27
Higher Order MSE of Jackknife 2SLS Jinyong Hahn Brown University Jerry Hausman MIT Guido Kuersteiner MIT April, 2001

Higher Order MSE of Jackknife 2SLS - MIT Economics

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Higher Order MSE of Jackknife 2SLS - MIT Economics

Higher Order MSE of Jackknife 2SLS

Jinyong Hahn

Brown University

Jerry Hausman

MIT

Guido Kuersteiner

MIT

April, 2001

Page 2: Higher Order MSE of Jackknife 2SLS - MIT Economics

Abstract

In this paper we consider parameter estimation in a simple linear simultaneous equations model.

It is well known that two stage least squares (2SLS) estimators perform poorly when the instru-

ments are weak. In this case 2SLS tends to suffer from substantial small sample biases. It is also

known that LIML and Nagar-type estimators are less biased than 2SLS but suffer from large

small sample variability. We construct a bias corrected version of 2SLS based on the Jackknife

principle. Using higher order expansions we show that the MSE of our Jackknife 2SLS estimator

is approximately the same as the MSE of the Nagar-type estimator. Monte Carlo simulations

show that even in relatively large samples the MSE of LIML and Nagar can be substantially

larger than for Jackknife 2SLS.

Keywords: weak instruments, higher order expansions, bias reduction, Jackknife, 2SLS

JEL C13,C21,C31,C51

Page 3: Higher Order MSE of Jackknife 2SLS - MIT Economics

1 Introduction

There has been a renewed interest in Þnite sample properties of econometric estimators. Most of

the related research activities in this area are concentrated in the investigation of Þnite sample

properties of instrumental variables (IV) estimators. It has been found that standard large

sample inference based on 2SLS can be quite misleading in small samples when the endogenous

regressor is only weakly correlated with the instrument. A partial list of such research activities

is Nelson and Startz (1990), Maddala and Jeong (1992), Staiger and Stock (1997), and Hahn

and Hausman (2000).

A general result is that controlling for bias can be quite important in small sample situations.

Anderson and Sawa (1979), Morimune (1983), Bekker (1994), Angrist, Imbens, and Krueger

(1995), and Donald and Newey (1998) found that IV estimators with smaller bias typically have

better risk properties in Þnite sample. For example, it has been found that the LIML, the

JIVE, or Nagar�s (1959) estimator tend to have much better risk properties than 2SLS. One

might conjecture that such results may well generalize to situations other than the simultaneous

equations models. In other words, one may conjecture that bias reduced version of an estimator

would in general have a better risk property than the original estimator. Donald and Newey

(1999) and Newey and Smith (2000) may be understood as an endeavor to obtain a bias reduced

version of the GMM estimator in order to improve the Þnite sample risk properties. In this

paper, we contribute to this approach by considering the higher order risk properties of the

Jackknife 2SLS.

Such an exercise is of interest for several reasons. First, we believe that higher order MSE

calculation of the Jackknife estimator has in general not been available in the literature. Most

papers simply verify the consistency of the Jackknife bias estimator. See Shao and Tu (1995,

Section 2.4) for a typical discussion of such type. Akahira (1983), who showed that the Jackknife

MLE is second order equivalent to MLE, is closest in spirit to our exercise here, although a third

order expansion is necessary in order to calculate the higher order MSE. Our proof strategy

can in principle be generalized to non-IV estimators. Second, the Jackknife 2SLS may prove to

be a reasonable competitor to the LIML or Nagar�s estimator. It is well-known that the LIML

and Nagar have the �moment� problem: With normally distributed error terms, it is known

that LIML and Nagar do not possess any moments. See Mariano and Sawa (1972) or Sawa

(1972). LIML and Nagar�s estimator have better higher order risk properties than 2SLS, as

shown by Rothenberg (1979) or Donald and Newey (1998). The moment problem would not

pose any practical concern if the problem were concentrated in the extreme end of the tails.

Unfortunately, in Hahn and Hausman (2000) we found in Monte Carlo that LIML and Nagar�s

estimator tend to have bigger spread (measured in terms of interquartile range, etc) than 2SLS

1

Page 4: Higher Order MSE of Jackknife 2SLS - MIT Economics

for some parameter combinations. It seems possible that the moment problem, which in principle

should be a mere object of theoretical curiosity, presents itself in the form of undesirable Þnite

sample risk properties despite the prediction based on higher order expansions. On the other

hand, it can be shown that Jackknife 2SLS is known to have moments up to the degree of

overidentiÞcation. If Jackknife 2SLS has a higher order MSE comparable to LIML or Nagar�s

estimator, we can then conjecture that its actual Þnite sample properties may be more stable.

2 MSE of Jackknife 2SLS

The model we focus on is the simplest model speciÞcation with one right hand side (RHS) jointly

endogenous variable so that the left hand side variable (LHS) depends only on the single jointly

endogenous RHS variable. This model speciÞcation accounts for other RHS predetermined (or

exogenous) variables, which have been �partialled out� of the speciÞcation. We will assume that

yi = xiβ + εi,

xi = fi + ui = z0iπ + ui i = 1, . . . , n

Here, xi is a scalar variable, and zi is a K-dimensional nonstochastic column vector. The Þrst

equation is the equation of interest, and the right hand side variable xi is possibly correlated with

εi. The second equation represents the �Þrst stage regression�, i.e., the reduced form between

the endogenous regressor xi and the instruments zi. By writing fi ≡ E [xi| zi] = z0iπ, we are

ruling out a nonparametric speciÞcation of the Þrst stage regression. Note that the Þrst equation

does not include any other exogenous variable. It will be assumed throughout the paper that

all the error terms are homoscedastic.

We focus on the 2SLS estimator b given by

b =x0Pyx0Px

= β +x0Pεx0Px

,

where P ≡ Z (Z 0Z)−1 Z0. Here, y denotes (y1, . . . , yn)0. We deÞne x, ε, u, and Z similarly. 2SLS

is a special case of the k-class estimator given by

x0Py − κ · x0Myx0Px− κ · x0Mx,

where M ≡ I − P and κ is a scalar. For κ = 0, we obtain 2SLS. For κ equal to the smallest

eigenvalue of the matrix W 0PW (W 0MW )−1, where W ≡ [y, x], we obtain LIML. For κ =K−2n

± ¡1− K−2

n

¢, we obtain B2SLS, which is Donald and Newey�s (1998) modiÞcation of Nagar�s

(1959) estimator.

Donald and Newey (1998) computed higher order mean squared errors (MSE) of the k-class

estimators. They showed that n times the MSE of 2SLS, LIML, and B2SLS are approximately

2

Page 5: Higher Order MSE of Jackknife 2SLS - MIT Economics

equal to

σ2ε

H+K2

n

σ2uε

H2,

σ2ε

H+K

n

σ2uσ

2ε − σ2

H2,

σ2ε

H+K

n

σ2uσ

2ε + σ2

H2,

where we deÞne H ≡ f 0fn . The Þrst term, which is common in all three expressions, is the usual

asymptotic variance obtained under the Þrst order asymptotics. Finite sample properties are

captured by the second terms. For 2SLS, the second term is easy to understand. As discussed

in, e.g., Hahn and Hausman (2001), 2SLS has an approximate bias equal to KσuεnH . Therefore,

the approximate expectation for√n (b− β) ignored in the usual Þrst order asymptotics is equal

to Kσuε√nH, which contributes

³Kσuε√nH

´2= K2

nσ2uεH2 in the higher order MSE calculation. The second

terms for LIML and B2SLS do not reßect higher order biases. Rather, they reßect higher order

variance that can be understood from Rothenberg�s (1983) or Bekker�s (1994) asymptotics.

Higher order MSE comparison alone would suggest that LIML and B2SLS should be preferred

to 2SLS. Unfortunately, it is well-known that the LIML and Nagar have the �moment� problem.

If (εi, ui) has a bivariate normal distribution, it is known that LIML and B2SLS do not possess

any moments. On the other hand, it is known that 2SLS does not have a moment problem.

See Mariano and Sawa (1972) or Sawa (1972). This theoretical property implies that LIML and

B2SLS have thicker tails than 2SLS. It would be nice if the moment problem could be dismissed

as a mere academic curiosity. Unfortunately, we found in Monte Carlo that LIML and B2SLS

tend to have bigger spread (measured in terms of interquartile range, etc) than 2SLS for some

parameter combinations. In this sense, 2SLS can still be viewed as a reasonable contender to

LIML and B2SLS.

Given that the poor higher order MSE property of 2SLS is based on its bias, we may hope to

improve 2SLS by eliminating its Þnite sample bias through the jackknife. Jackknife 2SLS may

turn out to be a reasonable contender given that it can be expressed as a linear combination of

2SLS, and hence, free of the moment problem. This is because the jackknife estimator of the

bias is given by

n− 1

n

Xi

Ãbπ0(i)Pj 6=i zjyjbπ0(i)Pj 6=i zjxj− bπ0Pi ziyibπ0Pi zixi

!=n− 1

n

Xi

Ãbπ0(i)Pj 6=i zjεjbπ0(i)Pj 6=i zjxj− x0Pεx0Px

!(1)

and the corresponding jackknife estimator is given by

bJ =bπ0Pi ziyibπ0Pi zixi

− n− 1

n

Xi

Ãbπ0(i)Pj 6=i zjyjbπ0(i)Pj 6=i zjxj− bπ0Pi ziyibπ0Pi zixi

!

