High Heat Input Welding of Offshore Structure

Embed Size (px)

Citation preview

  • 7/25/2019 High Heat Input Welding of Offshore Structure

    1/10

    Procedures and Weld Proper t ies

    W ith the right procedures , low-tem perature impac t properties

    can be retained w ith high heat input submerged arc welding

    B Y G . R 0 R V I K , M .

    I.

    O N S 0 I E N , A . O. K L U K E N A N D O. M . AKSELSEN

    ert ies of h ig h heat in pu t (E > 3

    deposi ted we ld metals have been

    inc lud ing nondes t ruc ti ve

    eva l

    side bend testing, hardness mea

    In addi t ion, metal lographic

    ana l

    m i n

    0.015 w t -% T i ) con ta in

    cons um ables , low we l d meta l

    For many years the heat input in

    k j / m m ,

    in the we ld metal

    such as the coarse ferri te sideplates

    I.ONS0IEN,

    A. O. KLUKEN

    O.M. AKSELSENare with The Welding

    SINTEF,

    The Foundation for

    Sci

    Researchat the Norwe

    tute of Technology, Trondheim,

    suit

    o f the s low coo l ing ra tes invo lved.

    However, recent developments in

    w e l d

    ing consumables and steelmaking prac

    t i ce , based on the phi losophy of control

    l ing t ransformat ion behavior through for

    ma t ion o f f i ne ly d ispersed no nm eta l l i c

    inc lus ions (Refs . 1 -4) , have prov ided

    materials w ith a cleavage resistance less

    depend ent on the weld heat input . Under

    such condi t ions, very f ine grains of pre

    dominant ly ac icular ferr i te ( typical grain

    s ize of 1-3

    u.m)

    may fo rm, resu l t ing in

    exce l len t impac t p roper t ies . Based on

    resul ts obtained in a previous invest iga

    t ion (Ref. 5) (wi th a heat input between

    5.2 and 8.0 kj /m m) , as we l l as re levant

    l i te ra tu re da ta (Refs . 6 -13) , a p r imary

    weld metal ac icular ferr i te volume frac

    t ion of approximately 50% may give r ise

    to a 35J(26 ft- lb) im pac t transit io n

    t em

    perature wel l below -40C

    (-40F).

    Appl i ca t ion o f h igh heat input in

    welding of of fshore structures requi res,

    however, informat ion on f racture tough-

    KEY WORDS

    Offshore Structures

    Mic ros t ruc ture

    High Heat Input

    W e l d i ng

    P W H T

    Welding Procedures

    Weld Metal Propert ies

    SAW

    Ti tan ium Content

    FCAW

    Mechanical Propert ies

    ness proper t ies . The present inve s t iga

    t ion was under taken w i th the ob jec t i ve

    to examine the c rack t ip open ing d is

    placeme nt (CTO D) f racture toughness of

    procedure tes t we lds us ing submerged

    arc we ld ing w i th bo th so l id and f lux

    cored w e ld ing w i re , as we l l as sub

    merged a rc w e l d i ng w i t h i r on pow de r

    add i t ions (so l id w i re ) . Inc luded were

    nondestruct ive evaluat ion and s ide bend

    test ing,

    together with hardness measure

    ments, Charpy V-notch and tensi le test

    ing. I t is shown that high impact and frac

    tu re toughness may be ob ta ined in the

    weld metal , both in the as-welded

    c o n

    di t ion and af ter postweld heat t reatment

    (PWHT) .

    M ate r i a l s and Ex per ime n ta l

    Procedure

    Materials and W elding

    For the present investigation, f ive dif

    f e ren t w e l d i ng c ons umab l es w e re s e

    l ec ted .

    Inc luded were th ree d i f fe ren t

    c o m m e r c i a l l y a v a i l a b l e w e l d i n g c o n

    sumables and two consum ables that rep

    resent var ious mod i f i ca t ions (one h igh

    in t i tanium, and one high in boron). A l l

    we lds were depos i ted in doub le V -

    g roov es on 60 -mm

    (2.4-in.)

    th ick base

    plates corresponding to Statoi l Grade 1,

    w i t h c hem i c a l c ompos i t i on gu i de l i nes

    out l i ned in Tab le 1. The weld test as

    sem bly is sh ow n in Fig. 1, and reveals

    that4000-mm (13.12-ft) long welds were

    depos i ted w i th a roo t open ing o f 2 mm

    (0.00 8 in.) and a beve l angle of e i ther

    40 or 50 deg. The app l ied w e ld ing pa

    rameters a re summar ized in Tab le 2 .

