24
High-Temperature Coating for Solar-Thermal Energy Conversion Renkun Chen Associate Professor Department of Mechanical and Aerospace Engineering Materials Science & Engineering Program University of California, San Diego Collaborators: Prof. Zhaowei Liu (ECE, UCSD), Prof. Sungho Jin (MatSci, UCSD) Students: Sunmi Shin, Lizzie Caldwell, Conor Riley, Jaeyun Moon (UNLV), Taekyoung Kim (A123), Bryan vanSaders (Michigan) Sponsors: 1

High-Temperature Coating for Solar-Thermal Energy Conversion

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: High-Temperature Coating for Solar-Thermal Energy Conversion

High-Temperature Coating for Solar-Thermal Energy Conversion

Renkun Chen

Associate Professor Department of Mechanical and Aerospace Engineering

Materials Science & Engineering Program University of California, San Diego

Collaborators: Prof. Zhaowei Liu (ECE, UCSD), Prof. Sungho Jin (MatSci, UCSD) Students: Sunmi Shin, Lizzie Caldwell, Conor Riley, Jaeyun Moon (UNLV),

Taekyoung Kim (A123), Bryan vanSaders (Michigan)

Sponsors:

1  

Page 2: High-Temperature Coating for Solar-Thermal Energy Conversion

Concentra)ng  Solar  Power  (CSP)  

2  

Page 3: High-Temperature Coating for Solar-Thermal Energy Conversion

3  DOE  Report:  “2014:  The  year  of  CSP”  

Concentra)ng  Solar  Power  (CSP)  

Page 4: High-Temperature Coating for Solar-Thermal Energy Conversion

4  Source:  “Technology  Roadmap:  Solar  Thermal  Electricity”,  IEA  

CSP:  Cumula)ve  Installed  Capacity  

Page 5: High-Temperature Coating for Solar-Thermal Energy Conversion

5  Source:  “Technology  Roadmap:  Solar  Thermal  Electricity”,  IEA  

CSP:  Thermal  Energy  Storage  

Page 6: High-Temperature Coating for Solar-Thermal Energy Conversion

6  DOE  Sunshot  IniIaIves  

Target  LCOE  in  Y2020:  6¢/kWh  (cf.  21¢/kWh  in  Y2010,  13¢/kWh  in  Y2013)  

DOE  Sunshot  Ini)a)ves  on  CSP  

Page 7: High-Temperature Coating for Solar-Thermal Energy Conversion

7  There  is  an  op)mal  working  temperature  for  any  given  concentra)on  ra)o  

The  Quest  for  High  Temperature  

Source:  “Technology  Roadmap:  Solar  Thermal  Electricity”,  IEA  

Page 8: High-Temperature Coating for Solar-Thermal Energy Conversion

8  

Solar  receiver  requirements  to  achieve  the  target  LCOE:          -­‐-­‐  HTF  exit  temperature  ~720oC,  Thermal  eff.  ≥  90%,  Life)me  ≥  10k  cycles  

DOE  Sunshot  FOA  “APOLLO”  

Next-­‐Genera)on  CSP  Systems  

Page 9: High-Temperature Coating for Solar-Thermal Energy Conversion

Ideal  solar  selec)ve  coa)ng  (SSC)  

!"# =1− ! ! !(!)!"!

! − 1! 1− !(!) !(!,!)!"!

!

!(!)!"!!

!!!!!!

Figure  of  Merit  (FOM)  is  determined  by  absorptance  in  the  solar  spectrum  and  IR  emiSance    

•  FOM  depends  on  solar  concentraIon  raIo  C  and  absorber  surface  temperature  T  •  Assuming  C=1000  and  T=750oC  for  Solar  Towers  •  For  high  C  (>1000),  the  infrared  emission  loss  is  relaIvely  less  important.    

9  

R-­‐  Calculated  reflectance  spectrum  I-­‐  Total  solar  irradiance,  as  reported  in  ASTM  G173  C-­‐  ConcentraIon  factor  (raIo  of  absorber  area  to  mirror  collecIon  area)  B-­‐  Planckian  black  body  emission  

J.  Moon,  D.  Lu,  B.  VanSaders,  T.K.  Kim,  S.D.  Kong,  S.  Jin,  R.  Chen,  Z.  Liu,  Nano  Energy  8  (2014)  238-­‐246.    

Solar  Selec)ve  Coa)ng  

Page 10: High-Temperature Coating for Solar-Thermal Energy Conversion

1.  High  Figure  of  Merit  (Thermal  Efficiency):            >=  0.90  (90%  efficiency)    2.  High  Temperature  Stability  and  Reliability:          at  750  oC  under  air  environment            -­‐  Oxida)on  resistance            -­‐  Crystal  structure  stability  without  decomposi)on            -­‐  No  delamina)on  of  SSC  layer  from  metal  tube  substrate    3.  Low-­‐cost  Fabrica)on  

-­‐  DOE  SunShot  Project’s  Milestone  (Y2012-­‐2015)  

Requirements  for  Next-­‐Gen  Solar  Receivers  

Page 11: High-Temperature Coating for Solar-Thermal Energy Conversion

[1] J. Sol-Gel Sci. Tech. 20, 61–83, 2001, [2] LBNL CoolColors Lab.  