= nbπ0Pi ziyibπ0Pi zixi

− n− 1

n

Xi

bπ0(i)Pj 6=i zjyjbπ0(i)Pj 6=i zjxj

Here, bπ denotes the OLS estimator of the Þrst stage coefficient π, and bπ(i) denotes such OLS

3

Page 6: Higher Order MSE of Jackknife 2SLS - MIT Economics

estimator based on every observation except the ith. Observe that bJ is a linear combination of

bπ0Pi ziyibπ0Pi zixi,bπ0(1)

Pj 6=i zjyjbπ0(1)

Pj 6=i zjxj

, . . . ,bπ0(n)

Pj 6=i zjyjbπ0(n)

Pj 6=i zjxj

and all of them have Þnite moments if the degree of overidentiÞcation is sufficiently large (K > 2).

See, e.g., Mariano (1972). Therefore, bJ would have Þnite second moments. if the degree of

overidentiÞcation is large.

We show that, for large K, the approximate MSE for the jackknife 2SLS is the same as

in Nagar�s estimator or JIVE. As in Donald and Newey (1998), we let h ≡ f 0εn . We impose

following assumptions. First, we assume normality1:

Condition 1 (i) (εi, ui)0 i = 1, . . . , n are i.i.d.; (ii) (εi, ui)

0 has a bivariate normal distribution

with mean equal to zero.

We also assume that zi is a sequence of nonstochastic column vectors satisfying

Condition 2 maxPii = O¡

1n

¢, where Pii denotes the (i, i)-element of P ≡ Z (Z 0Z)−1 Z0.

Condition 3 (i) max |fi| = max |z0iπ| = O¡n1/r

¢for some r sufficiently large (r > 3); (ii)

1n

Pi f

6i = O (1).2

After some algebra, it can be shown that

bπ0(i)Xj 6=izjεj = x0Pε+ δ1i, bπ0(i)X

j 6=izjxj = x0Px+ δ2i,

where

δ1i ≡ −xiεi + (1− Pii)−1 (Mx)i (Mε)i , δ2i ≡ −x2i + (1− Pii)−1 (Mx)2

i .

Here, (Mx)i denotes the ith element of Mx, and M ≡ I − P . We may therefore write thejackknife estimator of the bias as

n− 1

n

Xi

µx0Pε+ δ1i

x0Px+ δ2i− x0Pεx0Px

¶=n− 1

n

Xi

µ1

x0Pxδ1i − x0Pε

(x0Px)2 δ2i − 1

(x0Px)2 δ1iδ2i +x0Pε

(x0Px)3 δ22i

¶+Rn

1We expect that our result would remain valid under the symmetry assumption as in Donald and Newey

(1998), although such generalization is expected to be substantially complicated.2 If {fi} is a realization of a sequence of i.i.d. random variables such that E [|fi|r] <∞ for r sufficiently large,

Condition 3 (i) may be justiÞed in probabilistic sense. See Lemma 1 in Appendix.

4

Page 7: Higher Order MSE of Jackknife 2SLS - MIT Economics

where

Rn ≡ n− 1

n4

1¡1nx

0Px¢2

Xi

δ1iδ22i

1nx

0Px+ 1nδ2i

− n− 1

n4

1nx

0Pε¡1nx

0Px¢3

Xi

δ32i

1nx

0Px+ 1nδ2i

.

By Lemma 2 in Appendix, we have

n3/2Rn = Op

Ã1

n√n

Xi

¯̄δ1iδ

22i

¯̄+

1

n√n

Xi

¯̄δ3

2i

¯̄!= op (1) ,

and can ignore it from our further computation.

We now examine the resultant bias corrected estimator (1) ignoring Rn:

H√n

Ãx0Pεx0Px

− n− 1

n

Xi

µx0Pε+ δ1i

x0Px+ δ2i− x0Pεx0Px

¶+Rn

!

= H√nx0Pεx0Px

−n− 1

n

H1nx

0Px

Ã1√n

Xi

δ1i

!

+n− 1

n

H1nx

0Px

à 1√nx0Pε

1nx

0Px

!Ã1

n

Xi

δ2i

!

+n− 1

n

1

H

ÃH

1nx

0Px

!2Ã1

n√n

Xi

δ1iδ2i

!

−n− 1

n

1

H

ÃH

1nx

0Px

!2Ã 1√nx0Pε

1nx

0Px

!Ã1

n2

Xi

δ22i

!(2)

Theorem 1 below is obtained by squaring and taking expectation of the RHS of (2):

Theorem 1 Assume that Conditions 1, 2, and 3 are satisÞed. Then, the approximate MSE of√n (bJ − β) for the jackknife estimator up to O

¡Kn

¢is given by

σ2ε

H+K

n

σ2uσ

2ε + σ2

H2.

Proof. See Appendix.

Theorem 1 indicates that the higher order MSE of Jackknife 2SLS is equivalent to that of

Nagar�s (1959) estimator if the number of instruments is sufficiently large. See Donald and

Newey (1998). Therefore, the Jackknife does not increase variance too much. Although it

has long been known that Jackknife does reduce the bias, the literature has been hesitant in

recommending its use primarily because of the concern that variance may increase too much

due to Jackknife bias reduction. See Shao and Tu (1995, p. 65), for example.

5

Page 8: Higher Order MSE of Jackknife 2SLS - MIT Economics

Theorem 1 also indicates that the higher order MSE of Jackknife 2SLS is bigger than that

of LIML. In some sense, this result is not surprising. In Hahn and Hausman (2000), we demon-

strated that LIML is approximately equivalent to the optimal linear combination of two Nagar�s

estimators based on forward and reverse speciÞcations. Jackknife 2SLS is solely based on for-

ward 2SLS, and ignores the information contained in reverse 2SLS. Therefore, it is quite natural

to have LIML dominating Jackknife 2SLS.

3 Monte Carlo

We generated

yi = xiβ + εi, xi = z0iπ + ui i = 1, . . . , n

such that zi ∼ N (0, IK), Var (εi) = Var (ui) = 1, and β = 0. We let π = (π, . . . ,π), such that

R2 ≡ π0E [ziz0i]π

π0E [ziz0i]π + Var (ui)=

Kπ2

Kπ2 + 1

Here, R2 denotes the theoretical R2 in the Þrst stage regression. We considered combinations of

the following parameters:

n = 100, 500, 1000

K = 5, 10, 30

R2 = .001, .1, .3

ρ = Cov (εi, ui) = 0, .5, .9

Results based 5000 Monte Carlo runs are summarized in Tables 1 - 3.

We Þrst discuss the sample size 100 case in Table 1. In the upper panel the �moment problem�

appears for both LIML and the Nagar estimator with both the mean and RMSE considerably

larger than for J2SLS. However, for low R2 = .001, which corresponds to the weak instrument

setup, J2SLS does considerably better than either LIML or Nagar. The interquartile range for

J2SLS is about 12 as large as for the other estimators. As the R2 increases, the superiority

of J2SLS is not as great. However, it is typically better than the other estimators for the

interquartile range. When LIML does better than J2SLS, it is only by a very small amount. In

the middle and lower panels of Table 1 as the number of instruments increases which exacerbates

the weak instrument problem, the superiority of J2SLS increases with respect to the interquartile

range. Now for the low R2 situation, its interquartile range is approximately 14 as large as LIML

or the Nagar estimator. However, the most interesting Þnding may be that the �classical� 2SLS

estimator typically does the best of any of the second order unbiased estimators in terms of

6

Page 9: Higher Order MSE of Jackknife 2SLS - MIT Economics

the interquartile range. Thus, while LIML and the Nagar estimator demonstrate their expected

superiority in terms of lower median bias, the Þnite sample performance of 2SLS in terms of the

interquartile range is striking.

In Table 2 we increase the sample size to 500 while the other parameters remain the same.

In terms of the interquartile range we again Þnd that J2SLS is often superior to LIML and the

Nagar estimator. In no situation does LIML have a signiÞcant superiority to J2SLS although

it is slightly better in a few cases. Once again, classical 2SLS does better than the other 3

estimators in terms of interquartile range, especially when R2 is very low. Thus, in the weak

instrument situations of low R2 and high K, regular 2SLS has much to recommend it. Lastly, in

Table 3 we increase the sample size to 1000, again keeping the other parameters constant. Now,

only in the low R2 case does J2SLS do better than LIML or the Nagar estimator. In the other

situations, LIML does as well as J2SLS or slightly better. However, LIML never demonstrates

a marked superiority in terms of the interquartile range. Once again, regular 2SLS does best in

terms of the interquartile range.34

Summing up, even for sample sizes of 1000 the superior performance of LIML with respect

to median unbiasedness is counteracted by the �moment� problem. The moment problem often

leads to high RMSE and a large interquartile range, especially when R2 is low, the number

of instruments is high, or the correlation between the two equations stochastic disturbances is

large. All of these situations are characteristic of the weak instrument situation as discussed

by Hahn and Hausman (2000). Thus, we suggest caution in using either LIML or the Nagar

estimator in the weak instrument situation. J2SLS or regular 2SLS may offer better properties

depending on the (implicit) Þnite sample risk function in use. We also recommend the use of

the Hahn-Hausman (2000) speciÞcation test as a means of ascertaining the degree of reliance

appropriate for the large sample approximations being used.3 In order to conÞrm that our result is not speciÞc to the β = 0 case, we considered the case where β = −1,

n = 100, K = 30, R2 = .001, ρ = .5. We found that the mean biases of LIML, Nagar, 2SLS, and J2SLS are

equal to 0.5544, 2.3186, 1.3002, 1.2965. The median biases were equal to 1.2729, 1.3111, 1.3005, 1.2948, and

the RMSE were equal to 42.3779 60.4197 1.3103 1.3450. Finally, interquartile ranges were equal to 1.7120,

1.1807, 0.2144, 0.4365. We repeated the Monte Carlo for the case where β = −1.8, n = 100, K = 30, R2 = .001,

ρ = .9. The mean biases were equal to 8.0161, 1.2714, 0.8995, 0.8976, and the median biases were equal to 0.8920,

0.9024, 0.8984, 0.8978. RMSE were equal to 514.8346, 27.0408, 0.9033, 0.9162, and the interquartile ranges were

equal to 0.8811, 0.6009, 0.1080, 0.2190. These numbers suggest that our results quite generally hold.4We also examined properties of Angrist, Imbens, and Krueger�s (1995) JIVE by a small scale Monte Carlo

experiment. For the case where β = 0, n = 100, K = 30, R2 = .001, ρ = .9, similar to Table 1, we found that the

JIVE has a mean bias equal to 0.6183, median bias equal to 0.8970, RMSE equal to 17.9269, and interquartile

range equal to 0.6346. For the case where β = 0, n = 100, K = 30, R2 = .1, ρ = .5, we found that the JIVE has

a mean bias equal to 0.2938, median bias equal to 0.1639, RMSE equal to 13.0949, and interquartile range equal

to 0.8962. These numbers suggest that the JIVE may well have a �moment� problem similar to LIML and the

Nagar estimator.

