53
1 High-Performance Schottky Barrier MOSFET Horng-Chih Lin Department of Electronics Engineering & Institute of Electronics National Chiao Tung University September 19, 2005

High-Performance Schottky Barrier MOSFET

  • Upload
    zahi

  • View
    68

  • Download
    8

Embed Size (px)

DESCRIPTION

High-Performance Schottky Barrier MOSFET. Horng-Chih Lin Department of Electronics Engineering & Institute of Electronics National Chiao Tung University September 19, 2005. Outline. Background Low  B Source Field-induced Drain (FID) Structure Non-Si Channel Materials - PowerPoint PPT Presentation

Citation preview

Page 1: High-Performance  Schottky Barrier MOSFET

1

High-Performance Schottky Barrier MOSFET

Horng-Chih LinDepartment of Electronics Engineering &

Institute of Electronics National Chiao Tung University

September 19, 2005

Page 2: High-Performance  Schottky Barrier MOSFET

2

Outline• Background

• Low B Source

• Field-induced Drain (FID) Structure

• Non-Si Channel Materials

• Interface Modulation Techniques•

• Summary

Page 3: High-Performance  Schottky Barrier MOSFET

3

SB MOSFET

Source Drain

Silicide

Substrate

Gate • Source/drain made of metallic material (e.g., silicide) in lieu of heavily doped semiconductor.

• First reported in 1968 by Lepselter and Sze ( Proc. of IEEE, p.1400 (1968)).

Page 4: High-Performance  Schottky Barrier MOSFET

4

• Easy processing

• Elimination of S/D implant

• Ultra-shallow and abrupt junction

• Low S/D sheet resistance

• Low process temperature

Advantages of SB MOSFET

Page 5: High-Performance  Schottky Barrier MOSFET

5

ITRS 2003

Page 6: High-Performance  Schottky Barrier MOSFET

6

ITRS 2003

Device Intrinsic SpeedIon:Ioff Ratio

Page 7: High-Performance  Schottky Barrier MOSFET

7

Off-state (VG < VT) On-state (VG > VT)

Potential DistributionIEEE ED, V-47, p.1241 (2000)

Source Source

Channel

Channel

Drain Drain

Page 8: High-Performance  Schottky Barrier MOSFET

8

Major Issues (I)

bn

On current, limited by

(i) Barrier height- PtSi (Bp = 0.24 eV) for pMOS

- ErSi2 (Bn = 0.27 eV) for nMOS

- Near-zero or negative Bp desired

(ii) Barrier width- Modulated by gate bias - Gate overlaps with source necessary

Page 9: High-Performance  Schottky Barrier MOSFET

9

Major Issues (II)

bp

Off current

(i) Major Conduction mechanism:Field emission of holes (electrons) for nMOS (pMOS) at drain junction

(ii) StructureGate/drain overlap structure aggravates the leakage

Page 10: High-Performance  Schottky Barrier MOSFET

10

Performance of Sub- 40 nm pMOSAppl. Phys. Lett., V-74, p.1174 (1999)

n+ poly: L = 27 nm; p+ poly: L = 40 nm

Page 11: High-Performance  Schottky Barrier MOSFET

11

25 nm p-Channel SOI SB MOSFET Jpn. J. Appl. Phys. (Part I), V-39, p.4757 (2000)

• PtSi source/drain and metal gate

Page 12: High-Performance  Schottky Barrier MOSFET

12

Methods to Improve Performance

• Development of low B S/D materials- Zero or even negative barrier height highly desired- Use of SOI with ultra-thin body to reduce the leakage

• Implementation of FID structure

• Use of non-Si channel materials- Exs. CNT and Ge (SiGe) channel

• Metal/channel interface modulation - Insertion of an ultra-thin dielectric layer- Dopant segregation

Page 13: High-Performance  Schottky Barrier MOSFET

13

Outline• Background

• Low B Source

• Field-induced Drain (FID) Structure

• Non-Si Channel Materials

• Interface Modulation Techniques•

• Summary

Page 14: High-Performance  Schottky Barrier MOSFET

14

Barrier Height

(eV)

PtSi

(1)

PtSi

(2)

ErSi

(1)

TbSi

(2)

DySi

(2)

YbSi

(2)

ErSi

(2)

PMOS (hole) 0.24 0.28

NMOS (electron) 0.28 0.37 0.38 0.37 0.27

(1) IEDM Tech. Dig. p.57 (2000)(2) EDL., Vol.25, p.525 (2004)

Barrier Height at Silicide/Si Junctions

Page 15: High-Performance  Schottky Barrier MOSFET

15

Characteristics of Schottky Diodes EDL., Vol.25, p.525 (2004)

Page 16: High-Performance  Schottky Barrier MOSFET

16

NMOS with YbSi2-x S/D

IEEE EDL., Vol.25, p.525 (2004)