    These were adjusted to give heat inputs

    of 3, 5 and 7

    kj/mm

    ( 76 ,

    1

    27 and

    1

    78

    kj / in . ) . Typ ica l macrographs are shown

    in Fig. 2 for both low and high heat in-

    W E L D I N G R E S E AR C H S U P P L E M E N T I 331-s

  • 7/25/2019 High Heat Input Welding of Offshore Structure

    2/10

    Table 1 -

    C

    0.12

    -Chemical Composition Guidelines for Statoil Grade 1

    (Elements in wt- ) .

    Si M n P S Cu Ni Cr

    0.45 1.60 0.010 0.005 0.30 0.70 0.20

    M o

    0.08

    V

    0.006

    Nb

    0.03

    Ti

    0.03

    Al

    0.05

    (a) Min im um 325 MPa y ie ld s t rength for 60 -mm p la te th ickness.

    Groove geometry

    2

    Constraining plates

    40 or 50

    600

    in. 300

    60

    J

    3

    r

    0

    Constraining

    plates \ \

    \

    \

    r

    500

    ,

    500 , 500

    ,

    500 , 500 , 500 , 500 , 500

    Welding

    direction

    4000

    H

    Fig.1 Weld test assembly dimensions in mm).

    Table2WeldingParameters (Fill Passes).

    Weld

    No.

    A

    B

    C

    D

    E

    F

    G

    H

    1

    1

    K

    f

    W i r e

    OK 13.27

    a

    OK 13 .27

    a

    f AC

    N i2

    b

    f AC Ni2

    b

    SD 3

    a

    SD 3

    a

    N W 2

    b

    N W 2

    b

    O K

    13.27

    a

    OK 13.27

    a

    N W

    10

    b

    N W

    10

    b

    Diameter

    (mm)

    4.0

    4.0

    2.4

    C

    2.4

    C

    4.0

    4.0

    4.0

    4.0

    4.0

    4.0

    4.0

    4.0

    Flux

    OK 10.62

    OK 10.62

    980

    980

    OP121TT

    OP121TT

    P 240

    P240

    OK 10.62

    OK 10.62

    P 240

    P 240

    Metal

    Powder

    OK 21.86

    N o n e

    N o n e

    N o n e

    PD 3 N iM o

    PD 3 N iM o

    N o n e

    N o n e

    OK 21.86

    OK 21.86

    N o n e

    N o n e

    Current

    I (A)

    700-750

    700-725

    450-500

    500-525

    700-750

    750

    800

    820

    650-700

    780

    800

    850

    Voltage

    U ( V )

    3 2 - 3 4

    3 2 - 3 5

    34-37

    37

    33

    33

    32

    31

    26-29

    33

    $1

    32

    Travel

    Speed

    (mm/s)

    4 .7 -5 .8

    33

    3.3-3.8

    2.8

    7.5-8.3

    5.0

    3.6

    3.6

    5.8-6.7

    5.0

    5.0

    3.8

    Heat

    InputE

    (kj/mm)

    5

    7

    5

    7

    3

    5

    7

    7

    3

    5

    5

    7

    G r o o v e

    Angle

    (deg)

    50

    5 0

    40

    50

    50

    50

    40

    50

    50

    50

    40

    40

    a. So l id w i re .

    b . F lux core d wi re (NW 2 and NW 10 represent var ious modi f ica t io ns o f the comme rc ia l Corevveld 70 wi re) .

    c . 3 /32 in .

    Exampleof weld macrograph. Left

    Weld E; right

    Weld H.

    puts. The preheat ing and in terpass tem

    peratures wer e 50 and 25 0C(122and

    484F), respect ive ly. The root bead and

    buf fer layers were deposi ted wi th a

    1.2

    mm (0 .045 in .) 80N i - 1 f l ux co red w i re

    u s in g 7 5 % A r / 2 5 %

    C 0

    2

    sh ie ld ing gas,

    and a heat input of 1.7 k j /mm (43 k j / in . ) .

    In the case o f submerged a rc we ld ing

    w i t h i r o n p o w d e r a d d i t i o n s , p o w d e r

    a mo u n t s o f ma x i mu m 9 k g / h ( 2 0 I b / h )

    were added . One ha l f o f the p rocedure

    we lds (2000-mm leng th ) was sub jec ted

    to PWHT at 600C

    (111 2F)

    for 2

    '/

    h to

    ob ta in i n fo rma t ion on the po ten t ia l e f

    fects o f PWHT on weld meta l hardness,

    tensi le st rength and duct i l i ty, as wel l as

    impact and f racture toughness.