7

Page 10: Higher Order MSE of Jackknife 2SLS - MIT Economics

Appendix

A Higher Order Expansion

We Þrst present two Lemmas:

Lemma 1 Let υi be a smample of n independent random variables with maxiE [|υi|r] < cr <∞for some constant 0 < c <∞ and some 1 < r <∞. Then maxi |υi| = Op

¡n1/r

¢.

Proof. By Jensen�s inequality, we have

E

·maxi|υi|¸≤µE

·maxi|υi|r

¸¶1/r

≤ÃX

i

E [|υi|r]!1/r

≤µnmax

iE [|υi|r]

¶1/r

= n1/r

µmaxiE [|υi|r]

¶1/r

≤ n1/rc

The conclusion follows by Markov inequality.

Lemma 2 Assume that Conditions 2 and 3 are satisÞed. Further assume that E [|εi|r] < ∞and E [|ui|r] <∞ for r sufficiently large (r > 3). We then have (i) n−1/6 max |δ1i| = op (1) and

n−1/6 max |δ2i| = op (1); and (ii) 1n√n

Pi

¯̄δ1iδ

22i

¯̄= op (1) and 1

n√n

Pi

¯̄δ3

2i

¯̄= op (1).

Proof. Note that

max |δ1i| ≤ (max |fi|+ max |ui|) ·max |εi|+ max (1− Pii)−1 · (max |ui|+ max |(Pu)i|) · (max |εi|+ max |(Pε)i|) ,

We have (max |fi|+ max |ui|) · max |εi| = Op¡n2/r

¢by Lemma 1. Because max |(Pu)i|2 ≤

maxPii · u0u, and maxPii = O¡

1n

¢, we also have max |(Pu)i| = Op (1). Similarly, max |(Pε)i| =

Op (1). Therefore, we obtain we obtain max |δ1i| = op¡n1/6

¢. That max |δ2i| = op

¡n1/6

¢can

be established similarly. It then easily follows that 1n√n

Pi

¯̄δ1iδ

22i

¯̄ ≤ 1√n

max |δ1i|max |δ2i|2 =

op (1), and 1n√n

Pi

¯̄δ3

2i

¯̄ ≤ 1√n

max |δ2i|3 = op (1).

We note from Donald and Newey (1998) that we have the following expansion5:

H√nx0Pεx0Px

=7Xj=1

Tj + op

µK

n

¶, (3)

5Our representation of Donald and Newey�s result reßects our simplifying assumption that the Þrst stage is

correctly speciÞed.

8

Page 11: Higher Order MSE of Jackknife 2SLS - MIT Economics

where

T1 = h = Op (1) , T2 = W1 = Op

µK√n

¶, T3 = −W3

1

Hh = Op

µ1√n

¶,

T4 = 0, T5 = −W41

Hh = Op

µK

n

¶, T6 = −W3

1

HW1 = Op

µK

n

¶,

T7 = W 23

1

H2h = Op

µ1

n

¶,

and

h =f 0ε√n

= Op (1) , W1 =u0Pε√n

= Op

µK√n

¶,

W3 = 2f 0un

= Op

µ1√n

¶, W4 =

u0Pun

= Op

µK

n

¶.

We now expand H1nx0Px and

³H

1nx0Px

´2up to Op

¡1n

¢. Because 1

nx0Px = H +W3 +W4, we

haveH

1nx

0Px=

H

H +W3 +W4= 1− 1

HW3 − 1

HW4 +

1

H2W 2

3 + op

µK

n

¶, (4)Ã

H1nx

0Px

!2

= 1− 21

HW3 − 2

1

HW4 + 3

1

H2W 2

3 + op

µK

n

¶(5)

We now expand 1√n

Pi δ1i. Observe that

1√n

Xi

δ1i = − 1√n

Xi

xiεi +1√n

Xi

(1− Pii)−1 (Mx)i (Mε)i

= −h− 1√nu0ε+

1√n

(Mu)0³I − eP´−1

(Mε)

= −h− 1√nu0ε+

1√nu0Mε+

1√n

(Mu)0 P (Mε)

= −h− 1√nu0Pε+

1√nu0Pε− 1√

nu0PPε− 1√

nu0PPε+

1√nu0PPPε

= −h− 1√nu0C0ε− 1√

nu0PPε+

1√nu0PPPε, (6)

where, as in Donald and Newey (1998), we let

C ≡ P − P (I − P ) = P − PM, P ≡ eP ³I − eP´−1,

and eP is a diagonal matrix with element Pii on the diagonal. Now, note that, by Cauchy-

Schwartz,¯̄u0PPε

¯̄ ≤ √u0upε0PP 2Pε. Because u0u = Op (n), and ε0PP 2

Pε ≤ max³

Pii1−Pii

´2ε0Pε =

1n2

¢Op (K), we obtain¯̄̄̄

u0PPε√n

¯̄̄̄≤ 1√

n

√u0uqε0PP 2

Pε =1√n

qOp (n)

sO

µ1

n2

¶Op (K) = Op

Ã√K

n

!,

¯̄̄̄u0PPPε√

n

¯̄̄̄≤ 1√

n

√u0Pu

qε0PP 2

Pε =1√n

qOp (K)

sO

µ1

n2

¶Op (K) = Op

µK

n3/2

¶= op

µK

n

¶.

9

Page 12: Higher Order MSE of Jackknife 2SLS - MIT Economics

To conclude, we can write

1√n

Xi

δ1i = −h+W5 +W6 + op

µK

n

¶, (7)

where

W5 ≡ − 1√nu0C0ε = Op

Ã√K√n

!

W6 ≡ 1√nu0PPε = Op

Ã√K

n

!.

We now expand³

H1nx0Px

´³1√n

Pi δ1i

´using (4) and (7):Ã

H1nx

0Px

!Ã1√n

Xi

δ1i

!

=

µ1− 1

HW3 − 1

HW4 +

1

H2W 2

3

¶(−h+W5 +W6) + op

µK

n

¶= −h+W3

1

Hh+W4

1

Hh−W 2

3

1

H2h+W5 +W6 − 1

HW3W5 + op

µK

n

¶= −T1 − T3 − T5 − T7 + T8 + T9 + T10 + op

µK

n

¶(8)

where

T8 ≡ W5 = − 1√nu0C0ε = Op

Ã√K√n

!,

T9 ≡ W6 =1√nu0PPε = Op

Ã√K

n

!,

T10 ≡ − 1

HW3W5 = W3

1

H

1√nu0C0ε = Op

Ã√K

n

!.

We now expand H1nx0Px

µ1√nx0P ε

1nx0Px

¶¡1n

Pi δ2i

¢. We begin with expansion of 1

n

Pi δ2i. As in

(6), we can show that

1

n

Xi

δ2i = −H − 2

nf 0u− 1

nu0C0u− 1

nu0PPu+

1

nu0PPPu

Because¯̄u0PPPu

¯̄ ≤ max

µPii

1− Pii

¶· u0Pu = Op

µK

n

¶,

¯̄u0PPu

¯̄ ≤√u0uqu0PP 2

Pu ≤qOp (n)

smax

µPii

1− Pii

¶2

· u0Pu = Op

ÃrK

n

!,

10

Page 13: Higher Order MSE of Jackknife 2SLS - MIT Economics

we may write

1

n

Xi

δ2i = −H −W3 −W7 + op

µK

n

¶(9)

where

W7 ≡ 1

nu0C0u = Op

Ã√K

n

!.

Combining (4) and (9), we obtain

H1nx

0Px

Ã1

n

Xi

δ2i

!=

µ1− 1

HW3 − 1

HW4 +

1

H2W 2

3

¶(−H −W3 −W7) + op

µK

n

¶= −H +W3 +W4 − 1

HW 2

3 −W3 +1

HW 2

3 −W7 + op

µK

n

¶= −H +W4 −W7 + op

µK

n

¶which, combined with (3), yields

H1nx

0Px

à 1√nx0Pε

1nx

0Px

!Ã1

n

Xi

δ2i

!=

1

H

7Xj=1

Tj

(−H +W4 −W7) + op

µK

n

= −7Xj=1

Tj +W41

Hh−W7

1

Hh+ op

µK

n

= −7Xj=1

Tj − T5 + T11 + op

µK

n

¶(10)

where

T11 ≡ −W71

Hh = Op

Ã√K

n

!.