Page 17: High-Performance  Schottky Barrier MOSFET

17

VD

Buried oxide

VD

SB MOSFETs Built on SOI with Ultra-thin body

Significant portion of the leakage blocked by the buried oxide

Page 18: High-Performance  Schottky Barrier MOSFET

18

SB MOSFET on Ultra-thin Body SOI IEDM ‘2000, p.57

SOI thickness ~ 10 nm

Page 19: High-Performance  Schottky Barrier MOSFET

19

Outline

• Background

• Low B S/D

• Field-induced Drain (FID) Structure

• Non-Si Channel Materials

• Interface Modulation Techniques•

• Summary

Page 20: High-Performance  Schottky Barrier MOSFET

20

Substrate

Sub-gate

Substrate

Sub-gate

SB MOSFETs with Field-induced Drain (FID)

NSA structure SA structure

Page 21: High-Performance  Schottky Barrier MOSFET

21

Substrate

Sub-gate

- Barrier width modulated by sub-gate bias

- Source NOT necessary to overlap with the main-gate

- Ambipolar operation capability

Page 22: High-Performance  Schottky Barrier MOSFET

22

Fabrication Flow

- Amorphous Si deposition (LPCVD, 550 oC, 50 nm)- Re-crystallization (in N2, 600 oC, 24 hr)- Gate oxide (LPCVD, 20 nm)- Gate formation (n+ poly-Si, 200 nm )- CVD oxide (LPCVD, 200 nm)- Oxide patterning - Co salicide treatment

Page 23: High-Performance  Schottky Barrier MOSFET

23

- Passivation

(PECVD oxide, 550 nm)

- Contact hole patterning

- Metal pad and sub-gate

formation

Fabrication Flow (Cont.)

Page 24: High-Performance  Schottky Barrier MOSFET

24

Sub-gate

Reduction of Off-state Leakage by FID

Source

Drain

VG << Vth

• The FID expels the high-

field region away from the

drain junction.

• Field-emission leakage encountered in conventional SB devices thus suppressed.

Page 25: High-Performance  Schottky Barrier MOSFET

25

Sub-gate

Modulation of ON Current by FID

Drain

Source

VG > Vth

Dashed line has higher sub-gate bias

• Tunneling barrier width

modulated by the sub-gate

bias.

• Depending on the polarity of applied bias, the device could be set for either n- or p-mode operation.

Page 26: High-Performance  Schottky Barrier MOSFET

26

Vg,main (V)

-10 -5 0 5 10

I D (

A)

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

Conventional SB TFTConventional SB TFT FID SB TFT FID SB TFT

Ambipolar Poly-Si TFTs with FIDH. C. Lin et al., IEDM’2000, p.857

VG (V)-10 -5 0 5 10

I D (

A)

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

Vsub=-50VVD = -5V

VG (V)

- On/off current ratio < 10On/off current ratio < 1033 -- On/off current ratio ~ 10On/off current ratio ~ 1066

VD = -5VVsub=50VVD = 5V

VD = 5V

Page 27: High-Performance  Schottky Barrier MOSFET

27

New Modified Characterization SchemeH. C. Lin et al., IEDM’2004, p.781

-4 -3 -2 -1 010-12

10-10

10-9

10-8

10-11

ID(A

)

VG (V)

@RT

Step 1: Determination of VFB

Step 3: Extract of DOS

Step 2: s as a function of VG

The new method

Incremental method

FEC theory

Only two simple I-V measurements at room temperature from a single device are all that needed for full band-gap DOS extraction

Page 28: High-Performance  Schottky Barrier MOSFET

28

E-EF(eV)-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

DO

S(e

V-1c

m-3)

1016

1017

1018

1019

1020

1021

As-depositedSPC

ELA

Effect of Channel CrystallizationSPC Channel, L/W = 1/20 m/m

Page 29: High-Performance  Schottky Barrier MOSFET

29

TEM Photos

Grain size~ 20 nm

Grain size ~ 300 nmGrain size ~ 50 nm

As-deposited poly-Si

Page 30: High-Performance  Schottky Barrier MOSFET

30

SEM

Fin width

Channel length

VS

VG

VG, sub

Al sub-gate

n+ poly-Si gate

CoSi2source

CoSi2drain

VD

The top view of device structure

SB FinFET

Page 31: High-Performance  Schottky Barrier MOSFET

31Gate Voltage (V)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

Dra

in C

urr

en

t (A

)

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

SS= 60.6 mV/decSS=60.8 mV/dec.

VG,sub= 7.5 V

VD = 0.1 V VD =

-0.1 V,

L = 470 nm, Fin width = 50 nm

VD = 1.5 V

VD = -1.5 V

Ambipolar Operation with Ideal Subthreshold Swing (IEEE NANO’02)

Page 32: High-Performance  Schottky Barrier MOSFET

32

Drain Voltage (V)-2-10

Dra

in C

urr

ent

(A/ m

)

0

20x10-6

40x10-6

60x10-6

80x10-6

VG - Vth = 0 ~ -1.2 Vin steps of - 0.2 V

Drain Voltage (V)-2-10

Dra

in C

urr

ent

(A/

m)

0

50x10-6

100x10-6

150x10-6

Vsub=-5V Vsub=-6V

VG - Vth = 0 ~ -1.2 Vin steps of - 0.2 V

Impact of S/D MaterialIEEE EDL., Vol.24, p.102 (2003)