    Testing

    Al l nondestruct ive eva luat ion (NDE),

    side bend and mechanica l test ing were

    performed in conformance wi th the Sta

    to i l Gu l l faks C spec i f i ca t i on (COI 7-A-

    N-SP-304) . The nondest ruc t i ve exami

    nat ion included u l t rasonic and magnet ic

    par t ic le inspect ion.

    The side bend test d imensions were

    300 X 60 X 10 mm

    (12

    X 2.4 X 0.4 in.),

    w i t h a f o r me r d i a m e t e r o f 3 0 mm

    (1.2

    in.) and a 180-deg bend ing ang le . Two

    para l le l tests were carr ied out for each

    wi re / f l ux comb ina t ion .

    The room- tempera tu re tens i l e p rop

    er t ies and Charpy V-notch (CVN) tough

    ness at -40C were assessed for al l

    w e l d s , w i t h sp e c i me n s ma ch i n e d f r o m

    the welds as sche ma t ica l ly i l lust ra ted in

    Fig. 3 . The tens i l e tes t spec imens ma

    ch ined f rom f i l l passes were of 100-mm

    (4- in . ) length (50-mm gauge length) wi th

    a d iam eter o f e i ther 6 or 8 mm (0.2 4 or

    0.31 i n . ) . Impact p roper t i es , based on

    the ASTM Charpy V-no tch spec imen d i

    mensions of

    10

    X

    1

    0 X 55 mm (0.4 X 0.4

    X 2 .2 i n . ) , we re ex am ined in bo th the

    root region and the f i l l passes, w ith three

    paral lel tests for each posit ion.

    Mach in ing o f B X 2B spec imens and

    CTOD test ing were carr ied out in agree

    men t w i th the Br i t i sh S tandard BS

    5762 :1979 , wh ich i nc ludes p repara t i on

    of the notch and fat igue precracking (this

    is s im i la r to AST M Standard 1 290 -

    8 9 , 1 9 8 9 , Standard Test Methods for

    Crack Tip Opening Displacement

    (CTOD) Fracture Toughness Measure

    ments). T h e l o ca t i o n o f C T OD sp e c i

    mens is show n in Fig. 4 (i.e., c rack p rop

    aga t ion th rough the we ld me ta l ) . Th ree

    par a l le l tests wer e run at -1 0C

    (1

    4F)

    fo r each w i re / f l ux comb ina t ion .

    3 3 2 - s I S E P T E MB E R 1 9 9 2

  • 7/25/2019 High Heat Input Welding of Offshore Structure

    3/10

    Fatigue

    precrack

    Machined and

    electro-discharged

    nolch

    Samplefor

    chemical analysis

    3 Location o f CVN specimens (schematic).

    Fig. 4 Location of CTOD specimen s (schematic).

    T h e w e l d me t a l ch e mi ca l co mp o s i

    carbo n, su l fur, n i t rogen and oxy

    wh ich were ana lyzed w i th a Leco

    em atical ly in Fig. 4.

    The meta l lographic examinat ion was

    e in i t ia t ion (he., pr imary or

    th F ig . 5 , and subsequ ent ly prepared

    racture in i t ia t ion area was exam

    rost ru cture in a JEOL 200 CX t rans

    V

    1 0

    , i.e., 10-kg load) taken 1 mm (0.4

    t ra

    Results an d D iscussion

    Procedure Welding

    I n genera l , we ld ing w i th h igh hea t

    inpu t was pe r fo rmed w i thou t techn ica l

    prob lems, wi th a few except ions of mag

    ne t i c b lo w. Poor s lag de tac hm en t has

    been foun d in the case of a bevel a ngle

    of 40 deg (Welds C and G), w hic h means

    that h igh heat input we ld ing m ay requi re

    a beve l ang le o f min imu m 50 deg . How

    ever , th is does not necessar i ly g ive r ise

    to an increase in the to ta l weld ing t ime.

    This is due to the fact that very high de

    posi t ion ra tes have been obta ined, as

    shown by the da ta con ta ined in Tab le

    3. Con vent ion a l submerged arc we ld ing

    wi th 3

    kj/mm

    results in a deposit ion rate

    of typ ic a l ly 7 to 8 kg/h

    (1

    5 to

    1

    8 Ib/h).

    Th is leve l can be ra ised to

    1

    8 kg/h (40

    Ib/h) in the case of submerged arc w e l d

    ing wi th a f lux cored w i re using 7

    kj/mm

    hea t i npu t , o r conven t iona l submerged

    arc we ld in g w i t h a so l i d w i re and i ron

    pow der a ddi t ions using an arc energy of

    5 k j /mm.