We now examine 1H

³H

1nx0Px

´2 ³1

n√n

Pi δ1iδ2i

´. Later in Section B.2.1, it is shown that

1

n√n

Xi

δ1iδ2i = op

µ1√n

¶Therefore, we should have

1

H

ÃH

1nx

0Px

!2Ã1

n√n

Xi

δ1iδ2i

!= T12 + op

µK

n

¶(11)

where

T12 ≡ 1

H

1

n√n

Xi

δ1iδ2i = op

µ1√n

11

Page 14: Higher Order MSE of Jackknife 2SLS - MIT Economics

Now, we examine 1H

³H

1nx0Px

´2µ

1√nx0P ε

1nx0Px

¶¡1n2

Pi δ

22i

¢. Later in Section B.2.3, it is shown that

1

n2

Xi

δ22i = Op

µ1

n

¶.

Therefore, we have

1

H

ÃH

1nx

0Px

!2Ã 1√nx0Pε

1nx

0Px

!Ã1

n2

Xi

δ22i

!= T14 + op

µK

n

¶(12)

where

T14 ≡ 1

H2h

1

n2

Xi

δ22i = Op

µ1

n

¶Combining (2), (3), (8), (10), (11), and (12), we obtain

H√n

Ãx0Pεx0Px

− n− 1

n

Xi

µx0Pε+ δ1i

x0Px+ δ2i− x0Pεx0Px

¶+Rn

!

= T1 + T3 + T7 − T8 − T9 − T10 + T11 + T12 − T14 + op

µK

n

¶. (13)

B Approximate MSE Calculation

In computing the (approximate) mean squared error, we keep terms up to Op¡

1n

¢. From (13),

we can see that the MSE of the jackknife estimator approximately equal to

E£T 2

1

¤+E

£T 2

3

¤+E

£T 2

8

¤+E

£T 2

12

¤+2E [T1T3] + 2E [T1T7]− 2E [T1T8]− 2E [T1T9]− 2E [T1T10] + 2E [T1T11]

+2E [T1T12]− 2E [T1T14]− 2E [T3T8] (14)

Combining (14) with (15), (16), (17), (18), (19), (20), (21), (22), (23), (26), (37), and (38) in

the next two subsections, it can shown that the approximate MSE up to Op¡

1n

¢is given by

σ2εH +

K

n

¡σ2uσ

2ε + σ2

¢+

µ−12

H

¶σ2uσ

n+ 20

σ2uε

n+

12

H

σ4uσ

n,

which proves Theorem 1.

12

Page 15: Higher Order MSE of Jackknife 2SLS - MIT Economics

B.1 Approximate MSE Calculation: Intermediate Results That Only Re-quire Symmetry

From Donald and Newey (1998), we can see that

E£T 2

1

¤= σ2

εH (15)

E£T 2

3

¤=

4

n

¡σ2uσ

2ε + 2σ2

¢+ o

µ1

n

¶(16)

E [T1T3] = 0 (17)

E [T1T7] =4

n

¡σ2uσ

2ε + 2σ2

¢+ o

µ1

n

¶(18)

E£T 2

8

¤=

K

n

¡σ2uσ

2ε + σ2

¢+ o

µK

nsupPii

¶(19)

Also, by symmetry, we have

E [T1T8] = 0 (20)

E [T1T9] = 0. (21)

It remains to compute E£T 2

12

¤, E [T1T10], E [T1T11], E [T1T12], E [T1T14], and E [T3T8]. We will

take care of E£T 2

12

¤, E [T1T12], and E [T1T14] in the next section.

Note that

E [T1T10] = E [T3T8] = E

·2f 0un

1

H

1√nu0C 0ε

f 0ε√n

¸=

2

n2HE£u0f 0fε · u0C0ε¤

Using equation (18) of Donald and Newey (1998), we obtain

E£u0f 0fε · u0C 0ε¤ =

nXi=1

E£u2i ε

2i f

2i C

0ii

¤+

nXi=1

Xj 6=iE£uiεiujεjf

2i C

0jj

¤+

nXi=1

Xj 6=iE£u2i ε

2jfifjC

0ij

¤+

nXi=1

Xj 6=iE£uiεjujεififjC

0ji

¤= σ2

uσ2ε

nXi=1

Xj 6=ififjC

0ij + σ2

nXi=1

Xj 6=ififjC

0ji

= σ2uσ

2εf0C 0f + σ2

uεf0Cf

Therefore, we have

E [T1T10] = E [T3T8] =2

nH

σ2uσ

2εf0C0f + σ2

uεf0Cf

n

=2

nH

µσ2uσ

2εH + σ2

uεH + o

µ1

n

¶¶=

2

n

¡σ2uσ

2ε + σ2

¢+ o

µ1

n2

¶, (22)

where the second equality is based on equation (20) of Donald and Newey (1998).

13

Page 16: Higher Order MSE of Jackknife 2SLS - MIT Economics

Now, note that

E [T1T11] = − 1

n2HE£u0Cu · ε0ff 0ε¤

and

E£ε0ff 0ε · u0Cu¤ =

nXi=1

E£u2i ε

2i f

2i Cii

¤+

nXi=1

Xj 6=iE£ε2i u

2jf

2i Cjj

¤+

nXi=1

Xj 6=iE [εiεjuiujfifjCij ] +

nXi=1

Xj 6=iE [εiεjujuififjCji]

= σ2uεf

0C 0f + σ2uεf

0Cf

Because Cf = Pf − P (I − P ) f = PZπ − P (I − P )Zπ = Zπ = f , we obtain

E [T1T11] = −2σ2uε

n. (23)

B.2 Approximate MSE Calculation: Intermediate Results Based On Nor-mality

Note that

δ1iδ2i = x3i εi + (1− Pii)−2 (Mu)3

i (Mε)i

− (1− Pii)−1 xiεi (Mu)2i − (1− Pii)−1 x2

i (Mu)i (Mε)i

= f3i εi + 3f2

i uiεi + 3fiu2i εi + u3

i εi

+ (1− Pii)−2 (Mu)3i (Mε)i − (1− Pii)−1 fiεi (Mu)2

i

− (1− Pii)−1 uiεi (Mu)2i − (1− Pii)−1 f2

i (Mu)i (Mε)i

−2 (1− Pii)−1 fiui (Mu)i (Mε)i − (1− Pii)−1 u2i (Mu)i (Mε)i (24)

and

δ22i =

³−f2

i − 2fiui − u2i + (1− Pii)−1 (Mu)2

i

´2

= f4i + 6f2

i u2i + u4

i + (1− Pii)−2 (Mu)4i

+4f3i ui − 2f2

i (1− Pii)−1 (Mu)2i + 4fiu

3i

−4fiui (1− Pii)−1 (Mu)2i − 2 (1− Pii)−1 u2

i (Mu)2i (25)

14

Page 17: Higher Order MSE of Jackknife 2SLS - MIT Economics

B.2.1 E£T 2

12

¤We Þrst compute E

£T 2

12

¤noting that

H2E£T 2

12

¤ ≤ 10

n3

Xi

f6i Eh(εi)

2i

+10

n3

Xi

9f4i Eh(uiεi)

2i

+10

n3

Xi

9f2i Eh¡u2i εi¢2i

+10

n3

Xi

Eh¡u3i εi¢2i

+10

n3

Xi

(1− Pii)−4Eh(Mu)6

i (Mε)2i

i+

10

n3

Xi

(1− Pii)−2 f2i Ehε2i (Mu)4

i

i+

10

n3

Xi

(1− Pii)−2Ehu2i ε

2i (Mu)4

i

i+

10

n3

Xi

(1− Pii)−2 f4i Eh(Mu)2

i (Mε)2i

i+

10

n3

Xi

4 (1− Pii)−2 f2i Ehu2i (Mu)2

i (Mε)2i

i+

10

n3

Xi

(1− Pii)−2Ehu4i (Mu)2

i (Mε)2i

iUnder the assumption that 1

n

Pi f

6i = O (1), the Þrst four terms are all o

¡1n

¢. Below, we

characterize orders of the rest of the terms.

We now compute 10n3

Pi (1− Pii)−4E

h(Mu)6

i (Mε)2i

i. We write

εi ≡ σuεσ2u

ui + vi,

where vi is independent of ui. Because

(1− Pii)−4Eh(Mu)6

i (Mε)2i

i= (1− Pii)−4

µσ2uε

σ4u

105 Var ((Mu)i)4 + 15 Var ((Mu)i)

3 Var ((Mv)i)

¶= (1− Pii)−4

µ105

σ2uε

σ4u

(1− Pii)4 σ8u + 15 (1− Pii)3 σ6

u (1− Pii)µσ2ε −

σ2uε

σ2u

¶¶= 15σ2

εσ6u + 90σ2

uεσ4u,

we have

10

n3

Xi

(1− Pii)−4Eh(Mu)6

i (Mε)2i

i=

10

n3

Xi

¡15σ2

εσ6u + 90σ2

uεσ4u

¢= o

µ1

n

¶.

