while the non-printing area attracts a film of water, keeping the non-printing areas ink-free.

Screen-printing (1907)

Main article: Screen-printing

Screen-printing has its origins in simple stenciling, most notably of the Japanese form (katazome), used who cut banana leaves and inserted ink through the design holes on textiles, mostly for clothing. This was taken up in France. The modern screen-printing process originated from patents taken out by Samuel Simon in 1907 in England. This idea was then adopted in San Francisco, California, by John Pilsworth in 1914 who used screen-printing to form multicolor prints in a subtractive mode, differing from screen-printing as it is done today.

Flexography

Main article: FlexographyA flexographic printing plate.

Flexography (also called surface printing), often abbreviated to flexo, is a method of printing most commonly used for packaging (labels, tape, bags, boxes, banners, and so on).

A flexo print is achieved by creating a mirrored master of the required image as a 3D relief in a rubber or polymer material. A measured amount of ink is deposited upon the surface of the printing plate (or printing cylinder) using an anilox roll. The print surface then rotates, contacting the print material which transfers the ink.

Originally flexo printing was basic in quality. Labels requiring high quality have generally been printed Offset until recently. In the last few years great advances have been made to the quality of flexo printing presses.

The greatest advances though have been in the area of Photopolymer Printing Plates, including improvements to the plate material and the method of plate creation. —usually photographic exposure followed by chemical etch, though also by direct laser engraving.

Page 13: History of Printing

Photocopier (1960s)

Main article: Photocopier

Xerographic office photocopying was introduced by Xerox in the 1960s, and over the following 20 years it gradually replaced copies made by Verifax, Photostat, carbon paper, mimeograph machines, and other duplicating machines. The prevalence of its use is one of the factors that prevented the development of the paperless office heralded early in the digital revolution.

Thermal printer

Main article: Thermal printer

A thermal printer (or direct thermal printer) produces a printed image by selectively heating coated thermochromic paper, or thermal paper as it is commonly known, when the paper passes over the thermal print head. The coating turns black in the areas where it is heated, producing an image.

Laser printer (1969)

Main article: Laser printer

The laser printer, based on a modified xerographic copier, was invented at Xerox in 1969 by researcher Gary Starkweather, who had a fully functional networked printer system working by 1971.[19][20] Laser printing eventually became a multibillion-dollar business for Xerox.

The first commercial implementation of a laser printer was the IBM model 3800 in 1976, used for high-volume printing of documents such as invoices and mailing labels. It is often cited as "taking up a whole room," implying that it was a primitive version of the later familiar device used with a personal computer. While large, it was designed for an entirely different purpose. Many 3800s are still in use.

The first laser printer designed for use with an individual computer was released with the Xerox Star 8010 in 1981. Although it was innovative, the Star was an expensive ($17,000) system that was only purchased by a small number of laboratories and institutions. After personal computers became more widespread, the first laser printer intended for a mass market was the

Page 14: History of Printing

HP LaserJet 8ppm, released in 1984, using a Canon engine controlled by HP software. The HP LaserJet printer was quickly followed by other laser printers from Brother Industries, IBM, and others.

Most noteworthy was the role the laser printer played in popularizing desktop publishing with the introduction of the Apple LaserWriter for the Apple Macintosh, along with Aldus PageMaker software, in 1985. With these products, users could create documents that would previously have required professional typesetting.

Dot matrix printer (1970)

Main article: Dot matrix printer

A dot matrix printer or impact matrix printer refers to a type of computer printer with a print head that runs back and forth on the page and prints by impact, striking an ink-soaked cloth ribbon against the paper, much like a typewriter. Unlike a typewriter or daisy wheel printer, letters are drawn out of a dot matrix, and thus, varied fonts and arbitrary graphics can be produced. Because the printing involves mechanical pressure, these printers can create carbon copies and carbonless copies.

Each dot is produced by a tiny metal rod, also called a "wire" or "pin", which is driven forward by the power of a tiny electromagnet or solenoid, either directly or through small levers (pawls). Facing the ribbon and the paper is a small guide plate (often made of an artificial jewel such as sapphire or ruby [1]) pierced with holes to serve as guides for the pins. The moving portion of the printer is called the print head, and when running the printer as a generic text device generally prints one line of text at a time. Most dot matrix printers have a single vertical line of dot-making equipment on their print heads; others have a few interleaved rows in order to improve dot density.

Inkjet printer

Main article: Inkjet printer

Inkjet printers are a type of computer printer that operates by propelling tiny droplets of liquid ink onto paper.

Dye-sublimation printer

Page 15: History of Printing

Main article: Dye-sublimation printer

A dye-sublimation printer (or dye-sub printer) is a computer printer which employs a printing process that uses heat to transfer dye to a medium such as a plastic card, printer paper or poster paper. The process is usually to lay one color at a time using a ribbon that has color panels. Most dye-sublimation printers use CMYO colors which differs from the more recognised CMYK colors in that the black dye is eliminated in favour of a clear overcoating. This overcoating (which has numerous names depending on the manufacturer) is effectively a thin laminate which protects the print from discoloration from UV light and the air while also rendering the print water-resistant. Many consumer and professional dye-sublimation printers are designed and used for producing photographic prints.

Digital press (1993)

Main article: Digital printing

Digital printing is the reproduction of digital images on a physical surface, such as common or photographic paper or paperboard-cover stock, film, cloth, plastic, vinyl, magnets, labels etc.

It can be differentiated from litho, flexography, gravure or letterpress printing in many ways, some of which are;

Every impression made onto the paper can be different, as opposed to making several hundred or thousand impressions of the same image from one set of printing plates, as in traditional methods.

The Ink or Toner does not absorb into the substrate, as does conventional ink, but forms a layer on the surface and may be fused to the substrate by using an inline fuser fluid with heat process(toner) or UV curing process(ink).

It generally requires less waste in terms of chemicals used and paper wasted in set up or makeready(bringing the image "up to color" and checking position).

It is excellent for rapid prototyping, or small print runs which means that it is more accessible to a wider range of designers and more cost effective in short runs.

Frescography (1998): With CAM-program created Frescography

Page 16: History of Printing

Screenshot of a CAM program for designing frescographies.

Main article: Frescography

Invented by German muralist Rainer Maria Latzke in 1998,[21] frescography is a method for reproduction/creation of murals using digital printing methods. The frescography is based on digitally cut-out motifs which are stored in a database. CAM software programs then allow to enter the measurements of a wall or ceiling to create a mural design with low resolution motifs. Since architectural elements such as beams, windows or doors can be integrated, the design will result in an accurately and tailor-fit wall mural. Once a design is finished, the low resolution motifs are converted into the original high resolution images and are printed on canvas by Wide-format printers. The canvas then can be applied to the wall in a wall-paperhanging like procedure and will then look like on-site created mural.

3D printing

Three-dimensional printing is a method of converting a virtual 3D model into a physical object. 3D printing is a category of rapid prototyping technology. 3D printers typically work by 'printing' successive layers on top of the previous to build up a three dimensional object. 3D printers are generally faster, more affordable and easier to use than other additive fabrication technologies