    Thus, h igh hea t i npu t we ld ing may

    give r ise to a subs tant ia l e nha nce m ent

    of the deposi t ion ra te (i.e.,

    1

    50% ) . Th is

    p rov ides a bas is fo r i ncreased p rodu c

    t iv i ty. I t fo l lows that the product iv i ty po

    ten t i a l i nvo l ved in h igh hea t i npu t i n

    creases with increasing plate thickness.

    NDE and Side Bend Test Results

    Bo th the magne t i c pa r t i c l e and the

    u l t rason ic i nspect ion revea led on ly a

    few cases o f undercu ts and incom p le te

    fus ion i n the roo t reg ion . However , a l l

    we lds were accep tab le w i th respect to

    the cu r ren t spec i f i ca t i on requ i remen ts .

    The side bend test results were also ac

    cep tab le , bo th i n the as-we lded cond i

    t ion and after PWHT.

    Weld Metal Chemical Composit ion

    The chemica l compos i t i on o f we lds

    A throug h L are out l in ed in Table 4 . An

    inspect ion of the tab le reveals that the

    weld meta l carbon content is s imi lar be

    tween the consumab les (0 .0 6 -0 .0 8% C) .

    Weld

    Machined notch

    3Typical Deposition Rates.

    .

    Technique

    SAW/ I P

    a

    a

    b

    b

    Heat Input

    E (k | /mm)

    3

    5

    5

    7

    Depos i t ion

    Rate

    (kg/h)

    15

    18

    13

    18

    Fatiguecrack tip .

    Fracture initiation

    point

    d e r a d d i t io n s .

    welding

    Sectioning plane to

    identify microstructure

    sampledby fatigue

    crack

    Sectioning plane to

    identify microstructure

    at fracture initiation

    point

    Fig. 5

    Sectioning of CTOD specime ns for determination of brittle fracture initiation

    (schematic).

    W E L D I N G R E S EA RC H S U P P L E M E N T

    I

    3 3 3 - s

  • 7/25/2019 High Heat Input Welding of Offshore Structure

    4/10

    Table

    4

    W e l d

    No.

    A

    B

    C

    D

    E

    d

    F

    e

    G

    I I

    1

    J

    K

    t

    Weld Metal Chemical Composition (Elements

    inwt- )

    a

    C

    0.07

    0.07

    0.06

    0.06

    0.06

    0.07

    0.07

    0.07

    0.06

    0.06

    0.07

    0.08

    a. All welds contain0.03

    b. Elements n ppm.

    Si

    0.34

    0.35

    0.26

    0.26

    0.33

    0.29

    0.55

    0.55

    0.29

    0.28

    0.44

    0.43

    -0.05

  • 7/25/2019 High Heat Input Welding of Offshore Structure

    5/10

    300

    250

    200

    150

    100

    50

    l l

    Open Bars: As Welded

    Filled Bars: PWHT

    Root Region

    ii

    I

    A B C D E F G H I J K L

    WELD NO.

    Weld metal CVN toughness at-40 C (root region).

    300

    O

    o 250 -

    u

    w

    O

    3 0 p p m ) .

    t e a l s o t h e v a r i a t i o n s i n t h e w e l d

    a l u m i n u m a n d o x y g e n c o n t e n t s ,

    i c h t o g e t h e r w i t h s i l i c o n , m a n g a n e s e

    t i t a n i u m m a y i n f l u e n c e t h e r e s u l t

    t r a n s f o r m a t i o n b e h a v i o r t h r o u g h

    i n f l u e n c e o n d e o x i d a t i o n a n d s u b

    n g r a i n s t r u c t u r e

    T h e d a ta o b t a i n e d f r o m h a r d n e s s

    ( H V

    1 0

    )

    a r e o u t l i n e d i n

    5 a n d p r e s e n t e d g r a p h i c a l l y i n F ig .

    h a r d

    n e ss v a l u e s w e r e f o u n d ,

    i.e.,

    H V

    1 0

    w i t h i n t h e ra n g e f r o m 2 0 6 to 251

    k g / m m

    2

    i n t h e a s - w e l d e d c o n d i t i o n , a n d

    f r o m

    197

    t o 2 4 7 k g / m m

    2

    a ft e r P W H T .