15

Page 18: Higher Order MSE of Jackknife 2SLS - MIT Economics

We now compute 10n3

Pi (1− Pii)−2 f2

i Ehε2i (Mu)4

i

i. Because

(1− Pii)−2Ehε2i (Mu)4

i

i= (1− Pii)−2E

h(Mu)4

i

³(Pε)2

i + (Mε)2i

´i= (1− Pii)−2 · 3 Var ((Mu)i)

2 ·Var ((Pε)i)

+ (1− Pii)−2

µσ2uε

σ4u

15 Var ((Mu)i)3 + 3 Var ((Mu)i)

2 Var ((Mv)i)

¶= 3Piiσ

2εσ

4u + 15 (1− Pii)σ2

uεσ2u + 3 (1− Pii)

¡σ2εσ

4u − σ2

uεσ2u

¢= 3σ2

εσ4u + 12 (1− Pii)σ2

uεσ2u,

we have

10

n3

Xi

(1− Pii)−2 f2i Ehε2i (Mu)4

i

i≤ ¡3σ2

εσ4u + 12σ2

uεσ2u

¢ 10

n3

Xi

f2i = o

µ1

n

We now compute 10n3

Pi (1− Pii)−2E

hu2i ε

2i (Mu)4

i

i. Because

Ehu2i ε

2i (Mu)4

i

i= E

h(Mu)4

i

³(Pu)2

i + (Mu)2i

´³(Pε)2

i + (Mε)2i

´i= E

h(Mu)4

i

iEh(Pu)2

i (Pε)2i

i+E

h(Mu)6

i

iEh(Pε)2

i

i+E

h(Mu)4

i (Mε)2i

iEh(Pu)2

i

i+E

h(Mu)6

i (Mε)2i

i= 3 (1− Pii)2 P 2

iiσ4u

¡σ2uσ

2ε + 2σ2

¢+15 (1− Pii)3 Piiσ

6uσ

+ (1− Pii)3 Pii¡12σ2

uεσ2u + 3σ2

εσ4u

¢σ2u

+ (1− Pii)4 ¡15σ2εσ

6u + 90σ2

uεσ4u

¢,

it easily follows that

10

n3

Xi

(1− Pii)−2Ehu2i ε

2i (Mu)4

i

i= o

µ1

n

¶.

We now compute 10n3

Pi (1− Pii)−2 f4

i Eh(Mu)2

i (Mε)2i

i. Because

Eh(Mu)2

i (Mε)2i

i= (1− Pii)2 ¡σ2

uσ2ε + 2σ2

¢,

it easily follows that

10

n3

Xi

(1− Pii)−2 f4i Eh(Mu)2

i (Mε)2i

i= o

µ1

n

¶.

We now compute 10n3

Pi 4 (1− Pii)−2 f2

i Ehu2i (Mu)2

i (Mε)2i

i. Because

Ehu2i (Mu)2

i (Mε)2i

i= E

h³(Mu)2

i + (Pu)2i

´(Mu)2

i (Mε)2i

i= (1− Pii)3 ¡12σ2

uεσ2u + 3σ2

εσ4u

¢+ Pii (1− Pii)2 σ2

u

¡σ2uσ

2ε + 2σ2

¢,

16

Page 19: Higher Order MSE of Jackknife 2SLS - MIT Economics

it easily follows that

10

n3

Xi

4 (1− Pii)−2 f2i Ehu2i (Mu)2

i (Mε)2i

i=

¡12σ2

uεσ2u + 3σ2

εσ4u

¢ 40

n3

Xi

f2i (1− Pii) + σ2

u

¡σ2uσ

2ε + 2σ2

¢ 40

n3

Xi

f2i Pii (1− Pii)2

= o

µ1

n

¶.

We Þnally compute 10n3

Pi (1− Pii)−2E

hu4i (Mu)2

i (Mε)2i

i. Because

Ehu4i (Mu)2

i (Mε)2i

i= E

h³(Mu)4

i + 2 (Mu)2i (Pu)2

i + (Pu)4i

´(Mu)2

i (Mε)2i

i= E

h(Mu)6

i (Mε)2i

i+ 2E

h(Pu)2

i

iEh(Mu)4

i (Mε)2i

i+E

h(Pu)4

i

iEh(Mu)2

i (Mε)2i

i= (1− Pii)4 ¡15σ2

εσ6u + 90σ2

uεσ4u

¢+ 2Pii (1− Pii)3 σ2

u

¡12σ2

uεσ2u + 3σ2

εσ4u

¢+3P 2

ii (1− Pii)2 σ4u

¡σ2uσ

2ε + 2σ2

¢,

it easily follows that

10

n3

Xi

(1− Pii)−2Ehu4i (Mu)2

i (Mε)2i

i= o

µ1

n

¶.

To summarize, we have

E£T 2

12

¤= o

µ1

n

¶. (26)

B.2.2 E [T1T12]

We now compute E [T1T12]. We compute the expectation of the product of each term on the

right side of (24) with f 0ε.

E£¡f 0ε¢ ¡f3i εi¢¤

= f4i σ

2ε (27)

E£¡f 0ε¢ ¡

3f2i uiεi

¢¤= 0 (28)

E£¡f 0ε¢ ¡

3fiu2i εi¢¤

= 3f2i

¡σ2uσ

2ε + 2σ2

¢(29)

E£¡f 0ε¢ ¡u3i εi¢¤

= 0 (30)

Now note that

E£Mu

¡f 0u¢¤

= σ2uMf = 0, E

£Mu

¡f 0ε¢¤

= σuεMf = 0,

E£Mε

¡f 0u¢¤

= σuεMf = 0, E£Mε

¡f 0ε¢¤

= σ2εMf = 0,

17

Page 20: Higher Order MSE of Jackknife 2SLS - MIT Economics

which implies independence. Therefore, we have

Eh¡f 0ε¢ · (1− Pii)−2 (Mu)3

i (Mε)i

i= 0 (31)

Lemma 3 Suppose that A,B,C are zero mean normal random variables. Also suppose that A

and B are independent of each other. Then E£A2BC

¤= Cov (B,C) Var (A).

Proof. Write

C =Cov (A,C)

Var (A)A+

Cov (B,C)

Var (B)B + v

where v is independent of A and B. Conclusion easily follows.

Using Lemma 3, we obtain

Eh¡f 0ε¢ · ³− (1− Pii)−1 fiεi (Mu)2

i

´i= − (1− Pii)−1 Cov

¡f 0ε, fiεi

¢Var ((Mu)i)

= − (1− Pii)−1 f2i σ

2ε (1− Pii)σ2

u

= −f2i σ

2εσ

2u (32)

Symmetry implies

Eh¡f 0ε¢ · ³− (1− Pii)−1 uiεi (Mu)2

i

´i= 0 (33)

and

Eh¡f 0ε¢ · ³− (1− Pii)−1 f2

i (Mu)i (Mε)i

´i= 0 (34)

Lemma 4 Suppose that A,B,C,D are zero mean normal random variables. Also suppose that

(A,B) and C are independent of each other. Then E [ABCD] = Cov (A,B) Cov (C,D)

Proof. Write D = ξ1A+ ξ2B + ξ3C + v, where ξs denote regression coefficients. Note that

ξ3 = Cov (C,D) /Var (C) by independence. We then have

ABCD = ξ1A2BC + ξ2AB

2C + ξ3ABC2 +ABCv

from which the conclusion follows.

Using Lemma 4, we obtain

Eh¡f 0ε¢ · ³−2 (1− Pii)−1 fiui (Mu)i (Mε)i

´i= −2 (1− Pii)−1 Cov ((Mu)i , (Mε)i) Cov

¡f 0ε, fiui

¢= −2 (1− Pii)−1 (1− Pii)σuεf2

i σuε

= −2σ2uεf

2i (35)

18

Page 21: Higher Order MSE of Jackknife 2SLS - MIT Economics

Finally, using symmetry again, we obtain

Eh¡f 0ε¢ · ³− (1− Pii)−1 u2

i (Mu)i (Mε)i

´i= 0 (36)

Combining (27) - (36), we obtain

E£¡f 0ε¢ · (δ1iδ2i)

¤= f4

i σ2ε + 2f2

i

¡σ2uσ

2ε + 2σ2

¢,

from which we obtain

E [T1T12] =1

H

1

n2

Xi

E£¡f 0ε¢ · (δ1iδ2i)

¤=

1

n

σ2ε

H

Ã1

n

Xi

f4i

!+ 2

σ2uσ

2ε + 2σ2

n. (37)

B.2.3 1n2

Pni=1 δ

22i

We compute E£

1n2

Pni=1 δ

22i

¤and characterize its order of magnitude. From (25), we can obtain

E£δ2

2i

¤= f4

i + 4f2i σ

2u + 4Piiσ

4u,

and hence, it follows that

E

"1

n2

nXi=1

δ22i

#=

1

n

Ã1

n

nXi=1

f4i

!+

4Hσ2u

n+ o

µK

n

¶.

B.2.4 E [T1T14]

We compute the expectation of the product of each term on the right hand side of (25) with

(f 0ε)2, noting independence between (Mu)i and f0ε. We have

Eh¡f 0ε¢2 · f4

i

i= f 0fσ2

εf4i = nHσ2

εf4i ,

Eh¡f 0ε¢2 · 6f2

i u2i

i= 6f2

i

³¡f 0fσ2

ε

¢σ2u + 2 (fiσuε)

= 6nHσ2εσ

2uf

2i + 12σ2

uεf4i ,

Eh¡f 0ε¢2 · u4

i

i= 12f2

i σ2uεσ

2u + 3f 0fσ2

εσ4u

= 3nHσ2εσ

4u + 12f2

i σ2uεσ

2u,

Eh¡f 0ε¢2 · (1− Pii)−2 (Mu)4

i

i=¡f 0fσ2

ε

¢ · 3σ4u = 3nHσ2

εσ2u,

Eh¡f 0ε¢2 · ¡4f3

i ui¢i

= 0,

Eh¡f 0ε¢2 ·

³−2f2

i (1− Pii)−1 (Mu)2i

´i= −2f2

i f0fσ2

εσ2u = −2nHf2

i σ2εσ

2u,

Eh¡f 0ε¢2 · ¡4fiu3

i

¢i= 0,

19

Page 22: Higher Order MSE of Jackknife 2SLS - MIT Economics

Eh¡f 0ε¢2 ·

³−4fiui (1− Pii)−1 (Mu)2

i

´i= 0,

Eh¡f 0ε¢2 ·

³−2 (1− Pii)−1 u2

i (Mu)2i

´i= −4f2

i σ2uεσ

2u − 4 (1− Pii)nHσ2

εσ4u − 2nHσ2

εσ4u.