L = 110 nm

CoSi S/D PtSi S/D

Page 33: High-Performance  Schottky Barrier MOSFET

33

CNT Devices with FIDIEDM’2004 p. 687

Page 34: High-Performance  Schottky Barrier MOSFET

34

CNT Devices with FIDIEDM’2004 p. 687

Page 35: High-Performance  Schottky Barrier MOSFET

35

Outline

• Background

• Low B Source

• Field-induced Drain (FID) Structure

• Non-Si Channel Materials

• Interface Modulation Techniques•

• Summary

Page 36: High-Performance  Schottky Barrier MOSFET

36

SB MOSFET with SiGe ChannelIEEE EDL Vol. 23, p. 460 (2002)

Page 37: High-Performance  Schottky Barrier MOSFET

37

SB MOSFET with SiGe ChannelIEEE EDL Vol. 23, p. 460 (2002)

Page 38: High-Performance  Schottky Barrier MOSFET

38

Ge pMOSFETs With NiGe S/DIEEE EDL Vol. 26, p. 81 (2005)

• NiGe S/D

• Barrier height ~ 0.16 eV

• Drive current 5 times higher than Si PMOS with PtSi S/D

Page 39: High-Performance  Schottky Barrier MOSFET

39

SB PMOS on GOI with GePt S/DIEEE EDL Vol. 26, Vol. 26, p. 102 (2005)

Page 40: High-Performance  Schottky Barrier MOSFET

40

Bp of –0.05 eV was reported for CNT FET

CNT FET with Negative Barrier HeightNature, Vol.424, p.654 (2003)

Page 41: High-Performance  Schottky Barrier MOSFET

41

• Background

• Low B Source

• Field-induced Drain (FID) Structure

• Non-Si Channel Materials

• Interface Modulation Techniques•

• Summary

Outline

Page 42: High-Performance  Schottky Barrier MOSFET

42

An ultrathin insulator at the interface trades a reduction in the thermionic for a tunneling barrier. The key is to reduce the thermionic barrier whilelimiting the tunneling barrier.

The Si in the direct vicinity of the metal acquires a dipole moment due to the influence of metal-induced gap states, generating a barrier to electron injection.

Reduction of Tunneling Resistance with an Ultrathin Interfacial Layer

IEEE Trans. Nanotechnology, Vol.3 p.92 (2003)

Page 43: High-Performance  Schottky Barrier MOSFET

43

Resistance drops sharply as gap states are blocked and the Fermi level is liberated.

Reduction of Tunneling Resistance with an Ultrathin Interfacial Layer

IEEE Trans. Nanotechnology, Vol.3 p.92 (2003)

Page 44: High-Performance  Schottky Barrier MOSFET

44

Reduction of Tunneling Resistance with an Ultrathin Interfacial Layer

IEEE Trans. Nanotechnology, Vol.3 p.92 (2003)

Dependences of drain current and conductance on drain bias

Page 45: High-Performance  Schottky Barrier MOSFET

45

Schottky Barrier Height Engineering with Dopant

Segregation (DS) Technique(VLSI’04, p.168)

Page 46: High-Performance  Schottky Barrier MOSFET

46

Schottky Barrier Height Engineering with Dopant

Segregation (DS) Technique(VLSI’04, p.168)

Page 47: High-Performance  Schottky Barrier MOSFET

47

NiSi

BF2+

SDE

Si FinFET with Modified-Schottky Barrier (MSB)

IEEE Electron Device Lett., Vol. 25, p.430 (2004)

Page 48: High-Performance  Schottky Barrier MOSFET

48

Source Drain

Gate

A A’

Lg=25 nm

Ni silicide

Device Layout TEM

Si FinFET with Modified-Schottky Barrier (MSB)

IEEE Electron Device Lett., Vol. 25, p.430 (2004)

Page 49: High-Performance  Schottky Barrier MOSFET

49

Si FinFET with Modified-Schottky Barrier (MSB)

IEEE Electron Device Lett., Vol. 25, p.430 (2004)

Page 50: High-Performance  Schottky Barrier MOSFET

50

Micro-structure of S/D in MSB FinFETsIEEE Electron Device Lett., Vol. 26, p.394 (2005)

Fin width = 40 nm Fin width = 200 nm

Page 51: High-Performance  Schottky Barrier MOSFET

51

Outline

• Background

• Low B Source

• Field-induced Drain (FID) Structure

• Non-Si Channel Materials

• Interface Modulation Techniques•

• Summary

Page 52: High-Performance  Schottky Barrier MOSFET

52

Summary • SB MOS devices may find applications in TFT and nano-CMOS manufacturing.

• A novel SB MOSFET with FID demonstrated.

• Based on the structure and unique ambipolar feature, a greatly simplified FEC characterization procedure developed for extracting the DOS in TFT.

• Nano-scale SOI device with excellent ambipolar subthrehsold swing and high on/off current ratio achieved.

Page 53: High-Performance  Schottky Barrier MOSFET

53

• Near-zero or even negative barrier height at source junction highly desired for

practical SB MOSFET application.

• UTB SOI essential for leakage reduction

• Interface modulation processes are potential for future nano-scale device manufacturing.

Summary (Cont.)