    T h i s o b s e r v a t i o n is n o t s u r p r i s i n g ,

    c o n

    s i d e r i n g t h e s l o w c o o l i n g r a te s i n v o l v e d

    i n h i g h h e a t i n p u t w e l d i n g (t h e c o o l i n g

    t i m e b e t w e e n 8 0 0 a n d 5 0 0 C is t y p i

    c a l l y 3 0 t o 7 0 s ). I n g e n e r a l , P W H T g a v e

    r i s e t o a s m a l l r e d u c t i o n o f t h e w e l d

    m e t a l h a r d n e s s . A n e x c e p t i o n w a s f o u n d

    f o r t h e t i t a n i u m - c o n t a i n i n g w e l d s G a n d

    H .

    I n c o n t r a s t t o t h e l o w h a r d n e s s l e v e l ,

    r e l a t i v e l y h i g h y i e l d a n d t e n s i l e s t r e n g t h

    v a l u e s h a v e b e e n o b t a i n e d T a b l e 5 .

    T h i s p o i n t i s i l l u s t r a t e d i n F i g . 7 . P W H T

    r e s u l t e d i n a r e d u c t i o n o f t h e w e l d m e t a l

    s t r e n g t h , w i t h a n e x c e p t i o n f o r W e l d s C ,

    G a n d H , w h e r e t h e y i e l d s t r e n g t h w a s

    r a i s e d b y 5 0 t o 6 5 M P a ( 7 2 5 2 - 9 4 2 7

    l b / i n .

    2

    ) . A l s o , t h e t e n s i l e s t r e n g t h l e v e l

    w a s i n c r e a s e d f o r t h e t w o t i t a n i u m - c o n

    t a i n i n g w e l d s G a n d H b y 12 t o 3 5 M P a

    (1 7 4 0 - 5 0 7 6 l b / i n .

    2

    ) , b u t t o a s m a l l e r e x

    t e n t t h a n t h e y i e l d s t r e n g t h . I t i s r e a s o n

    a b l e t o s u g g e s t t h a t t h e s e r e s u l t s a r e

    c a u s e d b y t h e h i g h t i t a n i u m c o n t e n t ,

    p r o v i d i n g c o n d i t i o n s f o r s e c o n d a r y

    h a r d e n i n g a s a r e s u l t o f p a r t i c l e p r e c i p i

    t a t i o n . T h u s , i t i s n o t s u r p r i s i n g t h a t b o t h

    t h e h a r d n e s s a n d t h e s t r e n g t h l e v e l a f t e r

    P W H T a r e c l o s e l y r e l a t e d t o t h e w e l d

    m e t a l T i c o n t e n t , as s h o w n b y F i g . 8 . I n

    c o n t r a s t , w h e n c o n s i d e r i n g t h e v a r i a

    t i o n s i n t h e w e l d m e t a l c o n c e n t r a t i o n o f

    a l l o y i n g e l e m e n t s

    ( P

    c m

    v a l u e s r a n g i n g

    f r o m 0.167 t o 0 . 2 1 3 ) , n o s t r a i g h t f o r w a r d

    r e l a t i o n s h i p b e t w e e n a l l o y i n g l e v e l a n d

    y i e l d o r t e n s i l e s t r e n g t h w a s f o u n d .

    T h e t e n s i l e d u c t i l i t y w a s r e l a t i v e l y

    h i g h ,

    r e p r e s e n t e d b y e l o n g a t i o n a t f r a c

    t u r e ( 5 0 - m m g a u g e le n g t h ) w i t h i n t h e

    r a n g e f r o m 16 t o 2 8 % i n t h e a s - w e l d e d

    c o n d i t i o n , a n d b e t w e e n

    18

    a n d 2 8 %

    a f t e r

    P W H T T a b l e

    5 .

    We ld Meta l Impac t Proper t ies

    T h e C V N t e s t r e s u lt s a r e s u m m a r i z e d

    i n T a b l e 6 , a n d p r e s e n t e d g r a p h i c a l l y i n

    t h e f o r m o f v e r t i c a l b a r s i n F i g s . 9 ( f i l l

    passes) and 10 ( r o o t r e g i o n ) . I t i s a p p a r

    e n t f r o m F ig . 9 t h a t t h e n o t c h t o u g h n e s s

    300

    0.005 0.01 0.015 0.02 0.025 0.03

    W E L D M E T A L T i C O N T EN T , w t %

    12

    Effect of weld me tal titanium content on CVN toughness at

    E

    E

    y