Therefore,

E

"¡f 0ε¢2

nXi=1

δ22i

#= n2Hσ2

ε

Ã1

n

nXi=1

f4i

!+ 6n2H2σ2

εσ2u + 12nσ2

Ã1

n

nXi=1

f4i

!+3n2Hσ2

εσ2u + 12nHσ2

uεσ2u + 3n2Hσ2

εσ2u − 2n2H2σ2

εσ2u

−4nHσ2uεσ

2u − 4 (n−K)nHσ2

εσ4u − 2n2Hσ2

εσ4u,

and therefore, we have

E [T1T14] =1

H2n3E

"¡f 0ε¢2

nXi=1

δ22i

#

=1

n

1

Hσ2ε

Ã1

n

nXi=1

f4i

!+

1

n

µ6

Hσ2εσ

2u + 4σ2

εσ2u −

6

Hσ2εσ

4u

¶+ o

µ1

n

¶. (38)

20

Page 23: Higher Order MSE of Jackknife 2SLS - MIT Economics

References

[1] Akahira, M. (1983), �Asymptotic DeÞciency of the Jackknife Estimator�, Australian

Journal of Statistics 25, 123 - 129.

[2] Anderson, T.W. and T. Sawa (1979), �Evaluation of the Distribution Function of the

Two Stage Least Squares Estimator�, Econometrica 47, 163 - 182.

[3] Angrist, J.D., G.W. Imbens, and A. Krueger (1995), �Jackknife Instrumental Vari-

ables Estimation�, NBER Technical Working Paper No. 172.

[4] Bekker, P.A. (1994), �Alternative Approximations to the Distributions of Instrumental

Variable Estimators�, Econometrica 92, 657 � 681.

[5] Donald, S. G. and W. K. Newey (1998), �Choosing the Number of Instruments�,

mimeo.

[6] Donald, S.G., and W.K. Newey (1999), �A Jackknife Interpretation of the Continuous

Updating Estimator�, mimeo.

[7] Hahn, J., and J. Hausman (2000), �A New SpeciÞcation Test of the Validity of Instru-

mental Variables�, forthcoming in Econometrica.

[8] Maddala, G.S., and J. Jeong (1992), �On the Exact Small Sample Distribution of the

Instrumental Variables Estimator�, Econometrica 60, 181 - 183.

[9] Mariano, R. S (1972), �The Existence of Moments of the Ordinary Least Squares and

Two-Stage Least Squares Estimators�, Econometrica 40, 643 - 652.

[10] Mariano, R.S. AND T. Sawa (1972), �The Exact Finite-Sample Distribution of the

Limited-Information Maximum Likelihood Estimator in the Case of Two Included Endoge-

nous Variables�, Journal of the American Statistical Association 67, 159 � 163.

[11] Morimune, K. (1983), �Approximate Distributions of the k-Class Estimators when the

Degree of OveridentiÞability is Large Compared with the Sample Size�, Econometrica 51,

821 - 841.

[12] Nagar, A.L. (1959), �The Bias and Moment Matrix of the General k-Class Estimators of

the Parameters in Simultaneous Equations�, Econometrica 27, 575 - 595.

[13] Newey, W.K., and R.J. Smith (2000), �Asymptotic Equivalence of Empirical Likelihood

and the Continuous Updating Estimator�, mimeo.

21

Page 24: Higher Order MSE of Jackknife 2SLS - MIT Economics

[14] Rothenberg, T.J. (1983), �Asymptotic Properties of Some Estimators In Structural Mod-

els�, in Studies in Econometrics, Time Series, and Multivariate Statistics.

[15] Sawa, T. (1972), �Finite-Sample Properties of the k-Class Estimators�, Econometrica 40,

653-680.

[16] Shao, J., and D. Tu (1995), The Jackknife and Bootstrap. New York: Springer-Verlag.

[17] Staiger, D., and J. Stock (1997), �Instrumental Variables Regression with Weak In-

struments�, Econometrica 65, 557 - 586.

22

Page 25: Higher Order MSE of Jackknife 2SLS - MIT Economics

Tabl

e 1:

Fin

ite S

ampl

e C

ompa

rison

of I

V E

stim

ator

s

DG

P M

ean

RM

SE

Med

ian

Inte

rQua

rtile

Ran

ge

n K

R2

ρ LI

ML

Nag

ar

2SLS

Ja

ckkn

ife

LIM

L N

agar

2S

LS

Jack

knife

LIM

L N

agar

2S

LS

Jack

knife

LIM

L N

agar

2S

LS

Jack

knife

10

0 5

0.00

1 0

1.86

70

-0.2

704

-0.0

037

-0.0

238

188.

5526

29

.939

60.

5778

2.

2778

-0

.002

40.

0227

0.

0064

0.00

89 1

.947

4 1.

3153

0.6

328

1.08

99

100

5 0.

1 0

-0.0

488

-1.3

125

-0.0

020

0.00

01

3.79

74

94.3

252

0.28

74

0.42

39

-0.0

037

-0.0

019

-0.0

009

-0.0

031

0.48

41 0

.441

1 0.

3442

0.

4206

10

0 5

0.3

0 -0

.000

7 -0

.001

0 -0

.000

9-0

.001

0 0.

1717

0.

1645

0.15

15

0.16

40

-0.0

002

0.00

04

0.00

150.

0011

0.2

124

0.20

51 0

.192

4 0.

2045

10

0 5

0.00

1 0.

5 0.

6353

0.

4666

0.

4927

0.53

35

27.5

698

21.9

502

0.70

16

2.95

08

0.45

830.

4681

0.

4860

0.47

99 1

.697

6 1.

1589

0.5

541

0.94

09

100

5 0.

1 0.

5 -0

.052

8 -0

.008

4 0.

1197

0.00

67

2.16

40

2.11

090.

2923

0.

5745

0.

0030

0.04

70

0.13

440.

0615

0.4

691

0.44

17 0

.322

0 0.

4119

10

0 5

0.3

0.5

-0.0

149

-0.0

024

0.03

37-0

.000

8 0.

1709

0.

1682

0.15

22

0.16

64

-0.0

007

0.01

10

0.04

270.

0119

0.2

086

0.20

80 0

.189

8 0.

2088

10

0 5

0.00

1 0.

9 2.

5881

-1

.670

7 0.

8785

0.85

33

110.

5458

18

5.57

350.

9163

1.

6862

0.

8423

0.87

49

0.87

660.

8638

0.9

801

0.62

94 0

.297

1 0.

5026

10

0 5

0.1

0.9

-0.2

033

-0.0

854

0.22

070.

0340

2.

8753

45

.166

90.

3119

0.

4124

-0

.001

00.

0910

0.

2483

0.11

93 0

.425

0 0.

4215

0.2

575

0.37

45

100

5 0.

3 0.

9 -0

.024

4 -0

.003

2 0.

0617

-0.0

004

0.17

26

0.17

520.

1535

0.

1709

0.

0001

0.02

24

0.07

810.

0226

0.2

032

0.21

00 0

.180

2 0.

2062

10

0 10

0.

001

0 0.

8233

0.

5163

0.

0001

0.00

80

56.4

218

17.7

069

0.34

78

0.82

26

-0.0

106

-0.0

136

-0.0

038

-0.0

035

1.98

74 1

.389

1 0.

4307

0.

8164

10

0 10

0.

1 0

0.09

48

-0.0

187

0.00

210.

0081

4.

8792

4.

3281

0.24

01

0.38

99

0.00

920.

0075

0.

0041

0.00

71 0

.582

2 0.

5268

0.3

009

0.42

90

100

10

0.3

0 0.

0045

0.

0034

0.

0016

0.00

29

0.20

22

0.18

110.

1451

0.

1737

0.

0060

0.00

61

0.00

410.

0065

0.2

336

0.22

59 0

.189

3 0.

2205

10

0 10

0.

001

0.5

0.21

97

1.58

22

0.49

560.

4890

25

.311

1 10

3.43

630.

5827

0.

8730

0.

4878

0.50

78

0.49

440.

4903

1.7

190

1.22

52 0

.391

8 0.

7249

10

0 10

0.

1 0.

5 0.

1976

0.

1746

0.

2251

0.09

32

12.0

014

8.37

420.

3148

0.

3926

0.

0220

0.07

87

0.23

470.

1330

0.5

444

0.51

85 0

.279

5 0.

4074

10

0 10

0.

3 0.

5 -0

.013

0 -0

.001

8 0.

0840

0.01

22

0.18

58

0.19

060.

1624

0.

1768

0.

0060

0.01

77

0.09

240.

0283

0.2

279

0.23

27 0

.181

9 0.

2233

10

0 10

0.

001

0.9

0.99

84

1.38

64

0.89

090.

8757

42

.793

4 41

.826

30.

9049

0.

9690

0.

8578

0.89

42

0.89

040.

8815

0.9

046

0.61

79 0

.196

8 0.

3726

10

0 10

0.

1 0.

9 -0

.032

7 -0

.926

0 0.

4044

0.16

65

8.79

10

85.9

999

0.43

59

0.37

21

0.01

240.

1349

0.

4155

0.22

78 0

.459

2 0.

5205

0.1

998

0.34

32

100

10

0.3

0.9

-0.0

221

-0.0

062

0.15

000.

0197

0.

1780

0.

2104

0.19

30

0.17

94

0.00

320.

0290

0.

1622

0.04

52 0

.213

9 0.

2359

0.1

581

0.22

01

100

30

0.00

1 0

-0.3

916

0.57

87

-0.0

020

-0.0

020

33.4

457

59.7

482

0.18

56

0.40

95

-0.0

161

0.00

20

0.00

26-0

.002

7 1.