Cu1.285Fe0.43Mn1.285O4  Film  on  Al  Substrate[1]  Copper  Chromite  [2]  

a:  without  SiO2  binder;  b,  c:  with  SiO2  binder  

Why spinel oxides? •  Suitable  op)cal  proper)es  (also  adjustable  

with  atomic  composiIon)  •  Cheap,  abundant  •  Already  oxidized  (more  stable  at  high  T)  •  Scalable  synthesis    (e.g.  hydrothermal  and  sol-­‐

gel  synthesis)  

Spinel  Oxides  as  SSC  Materials  

Page 12: High-Temperature Coating for Solar-Thermal Energy Conversion

Hydrothermal  Synthesis:  Cu-­‐Contained  Spinel  NanoPar)cles  

CuCl2 2H2O 1M Solution(aq) CrCl3 6H2O 1M Soution(aq)

Mixing for 5h at RT

Cu-Cr Hydroxide

Co-Precipitation with 10M NaOH Solution(aq)

Mixing for 2h at RT

Hydrothermal Synthesis at 200oC / 20h

CuCl2 2H2O 1M Solution(aq) FeCl3 6H2O 1M Solution(aq) MnCl2 4H2O 1M Solution(aq)

Mixing for 5h at RT

Cu-Fe-Mn Hydroxide

Co-Precipitation with 10M NaOH Solution(aq)

Mixing for 2h at RT

Hydrothermal Synthesis at 200oC / 20h

Copper Chromites Cu-Fe-Mn Oxides

Centrifuging & Washing

Spinel Metal Oxide NPs

Freeze-Drying

Post-Treatment

Crystallization at 550oC/5h/Air

12  

Page 13: High-Temperature Coating for Solar-Thermal Energy Conversion

Scalable  Coa)ng  Process  

Page 14: High-Temperature Coating for Solar-Thermal Energy Conversion

Cu/Cr=1/2  

Cu/Cr=1/1  

Crystalliza)on:  550oC/5h/Air  

Copper  Chromites  NPs    Synthesized  with  Different  Condi)ons  

APS<  50  nm  

APS<  50  nm   0.3-­‐1µm  

200-­‐600  nm  

Crystalliza)on:  750oC/2h/Air  

-­‐-­‐  Copper  chromites  synthesized  with  2  different  atomic  composiIons.  -­‐-­‐  CrystallizaIon  condiIon  as  a  final  step  of  synthesis  to  be  opImized.  

Atomic  Comp.  

14  

Page 15: High-Temperature Coating for Solar-Thermal Energy Conversion

XRD  and  Thermal  Stability  of  CuCr2O4  NPs  

*  O.  CroSaz,  F.  Kubel,  H.  Schmid,  J.  Mater.  Chem.  7  (1997)  143-­‐146.  (PDF  01-­‐079-­‐5380)  

-­‐  Crystal  informaIon:  Tetragonal  System  Lajce:  Body-­‐centered  Cell  Parameters:  a  6.030,  c  7.782  Main  plane:  (211)  at  2θ=35.19  o  

-­‐  CuCr2O4  can  be  confirmed.    -­‐  Thermally  stable  at  750oC:  a.  Aler  thermal  test,  new  phase  was  not  seen.    b.  ParIcle  size  grown  by  sintering  effect  at  high  temperature.  

15  

Page 16: High-Temperature Coating for Solar-Thermal Energy Conversion

Crystalliza)on  Condi)on  Op)miza)on  for  CuFeMnO4  NPs  

(a)  Crystallized  at  550oC/5h/air  

APS  100-­‐200  nm   APS  100-­‐400  nm  

(b)  Crystallized  at  750oC/2h/air  

-­‐-­‐  Cu-­‐Fe-­‐Mn  Oxide  NPs  synthesized  with  Cu/Fe/Mn=1/1/1  (a/a).  -­‐-­‐  OpImized  crystallizaIon  condiIon:  550  oC  /  5h  /air,  to  obtain  smaller  NPs.  

16  

Page 17: High-Temperature Coating for Solar-Thermal Energy Conversion

XRD  and  Thermal  Stability  of  CuFeMnO4  NPs  

*  PDF  00-­‐020-­‐0358.  

-­‐  CuFeMnO4  can  be  confirmed.    -­‐  Thermally  stable  at  750oC:  a.  Aler  thermal  test,  new  phase  was  not  seen.    b.  ParIcle  size  grown  by  sintering  effect  at  high  temperature.  

17  

Page 18: High-Temperature Coating for Solar-Thermal Energy Conversion

18  

First  we  tried  mixing  both  compounds….  

….  then  we  layered  both  compounds.  