9727

1.3

446

0.24

67

0.50

40

100

30

0.1

0 -1

.590

9 0.

2781

-0

.000

8-0

.000

9 19

4.02

82

12.3

847

0.15

92

0.30

46

-0.0

050

0.00

50

0.00

080.

0017

0.8

120

0.71

60 0

.209

3 0.

3636

10

0 30

0.

3 0

-0.0

092

-0.0

023

0.00

050.

0012

5.

1629

0.

3048

0.11

89

0.18

10

0.00

170.

0022

0.

0018

0.00

31 0

.285

6 0.

2691

0.1

552

0.22

21

100

30

0.00

1 0.

5 -0

.388

0 0.

7288

0.

4944

0.49

22

44.3

700

20.7

709

0.52

08

0.61

01

0.46

180.

4858

0.

4943

0.48

94 1

.744

2 1.

2106

0.2

120

0.43

91

100

30

0.1

0.5

0.09

90

-0.6

021

0.36

190.

2635

13

.428

8 79

.573

60.

3902

0.

3840

0.

0635

0.16

98

0.35

970.

2695

0.7

444

0.70

90 0

.187

8 0.

3358

10

0 30

0.

3 0.

5 -0

.028

1 -0

.079

4 0.

2027

0.08

14

0.53

45

2.72

920.

2315

0.

1933

0.

0032

0.02

50

0.20

360.

0907

0.2

645

0.28

60 0

.145

2 0.

2185

10

0 30

0.

001

0.9

1.60

61

0.84

67

0.89

590.

8931

25

.664

3 22

.118

70.

8998

0.

9121

0.

8889

0.88

90

0.89

600.

8935

0.9

178

0.58

87 0

.108

7 0.

2209

10

0 30

0.

1 0.

9 -0

.147

6 -0

.187

1 0.

6533

0.47

39

6.34

75

24.1

535

0.66

04

0.51

16

0.02

050.

2731

0.

6535

0.49

00 0

.520

7 0.

6709

0.1

248

0.23

13

100

30

0.3

0.9

-0.0

263

-0.0

054

0.36

440.

1443

0.

1931

3.

4821

0.37

46

0.21

38

0.00

370.

0439

0.

3658

0.15

93 0

.220

5 0.

3184

0.1

114

0.19

68

Not

e:

n de

note

s the

sam

ple

size

. K d

enot

es th

e nu

mbe

r of i

nstru

men

ts. R

2 den

otes

the

theo

retic

al R

2 of t

he fi

rst s

tage

regr

essi

on. ρ

den

otes

the

cova

rianc

e be

twee

n th

e fir

st st

age

and

the

seco

nd st

age

erro

r ter

ms.

All

resu

lts a

re b

ased

on

5000

Mon

te C

arlo

runs

.

Page 26: Higher Order MSE of Jackknife 2SLS - MIT Economics

Tabl

e 2:

Fin

ite S

ampl

e C

ompa

rison

of I

V E

stim

ator

s

DG

P M

ean

RM

SE

Med

ian

Inte

rQua

rtile

Ran

ge

n K

R2

ρ LI

ML

Nag

ar

2SLS

Ja

ckkn

ifeLI

ML

Nag

ar

2SLS

Ja

ckkn

ifeLI

ML

Nag

ar

2SLS

Ja

ckkn

ifeLI

ML

Nag

ar

2SLS

Ja

ckkn

ife

500

5 0.

001

0 4.

8289

3.

8475

0.

0000

0.

0101

38

2.19

7426

6.05

310.

5562

2.20

540.

0109

0.00

14

0.00

540.

0076

1.7

504

1.26

23 0

.622

3 1.

0081

50

0 5

0.1

0 0.

0001

0.

0004

0.

0004

0.

0004

0.

1421

0.13

860.

1307

0.13

820.

0018

0.00

15

0.00

150.

0006

0.1

910

0.18

74 0

.177

8 0.

1866

50

0 5

0.3

0 0.

0002

0.

0003

0.

0003

0.

0003

0.

0686

0.06

820.

0673

0.06

820.

0011

0.00

10

0.00

130.

0013

0.0

948

0.09

46 0

.093

0 0.

0942

50

0 5

0.00

1 0.

5 -3

.843

0 1.

4358

0.

4489

0.

3598

17

7.61

2687

.460

20.

6689

2.59

490.

3780

0.42

59

0.45

240.

4277

1.5

844

1.09

07 0

.547

4 0.

8936

50

0 5

0.1

0.5

-0.0

097

-0.0

001

0.02

72

0.00

14

0.14

280.

1396

0.13

060.

1387

0.00

210.

0118

0.

0362

0.01

23 0

.189

40.

1869

0.1

726

0.18

63

500

5 0.

3 0.

5 -0

.002

1 0.

0003

0.

0073

0.

0004

0.

0688

0.06

820.

0671

0.06

820.

0008

0.00

32

0.01

000.

0032

0.0

939

0.09

36 0

.091

6 0.

0941

50

0 5

0.00

1 0.

9 1.

2619

0.

6209

0.

8142

0.

7581

55

.225

131

.076

00.

8617

1.41

290.

6407

0.77

75

0.81

120.

7638

1.0

935

0.65

06 0

.307

7 0.

5118

50

0 5

0.1

0.9

-0.0

166

-0.0

002

0.04

90

0.00

25

0.14

440.

1438

0.13

230.

1418

0.00

160.

0186

0.

0629

0.02

00 0

.185

30.

1850

0.1

623

0.18

31

500

5 0.

3 0.

9 -0

.003

9 0.

0004

0.

0130

0.

0005

0.

0691

0.06

860.

0673

0.06

850.

0007

0.00

45

0.01

720.

0048

0.0

935

0.09

24 0

.089

2 0.

0923

50

0 10

0.

001

0 22

.820

9 -2

.003

2 -0

.016

4 -0

.038

0 17

12.2

477

138.

4924

0.35

060.

8410

-0.0

376

-0.0

049

-0.0

132

-0.0

218

1.89

321.

3601

0.4

402

0.80

29

500

10

0.1

0 -0

.004

3 -0

.003

8 -0

.003

3 -0

.003

7 0.

1546

0.15

030.

1287

0.14

70-0

.003

4-0

.003

0 -0

.003

0-0

.003

7 0.

1992

0.19

31 0

.170

0 0.

1902

50

0 10

0.

3 0

-0.0

013

-0.0

012

-0.0

012

-0.0

012

0.07

070.

0703

0.06

770.

0702

-0.0

019

-0.0

018

-0.0

015

-0.0

015

0.09

420.

0932

0.0

904

0.09

34

500

10

0.00

1 0.

5 1.

2878

1.

0645

0.

4752

0.

4469

59

.374

051

.461

80.

5641

0.87

060.

4096

0.47

93

0.47

400.

4545

1.7

331

1.20

04 0

.385

5 0.

6966

50

0 10

0.

1 0.

5 -0

.015

0 -0

.004

9 0.

0631

0.

0047

0.

1541

0.15

440.

1377

0.14

73-0

.003

80.

0081

0.

0692

0.01

58 0

.196

20.

1931

0.1

596

0.18

71

500

10

0.3

0.5

-0.0

036

-0.0

009

0.01

74

-0.0

003

0.07

060.

0704

0.06

880.

0703

-0.0

016

0.00

15

0.01

910.

0019

0.0

931

0.09

37 0

.088

0 0.

0931

50

0 10

0.

001

0.9

0.15

46

4.80

27

0.86

38

0.83

36

40.3

894

272.

5208

0.88

000.

9305

0.72

700.

8393

0.

8636

0.83

80 1

.134

60.

6598

0.2

090

0.38

54

500

10

0.1

0.9

-0.0

202

-0.0

043

0.11

73

0.01

26

0.14

870.

1613

0.16

050.

1491

-0.0

031

0.01

78

0.12

790.

0308

0.1

848

0.19

51 0

.141

8 0.

1853

50

0 10

0.

3 0.

9 -0

.005

2 -0

.000

3 0.

0326

0.

0007

0.

0701

0.07

110.

0722

0.07

07-0

.001

20.

0040

0.

0360

0.00

51 0

.092

40.

0936

0.0

848

0.09

32

500

30

0.00

1 0

-4.8

498

3.45

96

0.00

08

0.00

05

431.

8658

229.

8122

0.19

110.

3980

0.02

090.

0215

0.

0012

0.00

46 1

.940

81.

4264

0.2

536

0.49

25

500

30

0.1

0 -0

.000

5 0.

0021

0.

0014

0.

0017

0.

1909

0.17

580.

1100

0.14

960.

0044

0.00

42

0.00

190.

0027

0.2

309

0.22

23 0

.149

8 0.

1984

50

0 30

0.

3 0

0.00

09

0.00

10

0.00

10

0.00

10

0.07

300.

0726

0.06

400.

0716

0.00

130.

0013

0.

0017

0.00

12 0

.099

40.

0988

0.0

867

0.09

70

500

30

0.00

1 0.

5 0.

6264

1.

1437

0.

4934

0.

4860

28

.438

267

.744

40.

5197

0.59

400.

4724

0.51

90

0.49

610.

4912

1.6

492

1.15

80 0

.216

3 0.

4126

50

0 30

0.

1 0.

5 -0

.013

2 -0

.007

3 0.

1717

0.

0583

0.

1738

0.19

040.

1990

0.15

620.

0031

0.01

57

0.17

420.

0676

0.2

185

0.22

42 0

.131

8 0.

1868

50

0 30

0.

3 0.

5 -0

.001

6 0.

0010

0.

0594

0.

0076

0.

0720

0.07

370.

0855

0.07

220.

0015

0.00

52

0.06

170.

0110

0.0

979

0.09

76 0

.081

4 0.