Max  FOM=  0.894  

Max  FOM=  0.902  

SSC  Layers  with  Mixtures  of  CuCr2O4  and  CuFeMnO4  

Page 19: High-Temperature Coating for Solar-Thermal Energy Conversion

UCSD’s  Black  Oxide  Coa)ng  -- Typical absorptivity of 97 – 98% in the visible to NIR regime. [For power tower type applications with concentration factor of ~1,000, the absorptivity dominates the solar to heat Figure-of-Merit (FOM), with the blackbody emissivity effect being negligible.]

-- CFM/CuCr: highest FOM (0.902) -- Pyromark 2500 : FOM of 0.889

250 500 750 1000 1250 1500 1750 2000

0.03

0.06

0.09

0.12

0.15

 

 

Reflectan

ce

Waveleng th  (nm)

 C F M  dens e  la yer  (C F M-­‐H 1)  :  F  0 .8911  C u2C r2O 5  layer  (C C 1)  :  F  0 .883  C F M(porous  top)/C u2C r2O 5  (C F MH1-­‐C u1)  :  F  0 .903  C F M(porous  top)/C o3O 4  (C F MH1-­‐C o1)  :  F  0 .8904  C F M(porous  top)/C F M  (C F MH1-­‐C F MH1)  :  F  0 .8931  P yro  la yer  (P 1)  :  F  0 .8896

Pyromark

UCSD Black Oxide Porous  CuFeMnO4  top  layer&  dense  CuCr2O4  borom  layer;  FOM:  0.902  

Reflectance vs wavelength for various SSC layer materials

19  

Page 20: High-Temperature Coating for Solar-Thermal Energy Conversion

20  

!"# =1− ! ! !(!)!"!

! − 1! 1− !(!) !(!,!)!"!

!

!(!)!"!!

!!!!!!

DOE  Report:  “2014:  The  year  of  CSP”  

Solar-­‐Thermoelectrics  Trough  Collectors  

G.  Chen  et  al.,  Nature  Mater.  (2011)  

For  low  C  (e.g.,  ~100  for  troughs),  the  infrared  emission  loss  is  important  è  Need  to  improve  the  selecIvity    

High-­‐Temperature  Spectrally  Selec)ve  Coa)ng  

Page 21: High-Temperature Coating for Solar-Thermal Energy Conversion

21  

               Black  Oxide  

Transparent  Conduc)ve  Oxide  (TCO)  

Vis/NIR  (<  1-­‐2  um)  

Tran

smiran

ce  

Wavelength  

IR  (>  1-­‐2  um)  

•  We  use  Al-­‐doped  ZnO  (AZO)  as  the  TCO  •  Low  cost  (compared  to  ITO)  •  Adjustable  cutoff  wavelength  •  Scalable  synthesis  

Black  Oxide  +  TCO  for  High  Selec)vity  

Page 22: High-Temperature Coating for Solar-Thermal Energy Conversion

[1]Kim,  J.;  Naik,  G.  V.;  Emani,  N.  K.;  Guler,  U.;  Boltasseva,  A.  IEEE  J.  Sel.  Topics  Quantum  Electron.  2013,  19.    [2]Jia  et.al  Thin  Solid  Films  559  (2014)  69–77    [3]Riley  et.  al.  Small,  accepted  

Deposi)on  Method    

µ  (cm2/Vs)    (at  n=~1x1021cm-­‐3)  

ε''      

Scalability    

Conformality    

Pulsed  Laser  DeposiIon[1]   47   0.5   Poor   Fair  SpuSer[2]   8   -­‐   Good   Good  

Atomic  Layer  DeposiIon[3]   9.8   0.47   Good   Excellent  

22  

•  Self-­‐limiIng  surface  reacIons    •  “Monolayers”  are  deposited  by  diethly  zinc,  

water  and  trimethylaluminum  pulses  •  Chemical  composiIon  controlled  by  the  raIo  of  

chemical  pulses  •  Thickness  controlled  on  the  angstrom  scale  •  Extremely  high  conformality  

   

Atomic  Layer  Deposi)on  (ALD)  of  AZO  

Page 23: High-Temperature Coating for Solar-Thermal Energy Conversion

AZO  (1um)  Axer  Annealing    AZO  (1um)    Glass  

Selec)ve  Transmission  of  AZO  

Page 24: High-Temperature Coating for Solar-Thermal Energy Conversion

•  We  have  developed  solar  absorbing  coaIng  based  on  nanostructured  black  oxides  –  Thermal  efficiency  (FOM)  >  90%  –  Stable  at  high  temperature  –  Scalable  synthesis  and  coaIng  process  –  Suitable  for  next-­‐generaIon  solar  towers.  

•  On-­‐field  evaluaIon  of  the  black  oxide  coaIng  •  Black  oxide  +  TCO  for  high-­‐temperature  selecIve  coaIng  •  IntegraIon  into  high-­‐temperature  solar-­‐thermal  systems    

 24  

Summary  and  Future  Direc)ons