0956

50

0 30

0.

001

0.9

0.77

76

0.81

71

0.88

53

0.87

09

10.0

471

69.8

382

0.88

950.

8891

0.78

020.

8710

0.

8854

0.87

09 1

.006

30.

6385

0.1

143

0.22

43

500

30

0.1

0.9

-0.0

167

-0.0

165

0.30

80

0.10

38

0.15

170.

2542

0.31

760.

1711

0.00

300.

0252

0.

3111

0.11

94 0

.193

10.

2398

0.1

010

0.16

85

500

30

0.3

0.9

-0.0

032

0.00

11

0.10

62

0.01

29

0.06

970.

0767

0.12

010.

0738

0.00

170.

0077

0.

1092

0.01

90 0

.093

60.

0993

0.0

736

0.09

41

Not

e:

n de

note

s the

sam

ple

size

. K d

enot

es th

e nu

mbe

r of i

nstru

men

ts. R

2 den

otes

the

theo

retic

al R

2 of t

he fi

rst s

tage

regr

essi

on. ρ

den

otes

the

cova

rianc

e be

twee

n th

e fir

st st

age

and

the

seco

nd st

age

erro

r ter

ms.

All

resu

lts a

re b

ased

on

5000

Mon

te C

arlo

runs

.

Page 27: Higher Order MSE of Jackknife 2SLS - MIT Economics

Tabl

e 3:

Fin

ite S

ampl

e C

ompa

rison

of I

V E

stim

ator

s

DG

P M

ean

RM

SE

Med

ian

Inte

rQua

rtile

Ran

ge

n K

R2

ρ LI

ML

Nag

ar

2SLS

Ja

ckkn

ifeLI

ML

Nag

ar

2SLS

Ja

ckkn

ifeLI

ML

Nag

ar

2SLS

Ja

ckkn

ife

LIM

L N

agar

2S

LS

Jack

knife

10

00

50.

001

0 11

3.11

91 -

0.12

73

0.00

610.

0275

79

52.3

330

13.5

684

0.51

61

2.84

380.

0119

0.

0052

0.

0041

0.01

10 1

.568

41.

1697

0.5

791

0.91

93

1000

5

0.1

0 0.

0004

0.

0004

0.

0004

0.00

04

0.09

81

0.09

71 0

.094

4 0.

0971

-0.0

017

-0.0

018

-0.0

019

-0.0

017

0.12

730.

1263

0.1

229

0.12

68

1000

5

0.3

0 0.

0001

0.

0001

0.

0001

0.00

01

0.04

86

0.04

85 0

.048

1 0.

0485

-0.0

008

-0.0

008

-0.0

007

-0.0

007

0.06

440.

0643

0.0

638

0.06

43

1000

5

0.00

1 0.

5 -0

.442

8 -1

.104

9 0.

4107

0.32

43

36.4

286

81.0

943

0.61

34

2.20

800.

2910

0.

3862

0.

4131

0.36

63 1

.392

81.

0468

0.5

163

0.80

99

1000

5

0.1

0.5

-0.0

044

0.00

03

0.01

390.

0007

0.

0980

0.

0975

0.0

945

0.09

74-0

.002

0 0.

0034

0.

0168

0.00

40 0

.127

80.

1277

0.1

238

0.12

78

1000

5

0.3

0.5

-0.0

010

0.00

02

0.00

370.

0002

0.

0486

0.

0485

0.0

481

0.04

85-0

.000

7 0.

0005

0.

0040

0.00

06 0

.064

40.

0647

0.0

640

0.06

46

1000

5

0.00

1 0.

9 -1

.184

2 0.

8814

0.

7419

0.61

54

100.

6250

18

.281

9 0.

7995

1.

3749

0.43

44

0.68

58

0.74

010.

6552

1.0

140

0.70

44 0

.318

6 0.

5006

10

00

50.

1 0.

9 -0

.008

0 0.

0002

0.

0247

0.00

08

0.09

81

0.09

87 0

.095

0 0.

0985

-0.0

015

0.00

73

0.03

070.

0079

0.1

267

0.12

84 0

.119

6 0.

1277

10

00

50.

3 0.

9 -0

.002

0 0.

0002

0.

0065

0.00

02

0.04

85

0.04

86 0

.048

1 0.

0486

-0.0

007

0.00

19

0.00

800.

0018

0.0

640

0.06

49 0

.063

6 0.

0650

10

00 1

00.

001

0 0.

0625

-0.

0754

0.

0054

0.00

70

61.9

989

20.3

426

0.33

61

0.75

720.

0238

0.

0208

0.

0074

0.01

33 1

.655

31.

3018

0.4

189

0.75

89

1000

10

0.1

0 0.

0008

0.

0008

0.

0007

0.00

08

0.09

99

0.09

89 0

.091

9 0.

0984

0.00

20

0.00

19

0.00

180.

0018

0.1

319

0.13

09 0

.122

2 0.

1307

10

00 1

00.

3 0

0.00

02

0.00

02

0.00

020.

0002

0.

0488

0.

0487

0.0

478

0.04

870.

0011

0.

0011

0.

0009

0.00

09 0

.064

90.

0645

0.0

636

0.06

45

1000

10

0.00

1 0.

5 0.

2726

0.

3051

0.

4512

0.40

36

30.6

185

40.4

696

0.53

93

0.78

320.

3435

0.

4513

0.

4535

0.41

93 1

.501

71.

1287

0.3

605

0.64

98

1000

10

0.1

0.5

-0.0

042

0.00

00

0.03

470.

0024

0.

0994

0.

1002

0.0

964

0.09

930.

0021

0.

0061

0.

0390

0.00

77 0

.130

10.

1293

0.1

172

0.12

87

1000

10

0.3

0.5

-0.0

010

0.00

01

0.00

940.

0003

0.

0487

0.

0489

0.0

484

0.04

880.

0009

0.

0019

0.

0109

0.00

19 0

.064

60.

0645

0.0

626

0.06

42

1000

10

0.00

1 0.

9 -1

.280

5 0.

5336

0.

8143

0.73

56

92.9

170

13.2

870

0.83

21

0.85

100.

5220

0.

7746

0.

8149

0.75

57 1

.092

80.

6951

0.2

117

0.37

82

1000

10

0.1

0.9

-0.0

081

-0.0

009

0.06

160.

0034

0.

0987

0.

1033

0.1

053

0.10

130.

0018

0.

0081

0.

0679

0.01

20 0

.127

20.

1315

0.1

103

0.12

95

1000

10

0.3

0.9

-0.0

021

0.00

00

0.01

660.

0002

0.

0487

0.

0493

0.0

497

0.04

920.

0007

0.

0024

0.

0187

0.00

24 0

.063

90.

0648

0.0

617

0.06

47

1000

30

0.00

1 0

1.07

38

2.19

29 -

0.00

05-0

.000

7 10

4.11

62

191.

0581

0.1

869

0.38

52-0

.002

1 -0

.005

8 -0

.000

7-0

.000

7 1.

7626

1.36

78 0

.247

0 0.

4760

10

00 3

00.

1 0

-0.0

006

-0.0

006

-0.0

005

-0.0

006

0.10

95

0.10

82 0

.084

9 0.

1031

-0.0

015

-0.0

019

-0.0

013

-0.0

018

0.14

090.

1405

0.1

120

0.13

39

1000

30

0.3

0 -0

.000

3 -0

.000

3 -0

.000

3-0

.000

3 0.

0496

0.

0495

0.0

464

0.04

93-0

.000

6 -0

.000

6 -0

.000

6-0

.000

8 0.

0661

0.06

59 0

.062

0 0.

0656

10

00 3

00.

001

0.5

7.05

66

0.73

95

0.48

190.

4649

57

1.69

37

18.2

415

0.50

82

0.57

200.

3813

0.

4732

0.

4807

0.46

49 1

.567

11.

1775

0.2

126

0.40

49

1000

30

0.1

0.5

-0.0

062

-0.0

029

0.10

160.

0191

0.

1067

0.

1116

0.1

292

0.10

42-0

.001

4 0.

0021

0.

1024

0.02

24 0

.138

00.

1476

0.1

075

0.13

68

1000

30

0.3

0.5

-0.0

015

-0.0

004

0.03

060.

0014

0.

0493

0.

0499

0.0

548

0.04

96-0

.000

4 0.

0010

0.

0313

0.00

24 0

.065

50.

0662

0.0

606

0.06

60

1000

30

0.00

1 0.

9 1.

8229

0.

1098

0.

8706

0.84

20

49.6

333

58.7

159

0.87

49

0.86

050.

6427

0.

8464

0.

8696

0.84

12 1

.119

70.

6737

0.1

129

0.21

64

1000

30

0.1

0.9

-0.0

091

-0.0

046

0.18

320.

0350

0.

0998

0.

1194

0.1

953

0.10

72-0

.000

8 0.

0075

0.

1857

0.04

37 0

.129

10.

1547

0.0

925

0.13

54

1000

30

0.3

0.9

-0.0

024

-0.0

004

0.05

530.

0029

0.

0483

0.

0508

0.0

701

0.05

01-0

.000

8 0.

0014

0.

0566

0.00

44 0

.063

70.

0688

0.0

589

0.06

76

Not

e:

n de

note

s the

sam

ple

size

. K d

enot

es th

e nu

mbe

r of i

nstru

men

ts. R

2 den

otes

the

theo

retic

al R

2 of t

he fi

rst s

tage

regr

essi

on. ρ

den

otes

the

cova

rianc

e be

twee

n th

e fir

st st

age

and

the

seco

nd st

age

erro

r ter

ms.

All

resu

lts a

re b

ased

on

5000

Mon

te C

arlo

runs

.